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Abstract: Plant cystatins (or phytocystatins) comprise a large superfamily of natural bioactive small
proteins that typically act as protein inhibitors of papain-like cysteine proteases. In this report,
we present the purification and characterization of the first phytocystatin isolated from Moringa
oleifera (MoPI). MoPI has a molecular mass of 19 kDa and showed an extraordinary physicochemical
stability against acidic pHs and high temperatures. Our findings also revealed that MoPI is one
of the most potent cysteine protease inhibitors reported to date, with Ki and IC50 values of 2.1 nM
and 5.7 nM, respectively. More interestingly, MoPI presents a strong antimicrobial activity against
human pathogens such as Enterococcus faecalis and Staphylococcus aureus. In addition, MoPI also
showed important anticoagulant activity, which is an unprecedented property for this family of
protease inhibitors. These results highlight the pharmaceutical potential of this plant and its derived
bioactive molecules.

Keywords: Moringa oleifera; protease; plant protease inhibitor; phytocystatin; papain inhibitor;
antibacterial; anticoagulant; bioactive compound

1. Introduction

Moringa oleifera (M. oleifera) is a plant native to India that grows in the tropical and
subtropical regions of the world. Due to its high nutritional properties, the whole plant is
typically used for nutritional or commercial purposes. It is worth mentioning that different
parts of this tree are applied as food to combat malnutrition, especially among infants
and breastfeeding woman in many developing countries, including India, Pakistan, the
Philippines, Hawaii and many regions of Africa [1].

In addition to its nutritional value, M. oleifera has an important medicinal and phar-
macological potential. Recent studies have shown that extracts of this plant possess strong
antioxidant, anticancer, anti-inflammatory and antidiabetic properties [2]. Furthermore,
evidence suggests that almost all parts of the plant exhibit antibacterial activity [3]. In many
cases, such antibacterial activity has been associated with the presence of small chemical
compounds such as glucosinolates (β-thioglucoside N-hydroxysulfates), isothiocyanates,
organic carbamates, chalcone-oxazolidinone hybrids and thiocarbamate [4]. Although
extensive research has been carried out with M. oleifera extracts, little is known regarding
the presence of protease inhibitors in this plant and their role as antibacterial agents.
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Cysteine proteases (CPs) are among the most widely distributed and relevant pro-
teases. They are present in almost all living organisms and participate in a variety of
biological processes [5]. It has been reported that the imbalance in the activity of endoge-
nous CPs can lead to numerous pathologies such as rheumatoid arthritis, multiple sclerosis,
neurological disorders, tumours, and osteoporosis [6]. CPs produced by bacteria, viruses,
and parasites are also considered important factors in the development of many human
diseases such as paradontosis [7], malaria, Chagas disease and schistosomiasis [8,9], among
others. Special mention deserves the role of the papain-like cysteine protease (PCPs) from
the SARS-CoV-2, which is required for the processing of viral polyproteins during viral
spread and to evade the innate immunity of the host [10]. From a more general point
of view, PCPs play essential roles in growth, cell differentiation, signalling and host in-
vasion in pathogenic organisms and frequently act as a virulence factor by attacking the
host’s immune system [10–13]. Thus, fine control of the proteolytic activity is essential
for the proper functioning of whole cells and organisms. In fact, this is achieved at many
levels, from the regulation of protein expression, secretion and maturation (through the
specific cleavage of the proenzyme) to the blocking of its activity by inhibition by specific
protease inhibitors [14].

Cystatins (or phytocystatins) are a family of structurally related proteins with molec-
ular masses in the range of 12–23 kDa that function as CPs inhibitors [15]. Previous
studies suggested that phytocystatins isolated from corn, barley, tomato, rice, papaya,
etc., [16–18] can inhibit insect CPs in vitro [19–21]. On the other hand, phytocystatins iso-
lated from chestnut, sugar cane, carnation, barley, taro, strawberry, wheat, cocoa, amaranth
and sesame showed strong inhibitory activity against broad-range fungal pathogens [22].
However, despite all these previous studies, there is only one known cystatin that specif-
ically inhibits the growth of bacteria. This protein has been isolated from kiwi and is
capable of blocking the growth of Agrobacterium tumefasciens, Burkholderia cepacia, and
Erwinia carotovora [23].

Over the past years, M. oleifera has shown great nutritional and pharmacological
potential. However, previous research has been focused on evaluating the activity of crude
extracts and the identity and biological role of its bioactive compounds remains elusive. In
the present study, we report the isolation, purification and biochemical characterization
of a novel papain inhibitor obtained from M. oleifera seeds. Herein, we also studied the
antibacterial properties of the isolated bioactive inhibitor, which was assayed against a
panel with nine different bacterial strains. More importantly, anticoagulant activity studies
results indicated that MoPI is a pharmacologically active anticoagulant molecule. Taken
together, the activities and distinctive properties of this novel inhibitor represent the first
report carried out for M. oleifera phytocystatins and suggests direct applicability of this
bioactive molecule for pharmaceutical and/or biotechnological applications.

2. Materials and Methods
2.1. Materials

The seeds of M. oleifera were hand-collected from local trees near La Coronela neighbor-
hood, La Habana, Cuba. The seeds were washed and stored at −80 ◦C until use. Coomassie
Blue G-250, N,N,N0,N0-tetramethylethylenediamine (TEMED), sodium chloride, tris (hy-
droxymethyl) aminomethane, sodium dodecyl sulphate (SDS), β-mercaptoethanol (βME),
bovine serum albumin (BSA), L-pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide
(PFLNA), Trypsin, 4-nitrophenol-α-D-glucopyranoside (PNPG) and α-glucosidase were
purchased from Sigma-Aldrich (San Luis, MO, USA). Glyoxyl-agarose was delivered from
FlukaTM. All other chemicals used in this work were of analytical grade and purchased
from Sigma-Aldrich (San Luis, MO, USA) (unless otherwise specified).

2.2. Crude Extract Preparation

M. oleifera seeds (30 g) were washed with distilled water and dried at room temperature
during 16–20 h. The seeds were ground using a blender with the addition of 450 mL of
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0.01 M phosphate buffer, pH 7.4 in an ice bath to avoid possible protein denaturation.
After incubation for 2 h at room temperature, the mixture was filtered with gauze, and the
insoluble material was removed by centrifugation for 30 min at 7000× g at 4 ◦C. The clarified
supernatant (from now on: MoCE) was collected and immediately frozen at −20 ◦C
until analysis. The total protein content was determined by the Bradford’s assay [24],
as described by Cotabarren et al. [25] using bovine serum albumin (BSA) as standard
(0.1 mg/mL). Papain inhibitory activity was determined as described in Section 2.4.

2.3. Identification and Purification of MoPI
2.3.1. Partial Purification by Heat Treatment

According to our previous studies, protease inhibitors present high physicochemical
stability with minimal loss of inhibitory activity [26]. Accordingly, in the first purification
step, the crude extract was subjected to 100 ◦C for 15, 60, and 120 min. Afterward, the
samples were cooled at room temperature, and the thermally denatured proteins were
removed by centrifugation for 30 min at 7000× g and 4 ◦C. The total protein content and
the inhibitory activity of the non-treated crude extract and heat-treated samples were
determined. Each obtained sample was called MoHT15, MoHT60 and MoHT120, in
accordance to the incubation time.

2.3.2. Affinity Chromatography

A sample of 150 mL of MoHT15 was loaded onto a papain-glyoxyl-agarose column
prepared in-house following the method of Obregón and colleagues [27] (1.5 × 12 cm)
connected to an Äkta-Purifier (GE Healthcare, Chicago, IL, USA) previously equilibrated
with 0.01M phosphate buffer, pH 5.5–considering the optimal pH for the papain-inhibitor
interaction–. After complete removal of the non-retained proteins with equilibration
buffer, affiliated proteins were eluted generating a sudden pH change by the addition of
0.01 M HCl, pH 2.5 at a flow rate of 0.7 mL/min. The eluted fractions were immediately
neutralized by adding 0.1 M NaOH. The purified papain inhibitor was named MoPI
(M. oleifera papain inhibitor). Papain inhibitory activity and protein quantification were
determined as previously described. Samples were analysed by SDS-PAGE as described by
Cotabarren et al. [25]

2.4. Enzymatic Analysis of the Inhibitory Activity against Papain

Papain inhibitory activity was determined by using the substrate L-pyroglutamyl-L-
phenylalanyl-L-leucine-p-nitroanilide (PFLNA). The hydrolysis of PFLNA was monitored
by measuring the increase of the absorbance at 410 nm at 37 ◦C every minute for 10 min [27].
Reaction volumes were adapted to a 96-well plate with a final volume of 200 µL. The
inhibition of papain activity caused a decrease in the hydrolysis rate of the substrate,
which resulted in the attenuation of the hydrolysis slope. The inhibitory activity was
estimated as the residual proteolytic activity in the presence of the inhibitor and expressed
as a percentage of inhibition in comparison with the control assay (in the absence of the
inhibitor). In the case of heat-treated samples, the volume used in each assay was 20 µL.

One papain inhibitory unit (1 PIU) was defined as the decrease in 0.01 unit of ab-
sorbance at 410 nm per 10 min assay, at 37 ◦C. The inhibitory constant (Ki) and the IC50
(defined as the inhibitor concentration required for half-activity of the enzyme) were calcu-
lated according to the protocol described by Tellechea and colleagues [28], modified for
papain inhibition. All measurements were performed in triplicate.

2.5. Biological Assays
2.5.1. Anticoagulant Activity

Anticoagulant activity of MoPI was evaluated by determining prothrombin time (PT)
and the time of activated partial thromboplastin (aPTT) using a Coatron M1 coagulometer
(TECO, Neufahrn, Germany). In both cases, a pool of blood plasmas from the mixture, in
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equal parts, of 5 healthy individuals, maintained at 37 ◦C with 3.8% sodium citrate (ratio
sample: anticoagulant 9:1) was used as a sample (from now on: PBP).

For the PT test, the commercial Soluplastin reactive (Wiener Lab.) was employed.
Initially, equal parts of the PBP sample and the papain inhibitor (12.5 µg/mL) were incu-
bated for 2 min at 37 ◦C, then 50 µL of Soluplastin were added to 25 µL of this mixture
and checked for the coagulation time. For the aPTT test, 25 µL of aPTT (Wiener Lab.)
were added to an equal volume of PBP-inhibitor mixture (previously incubated for 2 min
at 37 ◦C). After 2 min incubation at 37 ◦C, 25 µL of 50 mM CaCl2 was added to initiate
the coagulation time determination. For both assays, measurements were carried out in
triplicate and appropriate controls were achieved.

2.5.2. Antimicrobial Activity

In order to determine the inhibitory capacity on the growth of various bacterial
strains by the inhibitor, the agar diffusion assay based on the Kirby-Bauer test was per-
formed with slight modifications [29]. Initially, the pre-inoculums of different pathogenic
microorganisms (i.e., Citrobacter amalonaticus, Enterobacter cloacae, Enterococcus faecalis, Es-
cherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella
typhimurium and Staphylococcus aureus) were grown at 37 ◦C for 18–24 h and the turbidity
of the bacterial suspension was adjusted with a physiological solution to 0.5 McFarland
scale (1.5 × 108 UFC/mL). The inoculums were plated on Müller Hinton agar plates, in
which a drop of 10 µL inhibitor was placed. After the drop placed in the plate was dry,
the plates were incubated at 37 ◦C for 24 h. Then, the diameters of the bacterial growth
inhibition halos (in millimetres) were measured. The tests were conducted by triplicate,
including the respective controls.

2.6. Statistical Analysis

Statistical analyses (ANOVA) were performed with GraphPad Prism (v6.03, GraphPad
Sofware Inc.: San Diego, CA, USA, 2012). Significant differences between the means of the
parameters were determined by Tukey’s post-hoc test (p < 0.05).

3. Results and Discussion
3.1. Isolation and Purification of MoPI

Moringa seeds are known to be rich sources of lipids (31%), and their elimination leads
to a high protein expeller (19%), generating an interesting product for human nutrition.
As described in Section 2.2, we prepared a crude extract of M. oleifera seeds (MoCE). The
protein concentration of the sample was 3.51 ± 0.03 mg/mL (see Table 1), which is in
agreement with previous reports [30]. Next, we aimed to investigate the papain inhibitory
activity of the crude extract. This initial examination showed that small amounts of MoCE
to the reaction tube produce a drastic decrease in the papain activity, which is consistent
with the presence of inhibitory molecules in the sample. A more detailed dose-response
analysis showed that MoCE strongly inhibits papain with an IC50 value of 0.025 µg/mL.

Table 1. Concentration for M. oleifera crude extract and heat-treated samples.

Sample Total Protein Content (mg/mL) a

M. oleifera crude extract (MoCE) 3.51 ± 0.03
M. oleifera crude extract after 100 ◦C heat treatment for 15 min (MoHT15) 1.73 ± 0.05
M. oleifera crude extract after 100 ◦C heat treatment for 60 min (MoHT60) 1.66 ± 0.06

M. oleifera crude extract after 100 ◦C heat treatment for 120 min (MoHT120) 1.5 ± 0.04
a Values are the mean ± standard deviation (n = 3).

A number of plant protease inhibitors (PIs) have been purified and found to be stable
and active at high temperatures [26,31]. For this reason, we incubated the MoCE at 100 ◦C
for 15, 60 and 120 min as an initial purification step. As observed in Table 1, the heat
treatment at 100 ◦C produced a decrease in protein content of 50–60% with respect to the
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raw starting crude extract. Papain inhibitory activity was then determined in the samples
corresponding to each heat treatment (MoHT15, MoHT60 and MoHT120). As shown
in Figure 1A, the inhibitory activity against papain was maintained even after 120 min
of incubation, suggesting an extraordinary thermostability of the inhibitor. It is worth
mentioning that this property is very interesting for most biotechnological applications,
behind an added value for their commercial exploitation [32].
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Figure 1. Isolation and purification of M. oleifera papain inhibitor (MoPI) from the crude extract (MoCE). (A) Papain
inhibitory activity (%) in the presence of the different M. oleifera heat-treated samples. MoCE: M. oleifera crude extract,
MoHT15-120: M. oleifera crude extract after 100 ◦C heat treatment for 15, 60 and 120 min. * p < 0.05, compared to control;
a p < 0.05 compared to MoCE; b p < 0.05 compared to MoHT15; c p < 0.05 compared to MoHT60 (one-way ANOVA
and Tukey·s multiple comparison test). (B) Purification of M. oleifera papain inhibitor by affinity chromatography on
immobilized papain. Fractions with papain inhibitory activity (gray area) were pooled and named MoPI. (C) Electrophoresis
(SDS-PAGE, 12% v/v) of the M. oleifera papain inhibitor (MoPI). Lane 1: Low range molecular mass marker; Lane 2: Purified
M. oleifera papain inhibitor. The arrow indicates the location of the inhibitor.

In addition to the thermal stability, we also evaluated the effect of the temperature
on the stability of the inhibitor at two extreme pH values (pH 2 and 9). Surprisingly,
after 60 min of incubation, we were able to recover 100% of the inhibitory activity against
papain. This unusual physicochemical stability is a remarkable feature for phytocys-
tatins. So far, there is only one previous report describing a papain inhibitor isolated from
Vigna unguiculata seeds that presented both thermal stability and a similar tolerance to a
wide range of pHs [33].

As shown in Table 1 and Figure 1A, MoHT15 is the sample with a better relationship
between conservation of activity/elimination of soluble non-inhibitory proteins. Moreover,
this thermal treatment represents a simple and crucial purification step to achieve a partial
purification of the inhibitor. MoPI was purified from the MoHT15 fraction after performing
a high-speed centrifugation step (see Materials and Methods section for experimental
details). After centrifugation, the supernatant containing the inhibitor was further purified
by affinity chromatography using a special support based on glyoxyl-agarose containing
covalently immobilized papain. After purification by affinity chromatography, the pa-
pain inhibitory activity of the eluted fractions was determined. As shown in Figure 1B,
the purified inhibitor eluted as a single peak that contained a protein concentration of
0.16 ± 0.01 mg/mL and specific inhibitory activity of 10.81 PIU/mg (see Table 2). After
the different purification steps, the resultant MoPI showed an apparent molecular weight
of 19 kDa (Figure 1C). This size is in agreement with the size of other phytocystatins pre-
viously isolated from plants (i.e., garlic phytocystatin [34], Barley protease inhibitor and
Vigna unguiculata cysteine inhibitor [33].
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Table 2. Purification steps of MoPI from Moringa oleifera seeds.

Purification Step Total Protein
Amount (mg)

Total Inhibitory
Activity (PIU) a

Specific Inhibitory
Activity (PIU/mg) Purity (fold) b Yield (%) c

Crude extract 561.6 ± 4.8 42.5 ± 6.7 0.07 ± 0.01 1.0 100
100 ◦C heat treatment 259.5 ± 7.5 39.8 ± 4.3 0.15 ± 0.01 2.1 93.7

Affinity chromatography 1.3 ± 0.1 14.1 ± 2.4 10.81 ± 1.31 154.4 33.2
a One papain inhibitory unit (1 PIU) was defined as the amount of inhibitor that decreased absorbance at 410 nm by 0.1 under the assay
conditions. b The purification index (Purity) was calculated as the ratio between the specific inhibitory activity determined after each
purification step as compared to the initial inhibitory activity present in the crude extract. c Yield of inhibitory activity after each purification
step compared to the crude extract (%).

3.2. Inhibition Kinetics

Kinetic studies of MoPI inhibition activity were carried out following the protocol de-
scribed by Tellechea and colleagues [28]. Analysis of the data revealed that MoPI has an IC50
value of 0.11 µg/mL (5.7 × 10−9 M, Figure 2A) and a Ki value of 2.1 × 10−9 M (Figure 2B),
indicating that MoPI is a potent papain inhibitor. In comparison to other high thermostable
protease inhibitors previously reported in the literature [26], MoPI presents one of the
lowest IC50 values (see Table 3). MoPI also presents a Ki that is significantly lower in com-
parison to other thermostable PIs; i.e., papaya proteinase inhibitor (Ki = 3 × 10−7 M; [35]),
Cajanus cajan proteinase inhibitor (2.72 × 10−7 M, [36]), Albizia amara protease inhibitor
(1.24 × 10−8 M, [37]) and garlic protease inhibitor (8.5 × 10−8 M, [34]).
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Interestingly, while most of the phytocystatins maintains only 10–25% of their in-
hibitory capacity after 80–90 ◦C incubation, MoPI preserves total inhibitory capacity after
15 min incubation at 100 ◦C, being one of the most stable phytocystatins reported to date
(see Table 3). Only VuCys1 has a higher thermostability after 60 min incubation at 100 ◦C.
However, the inhibitory kinetics of this inhibitor is still unknown. It is important to men-
tion that although the phytocystatins included in Table 3 were classified by their authors
as highly thermostable PIs, we reported on a recently published article [26] that such
phytocystatins do not fall within the super stable inhibitors. For this reason, the current
stability data, the IC50 and Ki position MoPI as one of the phytocystatins with the greatest
potential for biotechnological applications. Several studies aimed at characterizing the
dependence of the thermal stability of plant PIs on pH established the optimal conditions
for the application of these proteins to biotechnology involved in the development of
transgenic crops resistant to insect pests [38] or in the pharmaceutical industry as specific
inhibitors of pathogens such as fungi and bacteria [39].
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Table 3. Thermostable phytocystatins isolated in the last 20 years.

Inhibitor Plant Name Origin Ki (M) IC50
MW

(kDa)
Temp
(◦C)

Time
(min) RIA (%) Ref.

GPC Allium
sativum Cloves 8.5 × 10−8 N/D 12.5 90 30 10 [34]

VuCys1 and
VuCys2

Vigna
unguiculata

Recombinant
(Leaves) N/D N/D 10.7 (1)

21.9 (2) 100 60 VuCys1: 100
VuCys2: 90 [33]

YMP Brassica alba Seeds 3.1 × 10−7 9.0 × 10−7 26.4 90 30 10 [15]
Almond
cystatin Prunus dulcis Fruits 4.54 × 10−8 N/D 63.4 90 60 15 [40]

Mustard TPI Brassica juncea Seeds 1.0 × 10−7 N/D 18.1 90 30 25 [41]
SBPC Gicine max Soybean 3.59 × 10−6 N/D 19 80 30 15 [42]

PMC I and
PMC II

Phaseolus
mungo Seeds N/D N/D 19.1 (I)

17.5 (II) 90 30 80 [43]

CICPI Cassia leiandra Seeds 4.1 × 10−7 8.5 × 10−7 18.3 100 20 55 [44]

MoPI Moringa
oleifera Seeds 2.1 × 10−9 5.7 × 10−9 19 100 15

60
90
60

Abbreviations: Ki: inhibitory constant; IC50: amount of inhibitor needed for 50% papain inhibition; MW: molecular weight; Temp:
Temperature; Time: Incubation time; RIA: Residual Inhibitory Activity Ref.: References.

3.3. Anticoagulant Activity

Thrombotic events due to blood clotting are known to pose a serious problem in
cardiovascular disease [45]. Although heparin (a protease inhibitor widely used to delay
blood clotting time) has been widely used for this purpose, its continued use often results
in the development of thrombocytopenia and immune response [46]. Furthermore, other
anticoagulant drugs, such as aspirin and clopidogrel, may lead to serious side effects [47].
In this context, only serine protease inhibitors have been studied as potential antithrombotic
agents [48–50]. Discovery of new PIs with inhibitory activity of the coagulation cascade
would result in an alternative strategy against thrombosis.

The anticoagulant activity of MoPI was tested by determining the activated partial
thromboplastin time and the time of prothrombin (Table 4). The concentration of inhibitor
evaluated (12.5 µg/mL) produced a significant increase of 25% in the time of activated
partial thromboplastin compared to the control sample. This result suggests a potential
application of the M. oleifera papain inhibitor as an anticoagulant agent of natural origin
as an alternative to conventional anticoagulant agents. Regarding the behaviour of MoPI
for the extrinsic route (see Prothrombin time in Table 4), the values obtained for the
corresponding test were very similar to those of the control sample; therefore, no significant
increase in coagulation time was observed.

Table 4. Anticoagulant activity of MoPI on activated partial thromboplastin and prothrombin.

Sample Prothrombin Time (seg) a Activated Partial Thromboplastin Time (seg) a

Control 18.6 ± 0.7 44.4 ± 3.1
MoPI 18.1 ± 0.7 60.6 ± 0.9 *

a Values are the mean ± standard deviation (n = 3). * p < 0.05, compared to control (two-tailed t-test).

3.4. Antimicrobial Activity

The antimicrobial activity of the crude extract (MoCE) and heat-treated sample
(MoHT15) were evaluated in order to establish whether the powerful papain inhibitor
from M. oleifera is able to inhibit bacterial growth. As observed in Table 5, our results con-
firmed the findings from Bancessi and colleagues [3] that reported a strong antimicrobial
activity of Moringa seed extracts against E. coli, E. faecalis, S. aureaus, E. cloacae, Proteus,
K. pneumoniae. More interestingly, the heat-treated sample showed a strong inhibitory
effect against the growth of E. faecalis and S. aureaus. A similar profile of inhibition was
observed for the purified inhibitor MoPI, suggesting that this papain inhibitor has strong
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antibacterial properties against these two bacterial strains. It should be noted that the tests
were performed using a relatively low sample concentration.

Table 5. Evaluation of the antibacterial activity of M. oleifera crude extract (MoCE), heat-treated
sample (MoHT15) and the purified inhibitor (MoPI).

Pathogenic Bacteria MoCE (175 µg) MoHT15 (85 µg) MoPI (24 µg)

Citrobacter amalonaticus CIPROVE - - -
Enterobacter cloacae CIPROVE + - -

Enterococcus faecalis ATCC 29212 ++ ++ ++
Escherichia coli ATCC 25922 + - -

Klebsiella pneumoniae ATCC 700603 + - -
Proteus vulgaris CIPROVE + - -

Pseudomonas aeruginosa ATCC 27853 - - -
Salmonella typhimurium CIPROVE - - -
Staphylococcus aureus ATCC 29213 +++ +++ +

ATCC: American Type Culture Collection; CIPROVE: Culture collection of the CIPROVE, Facultad de Cien-
cias Exactas, Universidad Nacional de La Plata. Inhibition zones: (+++) inhibition zone higher than 7 mm;
(++) inhibition zone of 6 mm; (+) inhibition zone of 5 mm; - (no inhibition).

As discussed above, the only known phytocystatin with antibacterial activity is a
kiwi cystatin that inhibits the growth of Agrobacterium tumefaciens, Burkholderia cepacia, and
Erwinia carotovora [23]. This study represents new evidence of the antimicrobial role of
phytocystatins, expanding their possible biomedical applications. Genetically engineered
cystatins could be generated and act as potent nutraceuticals in the development of a
food product designed from a “plant derivative” that allows preventing the infection
of pathogens in the human digestive system. So far there is no evidence that cysteine
proteases (absent in the human intestinal system) have any role (as compared to serine
proteases) in the degradation of human food. Therefore, plant cystatins would have ap-
propriate characteristics to be used as pharmaceutical products and/or to be incorporated
as nutraceuticals due to their antimicrobial and antiviral properties, since they can only
interact with microbial or viral cysteine proteases in the human intestine and not with
cysteine proteases in the human digestive system [51].

It is known that, with the aim of getting the properties of Moringa to the consumer,
studies are being carried out with different foods, mainly meat products and breads, in
which Moringa (leaf, seed, extracts, etc.) is incorporated as an ingredient. In meat products,
it is used as a preservative and antioxidant additive with very good results without
affecting the sensory characteristics of the final product. In the bakery sector, the objective
is usually the nutritional enrichment of the food. It would be very interesting to incorporate
Moringa seed extracts as a food additive, substituting different preservatives and chemical
antioxidants, and at the same time its use in the preparation of highly nutritious basic
products, ideal for certain population groups in greater risk of malnutrition. There are
indications that the industry is gearing up for a large investment in “designer foods” with
benefits for humans. Such foods, which could ultimately decrease demand for drugs, could
also help control disease and disorders often associated with a change in lifestyle.

4. Conclusions

Herein, we report the isolation and purification of the first papain inhibitor from
M. oleifera seeds. This novel bioactive molecule demonstrated a great physicochemical
stability at high temperatures and extreme pHs. In addition, MoPI showed a surprising
inhibitory activity against papain with Ki and IC50 values in the nanomolar range, making
this inhibitor one of the most powerful phytocystatins found to date. On the other hand,
the growth inhibitory capacity was determined on various strains of pathogenic bacteria,
demonstrating a strong antimicrobial effect of this inhibitor against Enterococcus faecalis
and Staphylococcus aureus strains. Moreover, we also anticipate that MoPI isolated from
M. oleifera has intrinsic anticoagulant activity against the intrinsic pathway of the coagula-
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tion cascade. Taken together, these properties position this novel molecule as a potential
natural antibacterial agent suitable for biotechnological and pharmaceutical applications.
This research also contributes to the knowledge of unprecedented characteristics in this
type of inhibitor, being the first cysteine protease inhibitor of vegetable origin with this
particular combination of biological activities.
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6. Berdowska, I.; Siewiński, M. The role of cysteine cathepsins and their inhibitors in physiological and neoplastic processes.
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