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Abstract: The entropic gravity conception proposes that what has been traditionally interpreted
as unobserved dark matter might be merely the product of quantum effects. These effects would
produce a novel sort of positive energy that translates into dark matter via E = mc2. In the
case of axions, this perspective has been shown to yield quite sensible, encouraging results
[DOI:10.13140/RG.2.2.17894.88641]. Therein, a simple Schrödinger mechanism was utilized, in which his
celebrated equation is solved with a potential function based on the microscopic Verlinde’s entropic force
advanced in [Physica A 511 (2018) 139]. In this paper, we revisit this technique with regards to fermions’
behavior (specifically, baryons).
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1. Introduction

1.1. Emergent Entropy

In 2011, Verlinde [1] conceived the notion of linking gravity to an entropic force. This idea was later
proved valid [2], in a classical setting.

In [1], gravity crops up as a result of information concerning the position of material bodies, joining
a thermal treatment of gravitation with ’t Hooft’s holographic principle. In such terms, gravitation
ought to be regarded as an emergent phenomenon. These ideas of Verlinde’s were given great attention.
For example, look at [3–7]. An excellent review of the statistical mechanics of gravity was given by
Padmanabhan [8].

Verlinde’s conceptions motivated works on cosmology, the dark energy hypothesis, cosmological
acceleration, cosmological inflation, and loop quantum gravity. The corresponding literature is very
ample [5–7]. Here, we’d like to cite Guseo’s work [9], which showed that the local entropy function,
linked to a logistic distribution, turns out to be catenary and vice versa. This is an invariance that can be
connected to the Verlinde’s conjecture mentioned above. Guseo advances an original interpretation of the
local entropy in a system [9].
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1.2. Our Goals in Using Schrödinger’s Equation (SE)

Verlinde depicts gravity as an emergent phenomenon that originates in the quantum entanglement
between small bits of space–time information [10]. Gravitation, viewed á la Verlinde as an emergent
force, deviates at very short distances from Newton’s form. The ensuing new gravitational potential,
if introduced now into Schrödinger’s equation (SE), should yield quantified states, and the associated
energies would constitute a novel energy source, not contemplated until now, save for our precedent axion
treatment of Reference [11].

Herein, we proceed on the basis of a previous analysis [12] which uses the statistical treatment of
quantum fermion gases. We applied the process described above to [12] and found a fermion–fermion
gravitation force therefrom (here specifically, a baryon–baryon force). It turned out to be, as expected,
proportional to 1/r2 for distances larger than one micron, but for smaller distances, novel, more involved
contributions arose. Accordingly, the ensuing potential V(r) differed from the Newtonian one at short
distances. We now present below the SE for such V(r) and solve it, expecting to find new, until now
unknown quantum gravitational states for baryons.

1.3. Organizing Our Material

In Section 2, we review the relevant details of [12]. We suitably approximate V(r) so as to proceed in

analytic fashion and set V(r) =
3
∑

i=1
Vi(r). Our central discussion is given in Section 3. Therein, we solve

the ensuing Schrd̈inger’s equation for the baryon–baryon, Verlinde-like gravitation potential, separately
for each of its pieces. The piece V1 becomes protagonist and yields our most important new findings.
In order to illustrate how to tackle our problem, we put forward a perhaps daring conjecture concerning
dark matter in Section 4. Rough numerical estimates can be obtained. We end with some conclusions in
Section 4.

2. Quantum Gravitational Potential EP(r) to Be Introduced in the SE

2.1. The Gravitational Potential Function for N Baryons of Mass m

It was first derived in [12], where the following four constants were introduced, for N baryons of
mass m, G is the gravitation’s constant and kB Boltzmann’s constant:

• a and b in the fashion;

• a = (3N)
5
2 h3;

• b = 32π(πemK)
3
2 , with a total baryons energy K;

• K = 1053c2 Joules [13].

One ascertains in [12] that λ3NkB
8π = 2

3 Gm2, and the potential energy EP(r) acquires the form

EP(r) = −Gm2 2b
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a critical result for us.
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2.2. A Taylor Approximation (TA) for V(r)

One cannot analytically tackle the SE with such an awful EP. Thus, we are forced to approximate V(r)
piecewise in four different regions: 0 < r < r0, r0 < r < r1, r1 < r < r2, and r > r2. r1 are made explicit
below. r0 is conjectured by us as being 10−10 centimeters, and r2 = (a/b)

1
3 .

V(r) ≈ V1(r) + V2(r) + V3(r) + V4(r). (2)

For convenience, we define the quantity V0

V0 = −Gm2
(

b
a

) 1
3 7π

6
√

3
, (3)

and call V1 the TA, at zeroth order, for very small r. H stands for the Heaviside function.

V1(r) = −Gm2
(

b
a

) 1
3 7π

6
√

3
H(r0 − r) = V0H(r0 − r), (4)

i.e., V = V1 for r < r0.
For large r, the pertinent approximation was obtained in [12]:

V3(r) = −
Gm2

r
[H(r− r1)− H(r− r2)], (5)

i.e., V = V3 for r > r2. For intermediate r−values, r0 < r < r1, there is experimental evidence to choose
r1 = 25 micrometers [14]. We call W(r) the harmonic interpolating form between the two fixed distance
values r1 − r0. Thus,

V2(r) = W(r), (6)

i.e., V = V2 = W for r1 < r < r2. For V4(r), we have

V4(r) =
2Gm2

3r
H(r− r2), (7)

i.e., V = V4 for r > r2. We solve below the SE for these four potentials.

3. Exact Solution of the SE

We deal with the (complete) SE and call mr the reduced mass. One finds

U′′(r) +
[
− l(l + 1)

r2 − 2mr

h̄2 V(r) +
2mr

h̄2 E
]

U(r) = 0, (8)

and analytically solves it piecewise.

3.1. V1’s Exact Treatment

Let φ be the confluent hyper-geometric function [15]. For V1, one has for E > V0 and (a definition to

be used below) s =
√

8mr(E−V0)

h̄2 r:

U′′1 (r) +
[
− l(l + 1)

r2 +
2mr

h̄2 (E−V0)

]
U1(r) = 0, (9)
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whose solution is that A and B are two arbitrary constants:

Ul1(r) = A(−is)l+1e−isφ (l + 1, 2l + 2;−is)− B(is)l+1eisφ (l + 1, 2l + 2; is) . (10)

Thus, the radial solution Rl1(r) adopts the appearance

Rl1(r) = A(−is)l+1 e−is

r
φ (l + 1, 2l + 2;−is)− B(is)l+1 eis

r
φ (l + 1, 2l + 2; is) , (11)

and appealing to [15] and calling J to the Bessel function [15]

φ(l + 1, 2l + 2;−is) = 22l+1e−iπ(l+ 1
2 )Γ
(

l +
3
2

)
s−(l+ 1

2 )e−i s
2Jl+ 1

2

( s
2

)
, (12)

so that

Rl1(r) = 22l+1Γ
(

l +
3
2

)
s−

1
2]

r

(
Be

3πil
2 e3is2 − Ae−

3πil
2 e−3is2

)
Jl+ 1

2

( s
2

)
. (13)

Boundary conditions (BC). Rl must satisfy Rl(r0) = 0 and R
′
l(r0) = 0. The two BEs now become

Jl+ 1
2

( s0

2

)
= 0, (14)

requiring s0/2 to be a zero of the Bessel function. This zero is denoted by χl,n [15].

s0 = 2χl,n (15)

Energy is duly quantified and reads

El,n =
h̄2

2mr

χ2
l,n

r2
0

+ V0. (16)

This energy expression is original in the baryonic scene, having been discovered right here. We are
particularly interested below in the ground state energy El=0, n=1.

Referring now to Equations (3) and (16), and taking into account that a nucleon’s mass is
∼1.6× 10−27 Kg, we get the mr-value. We have as a result E0,1 ∼ 10−21 Joule. As a consequence, we obtain
V0 << E0,1. Since mc2 = 1.44× 10−10 Joule, we have E0,1 << mc2. For axions, the last inequality is just
the opposite one (see [11]). For them, E0,1 >> mc2. We can now assess the total number N of baryons in
the Universe via N = K/mc2, with [13] K = 1053 × c2 Joule. The result is N ∼ 6.25× 1079.

In particular, E0,1 ∼ 10−21, and assuming that the major contribution of the baryonic pairs of
gravitationally interacting baryons comes from their ground state, we can estimate that their contribution
to dark matter is EB ∼ 2× 1077 eV, very small in comparison to the estimated value for dark matter of
K = 2.86 ∼ 1084 eV [11]. In this last reference, it is seen that the gravitational interaction between axions
does significantly contribute to the extant amount of dark matter.

Figure 1 displays the graphs of Ep(x)/A in red (f) and V(x)/A in orange (g). Ep(r) is given by (1)
and V(r) by (2). The variable x is defined as x = r/r2 with r2 = (a/b)1/3 and A is given by A = Gm2/r2.
We have selected x > 1 to draw the graph.
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Figure 1. The red curve (f) represents to Ep(x)/A given by (1), the orange curve (g) to V(x)/A given by (2)
where x = r/r2, for x > 1 and A = Gm2/r2. We have selected x > 1 to draw this graph.

3.2. V2’s Exact Treatment

We have

U′′2 (r) +
[
− l(l + 1)

r2 +
2mr

h̄2 [E−W(r)]
]

U2(r) = 0. (17)

Four operating BC are operative here: Rl2(r0) = 0, R
′
l2(r0) = 0, Rl2(r1) = 0, and R

′
l2(r1) = 0, and we

can only satisfy three of them. Accordingly, the only solution is Rl2(r) = 0.

3.3. V3’s Exact Treatment

We get

U′′3 (r) +
[
− l(l + 1)

r2 +
2mr

h̄2

(
E +

GmM
r

)]
U3(r) = 0. (18)

It is of help here to remember that Whitaker’s function W solves the related differential equation

W ′′ +

(
−1

4
+

λ

z
+

1
4 − µ2

z2

)
W = 0. (19)

Choose E < 0

Defining µ = l + 1
2 , λ = GmM

h̄

√
mr

2|E| , it is clear that s =
√

8mr |E|
h̄2 r for solving (18), one can write: A and

B are arbitrary constants
U3(r) = AWλ,µ(s)− BW−λ,µ(−s), (20)
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where Wλ,µ(z) is given by

Wλ,µ(z) =
(−1)2µzµ+ 1

2 e−
z
2

Γ
(

1
2 − µ− λ

)
Γ
(

1
2 + µ− λ

)
 ∞

∑
k=0

Γ
(

k + µ− λ + 1
2

)
k!(2µ + k)!

⊗

[
ψ(k + 1) + ψ(2µ + k + 1)− ψ

(
µ + k− λ +

1
2

)
− ln z

]
+

(−z)−2µ
2µ−1

∑
k=0

Γ (2µ− k) Γ
(

k− µ− λ + 1
2

)
k!

(−z)k

 .

(21)

Here, 2µ + 1 is a natural number. The last sum vanishes for µ = 0. Accordingly,

Rl3(r) = r−1[AWλ,µ(s)− BW−λ,µ(−s)]. (22)

The operating BC here are Rl3(r1) = R
′
l3(r1) = 0. They can be translated into

W
′
λ,µ(s1) +

Wλ,µ(s1)

Wλ,µ(−s1)
W
′
−λ,µ(−s1) = 0. (23)

Let σl,n be the zeroes of such an equation. Then,

s1 = σl,n, (24)

and the energy becomes quantized, as one should expect:

El,n = − h̄2

8mr

σ2
l,n

r2
1

. (25)

Choose E > 0

We have µ = l + 1
2 , λ = −i GmM

h̄

√
mr
2E s =

√
8mrE

h̄2 r. Now, the solution becomes

U3(r) = AWλ,µ(−is)− BW−λ,µ(is), (26)

and then
Rl3(r) = r−1[AWλ,µ(−is)− BW−λ,µ(is)]. (27)

The operating BC are, once again, Rl3(r1) = R
′
l3(r1) = 0, that translate into

W
′
λ,µ(−is1) +

Wλ,µ(−is1)

Wλ,µ(is1)
W
′
−λ,µ(is1) = 0. (28)

Denote by ςl,n the zeroes of the above equation:

s1 = ςl,1. (29)

Energy becomes quantized again and the quantized eigenvalues become

El,n =
h̄2

8mr

ς2
l,n

r2
1

. (30)
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In the two cases considered in the present subsection, the separation between the quantum energy
levels is of the order 10−17 Joules, meaning that we have a continuum energy, as should be expected.

3.4. V4’s Exact Treatment

We have

U′′4 (r) +
[
− l(l + 1)

r2 +
2mr

h̄2

(
E +

2GmM
3r

)]
U4(r) = 0. (31)

We again remember that Whitaker’s function W solves the related differential equation

W ′′ +

(
−1

4
+

λ

z
+

1
4 − µ2

z2

)
W = 0. (32)

Choose E < 0

Defining µ = l + 1
2 , λ = 2GmM

3h̄

√
mr

2|E| , it is clear that s =
√

8mr |E|
h̄2 r for solving (18), one can write:

A and B are arbitrary constants.

U4(r) = AWλ,µ(s)− BW−λ,µ(−s), (33)

and therefore
Rl4(r) = r−1[AWλ,µ(s)− BW−λ,µ(−s)]. (34)

Rl4 should verify Rl4(r2) = Rl3(r2) and R
′
l4(r2) = R

′
l3(r2).

Observe that the energy is not quantized in this case.

Choose E > 0

We have µ = l + 1
2 , λ = −i 2GmM

3h̄

√
mr
2E s =

√
8mrE

h̄2 r. Now, the solution becomes

U4(r) = AWλ,µ(−is)− BW−λ,µ(is), (35)

and then
Rl4(r) = r−1[AWλ,µ(−is)− BW−λ,µ(is)]. (36)

The operating BCs are, once again, Rl4(r2) = Rl3(r2) and R
′
l4(r2) = R

′
l3(r2).

The energy is not quantized again.

4. Discussion

We have herein solved, for fermions, Schrödinger’s equation for gravity. The logic on which this
paper was written can be summarized as follows.

• We began by adopting Verlinde’s stance that gravity emerges from an entropy S (entropic force);
• In [12], for a gas of free fermions, we obtained (1) S, (2) Verlinde’s entropic force Fe, and from it (3)

gravity’s potential V(r). We also found in [12] that V(r) differs from Newton’s form at extremely
short and extremely large distances.

The above potential V(r) was approximated in a suitable manner so as to be in a position to obtain
analytical solutions to the pertinent SE for the potential V(r).

The novel results of our treatment emerge at short distances (the V1 component of V(r)). The ensuing
low-lying SE-quantum states yield energy eigenvalues (most importantly, the ground state E0,1, not
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accounted for before). They produce, via Einstein’s relation energy= mc2, a quantity of matter that we
might identify as dark. However, this Schrödinger-baryonic dark mass is insignificant. Therefore, baryons
do not contribute to dark matter in this from of gravity, which, we believe, constitutes an important result,
because bosons do contribute [11].
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