
A UML reuse framework and tool for Requirements
Engineering

Vitor A. Batista, Daniela C. C. Peixoto, Thiago R. V. Anjos, Wilson Pádua

Synergia – Computer Science Department
UFMG – Federal University of Minas Gerais

Belo Horizonte, Brazil

{vitor, cascini, trva, wilson}@dcc.ufmg.br

Abstract. Requirement Engineering (RE) activities are manual and critical by
nature. Providing some automated support for the RE tasks helps analysts to re-
duce manual labor, and in consequence, reduce defects rates and increase reuse
and motivation. In this paper, we introduce a UML framework and tool support
which automates part of the RE process. Using UML stereotypes concepts as
the core of this solution, we created a set of integrated tools composed by: (1) a
reusable framework that models some common RE behavior patterns that are
typically present in information system projects; (2) a function that allows the
reuse of information provided by entity modeling; (3) a tool that automates the
generation of application prototypes; and (4) a tool that analyzes specific types
of defects. Our preliminary findings indicate that the framework and the auto-
mated support are effective at RE modeling and review. In addition, they in-
crease motivation and promote team engagement, through elimination of repeti-
tive activities.

Keywords: Requirements Engineering, UML framework

1 Introduction

Requirement Engineering (RE) is a very labor-intensive and critical activity. It is
manual by nature, since requirements are elicited by analysts from users through
workshops and interviews, and recorded in informal or semi-formal specifications[1].
It is critical because its defects inevitably lead to later problems in design and imple-
mentation, whose repair is, usually, expensive and difficult. Many studies have shown
that requirements with poor quality are a major cause of project failures [2].

One way to help analysts is to provide some integrated, automated support for the
RE tasks. This helps to reduce manual labor, and eases the early detection of errors.
Since RE is as a naturally labor-intensive process, only a few tasks may be signifi-
cantly automated. However, their contribution to decrease rework and increase
productivity can be substantial. Another way to improve RE support is to provide
reusable model elements, with appropriate guidance.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 176

In this work, we present the adoption and improvement of an RE sub-process in a
software development organization, Synergia. It is embedded in a process, called
Praxis-Synergia; this is a professional version of Praxis, an educational software de-
velopment process[3]. Here, we discuss some challenges faced and solutions pro-
posed during this effort towards an automated and integrated approach to RE.

Our main contribution lies in providing a UML reuse framework and a set of au-
tomated tools to support RE activities. This framework has the goal to standardize the
modeling of the most common software transactions in information systems, yet re-
maining flexible enough to let analysts to extend it when needed.

The expected benefits of this approach consist of improving model comprehension
and reuse, reducing errors and increasing productivity throughout the software devel-
opment cycle.

The article is structured as followed. Section 2 introduces basic concepts of Praxis
and the problems faced by requirement analysts. Section 3 presents our UML frame-
work and the proposed automation tools. Section 4 provides a discussion of the results
and open issues. Section 5 presents the related work. Section 6 concludes and presents
future work.

2 Background

Praxis is a model-based, use-case-driven process. In its prescribed development se-
quence, a project is divided in iterations, where each iteration implements one or more
functional requirements, modeled as use cases.

The Praxis Problem model captures and analyses requirements. Despite some simi-
larity with RUP’s Analysis Model, its structure closely follows the IEEE-830 standard
for Requirements Specification. The Problem model is divided into two main views:
Requirement view and Analysis view.

The Requirement view describes the desired product from the user viewpoint, rep-
resenting desired functions as UML use cases. Each use case behavior is described by
one or more event flows (scenarios). Event flows may be modeled as UML activities,
or described with text. The former is more adequate for complex interactions, the
latter for simpler ones.

The Analysis view describes the desired product from the developer viewpoint, but
still in the problem-domain; it models concepts, procedures and interfaces as classes,
and their interactions by UML collaborations.

Synergia, the organization where this study was carried out, uses a professional
version of Praxis; a detailed description of requirements activities and artifacts can be
found in [4].

The adoption of Praxis at Synergia faced some problems during execution of real-
life projects:

• User interfaces are prototyped in the Requirements view and also modeled as UML
Classes in the Analysis view. Keeping both artifacts consistent during project is
hard and error prone (25% of the defects found in our requirements reviews).

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 177

• Since Praxis does not offer guidelines to model requirements, each use case is
modeled from scratch, according to the experience of each analyst. Common trans-
actions, like CRUDs, are often modeled quite differently by different analysts, and
this is a serious impediment to reuse.

• Praxis uses a large subset of UML elements, and a lot of information needs to be
recorded in stereotype properties (tagged values). This results in large checklists,
reviews effort and subsequent rework.

Given such problems faced at Synergia, we proposed a set of improvements in Praxis-
Synergia, in order to overcome them. In next section we present our proposals.

3 The UML framework and automated tools

The solution we proposed includes a set of UML tools which automate common RE
activities, and ease the specification of common user interactions in a typical infor-
mation system.

3.1 The UML Profile

The core of our automated solution is a set of stereotypes (with tagged values and
constraints), used to enhance and increase the formality level of requirements model-
ing. To model user interfaces (UI), a hierarchy of stereotypes for UI widgets, fields,
commands, navigation was created. A partial view of these stereotypes is in Fig. 1.
UIs are modeled as a set of stereotyped classes; composition associations represent
how a widget is embedded inside another. The root of these composition trees are
classes with «screen», «modalScreen» or «report» stereotypes. They have state ma-
chines that model their behavior.

UI fields are represented by class attributes with a concrete stereotype of «ba-
seUIAttribute». Commands are modeled as class operations with «command». Navi-
gation between screens is a directed association with «navigate» stereotype, which
holds the operation(s) that triggers that navigation. This association also holds the
target state in the target’s state machine.

Appearance changes, such as visibility and enablement, are modeled for each of
the UI widgets, fields or commands, by tagged values which may hold “Yes”, “No”
and “Depends on State”. In case of depends, the engineer models in which States of
the UI the values Yes/No applies.

Application menus are also modeled as stereotyped classes («menu», «subMenu»)
and their «menuItem» operations.

All stereotypes are encapsulated in a UML profile, deployed as a plug-in in our
UML modeling tool, IBM Rational Software Architect (RSA). This plug-in also pro-
vides task automation resources, as discussed next.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 178

Fig. 1. Stereotypes to model UI elements.

3.2 UML Framework and interaction copy wizard

Different information system projects usually have common behavior patterns, such
as CRUD transactions. Instead of developing them from scratch every time, a reusa-
ble UML framework should provide enough reuse to make the engineer’s task more
productive and less error prone. We gathered information from past projects and
modeled the most common interactions as a set of abstract UML collaborations. Their
participants are abstract UI classes and their widgets and commands. Navigation be-
tween participants and their behavior are modeled in such abstract interactions.

The task of the requirements engineer is to create his own concrete collaboration,
related by an aggregation association to framework collaborations. A wizard in the
RSA plug-in helps to replace participating classes by concrete counterparts, while
preserving useful base structures and behavior. Fig. 2 shows the result of a wizard
execution to copy a CRUD interaction from framework. The engineer just has to in-
form names for the concrete instances.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 179

Fig. 2. Concrete participants generation

During the course of a project, engineers are able to create other abstract interac-
tions, thus extending framework capabilities. The interaction copy wizard will be able
to work on the new base interactions.

3.3 Referring to persistent entities attributes

Fields in UIs usually correspond to entity class attributes. With this in mind, our ste-
reotype for UI fields holds an association to the entity attribute from which the data
come from or where they are stored. This way, after the engineer generates his con-
crete instance of the framework collaboration, he creates attributes in the UI widgets,
applying on them a stereotype whose properties refer to an entity attribute. In Praxis-
Synergia, this means that entity attribute documentation is “inherited” by the corre-
sponding UI field. Figure 1 shows a group of stereotypes and their tagged values for
attributes.

The RSA plug-in helps to create UI fields from entity attributes. The engineer just
select attributes from entities, and new attributes are created in UI widgets referring to
the selected entity attributes.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 180

3.4 Prototype generation

After all application UIs, and their attributes, commands and associated behavior are
modeled, the RSA plug-in can generate the application prototypes. This is made pos-
sible by the level of formality imposed by Praxis-Synergia. The RSA plug-in converts
each class, attribute, operation and stereotype’s tagged values into navigable HTML.

Fig. 3. - Generated prototype of a CRUD interaction

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 181

The generated prototype also provides specification pop-ups for each element,
making easier to validate requirements with the users, and to have them understood
by the developers that will provide the real code for application.

Fig. 3 shows an example of the generated prototype for the interaction presented in
Fig. 2.

3.5 Profile Constraints

Finally, but not less important, we analyzed all our reviews checklists and noticed that
most of their items could be automatically verified. So, we introduced OCL con-
straints into our stereotypes to check the completeness and correctness of UML mod-
els.

After they finish the modeling of their concrete interactions, the engineers can exe-
cute the RSA validation procedure, and this will check all OCL constraints. Viola-
tions are marked as model errors, which the process requires to be fixed before re-
views.

3.6 Other RSA plug-in automation

The RSA plug-in provides more automation functions than described in this article. A
short list of other functions includes:

• Automatic generation of documentation requirements specification, often demand-
ed by clients, from the UML model into a PDF or MS Word format, including all
diagrams, elements and their stereotype tagged values;

• An Eclipse View to help filling stereotypes tagged values in RSA;
• Support to count Function Points directly from UML elements[4];
• Enhanced refactoring support to change references from one UML element to an-

other;
• A Listener to model changes to helps to prevent inconsistencies in model.

4 Preliminary Results

In this section we present some benefits using the RSA plug-in, at Synergia.
The automated prototype generation feature of the RSA plug-in was first used in a

small requirements specification project (813 Function Points - FP). We compared the
effort needed to write the specifications of two current and similar projects, using the
same process version and the same set of tools. Table 1 presents the results. The total
effort measures the work in activities that directly produce the requirements specifica-
tion. Activities like management and training were excluded, but reviews and rework
efforts were included.

Although there is a difference between these two projects in size, the data seem to
indicate that automated prototype generation indeed increases productivity and reduc-

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 182

es rework. Requirements engineers that participated in both projects confirmed this
impression.

Table 1 - PRODUCTIVITY COMPARISON BETWEEN MANUAL AND
AUTOMATED PROTOTYPES

Project # use cases # FP Total Effort (h) Productivity (PF/h)

Manual Prototypes 128 2586 6727.32 0.38

Automated Prototypes 37 826 1441.83 0.57

All current projects at Synergia use stereotype constraints, but we were not able to

compare them with older projects, since they also differ in many other aspects. Never-
theless, we interviewed our requirement engineers, and all of them confirmed that
automated model validation, provided by OCL Constraints, significantly helps them
to keep model integrity and consistency.

So far, we have not validated the UML reuse framework and interaction wizard in
production, but we presented them to their future users, and its reception was very
positive. We also made some informal experiments, asking engineers to model a
CRUD interaction using the framework and the wizard tool, after they listened to their
presentation. All of them finished their models in less than one hour.

5 Related Work

A number of researchers discussed the use of specifics tools and frameworks to sup-
port the software development process. X and Y [5] present a framework for formal-
izing a subset of UML diagrams, enabling their analysis. Examples of tools that check
requirements consistency using semi-formal specifications are BVUML [6] and
CDET [7] and VIEWINTEGRA [8]. Genius[9] and Janus[10] research projects al-
lows the generation of user interfaces from specification of the application domain.
Another approaches [11] [12] use scenarios as an input for the user interface proto-
type generation.

 In the context of Requirement Engineering, our framework covers different types
of integrated functionalities that support the RE activities. Regarding prototype gener-
ation, our approach focused on the UML class models. It does not require any model
transformation or inclusion of additional descriptions (using other formalisms) in the
models. The profile constraints bound to the stereotypes provide a quick way to en-
force a set of rules mandated by process standards.

6 Conclusions and Future Work

In this paper we presented some problems faced at Synergia, regarding requirement
engineering activities. We proposed a set of tools to automate those activities, and
used UML extension mechanisms to improve their execution.

Although, so far, we do not have research-level data to support the claims of in-
creased productivity and quality of the UML requirements models, we collected feed-

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 183

back from the requirements engineers; these were very satisfied with the improve-
ments brought by the RSA plug-in. They identified other positive points, like signifi-
cant reduction of manual work and increase in detected defects.

This development was carried out for one specific proprietary tool, IBM RSA.
However, since we used strict UML 2 concepts, without tool-specific notation exten-
sions, the environment should be portable to other tools that support full UML 2 in
the Eclipse platform.

As future work, we plan to invest in model transformations to generate complete
Java code for framework interactions, as well as its automated tests and tests specifi-
cations.

7 References

1. S. S. Rachida, R. Dssouli, and J. Vaucher, “Toward an Automation of Requirements Engi-
neering using Scenarios,” vol. 2. Journal of Computing and Information, pp. 1110-1132,
1996.

2. T. Hall, S. Beecham, and A. Rainer, “Requirements problems in twelve software compa-
nies: an empirical analysis,” IEE Proceedings - Software, vol. 149, no. 5, p. 153, 2002.

3. B. Pimentel, W. P. P. Filho, C. Pádua, and F. T. Machado, “Synergia: a software engineer-
ing laboratory to bridge the gap between university and industry,” International Confer-
ence on Software Engineering, 2006.

4. V. A. Batista, D. C. C. Peixoto, E. P. Borges, W. Pádua, R. F. Resende, and C. I. P. S.
Pádua, “ReMoFP: A Tool for Counting Function Points from UML Requirement Models,”
Advances in Software Engineering, vol. 2011, pp. 1-7, Jan. 2011.

5. B. H. C. Cheng and L. A. Campbell, “Integrating informal and formal approaches to re-
quirements modeling and analysis,” in Proceedings Fifth IEEE International Symposium
on Requirements Engineering, pp. 294-295.

6. B. Litvak, S. Tyszberowicz, and A. Yehudai, “Behavioral consistency validation of UML
diagrams,” in First International Conference onSoftware Engineering and Formal Methods,
2003.Proceedings., pp. 118-125.

7. J. Scheffczyk, U. M. Borghoff, A. Birk, and J. Siedersleben, “Pragmatic consistency man-
agement in industrial requirements specifications,” in Third IEEE International Conference
on Software Engineering and Formal Methods (SEFM’05), 2005, pp. 272-281.

8. A. Egyed, “Scalable consistency checking between diagrams - the VIEWINTEGRA ap-
proach,” in Proceedings 16th Annual International Conference on Automated Software
Engineering (ASE 2001), pp. 387-390.

9. C. Janssen, A. Weisbecker, and J. Ziegler, “Generating user interfaces from data models
and dialogue net specifications,” in Proceedings of the SIGCHI conference on Human fac-
tors in computing systems - CHI ’93, 1993, pp. 418-423.

10. H. Balzert, “From OOA to GUIs: The janus system,” JOOP, vol. 8, pp. 43-47, 1996.
11. J. Shirogane and Y. Fukazawa, “GUI prototype generation by merging use cases,” in Pro-

ceedings of the 7th international conference on Intelligent user interfaces - IUI ’02, 2002,
p. 222.

12. M. Elkoutbi, I. Khriss, and R. K. Keller, “Automated Prototyping of User Interfaces Based
on UML Scenarios,” Automated Software Engineering, vol. 13, no. 1, pp. 5-40, Jan. 2006.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 184

