
AASII: a novel algorithm for assessing services
interfaces integrability

Marco Crasso1,2, Cristian Mateos1,2, Alejandro Zunino1,2, and Marcelo Campo1,2

1 ISISTAN Research Institute. UNICEN University. Campus Universitario, Tandil
(B7001BBO), Buenos Aires, Argentina. Tel.: +54 (2293) 439682.

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Abstract. Current main and preferred trends in software development are the in-
tegration of prefabricated software components, called services. From the Service-
Oriented Computing paradigm and its satellite paradigms, namely Software As
A Service and Process As A Service, to the Cloud Computing paradigm, the in-
tegration of third-party software services into applications is an essential but at
the same time non-trivial task mostly because in practice an interface is the only
available description of a service. This paper presents an algorithm for assessing
the integrability of services that works by exploiting the information present in
services interfaces. An evaluation of the proposed algorithm from a theoretical
perspective is provided, and the computational complexity of the proposed algo-
rithm is also analyzed along with an example of its usage in relevant integrability
scenarios.

Keywords: COMPONENT-BASED SOFTWARE ENGINEERING; SERVICE-ORIENTED COM-
PUTING; INTEGRABILITY.

1 Introduction

It is quite clear that in the last decade many researchers have focused on computing
paradigms to develop software systems by integrating already developed components.
IEEE defines integration as “the process of combining software components, hardware
components, or both into an overall system” [1]. Integrability is defined as the capabil-
ity of linking together different software components or services to act as a coordinated
whole. The concept of integrability is essential for both already established comput-
ing paradigms, like component-based software development, and emerging ones, like
service-oriented computing.

Component-based software development is a branch of software engineering for
building software in which functionality is split into a number of logical software com-
ponents with well-defined interfaces [2]. An interface consists of an specification of the
set of operations signatures that a component offers to the outer world. An operation
signature describes the input and output data messages exchanged by a particular op-
eration. Components are designed to hide their associated implementation, to not share
state, and to communicate with other components via message exchanging. The spirit of
the component-based paradigm is that application components only know each other’s
interfaces, thus high levels of flexibility and reuse can be achieved.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 47

More recently, the Service-oriented Computing (SOC) paradigm has evolved from
component-based notions to face the challenges of software development in hetero-
geneous distributed environments, suggesting unprecedented levels of reusability [3].
A service-oriented application can be viewed as a component-based application that
is created by integrating two types of components: internal, which are those locally
embedded into the application, and external, which are those statically or dynamically
bound to services. A service can be defined as a piece of functionality done by an ex-
ternal provider who is specialized in the management of this operation. Besides, each
service is wrapped with a network-addressable interface that exposes its capabilities to
the outer world while hiding implementation details that may restrict interoperability.
When building a new application, a software designer may decide to provide an imple-
mentation for some application components, or to integrate an existing implementation
instead. From now on, we will refer to this latter as outsourcing. In this context, to out-
source a component C means to integrate an existing service S that fills the hole left by
the missing functionality, which is represented by C [4].

As there may be many publicly available services that serve to fill the missing pieces
of a particular application, an early problem is how to allow developers to effectively
select the most integrable service. Note that addressing this problem would minimize
the impact of outsourcing on the software life cycle, in particular on development and
maintenance. In this direction, the work presented in [5] allows assessing different qual-
ity attributes from services interfaces, and defines reusability and modularity as the most
important features of a service for a system integrator. The author presents metrics for
calculating these features from services interfaces descriptions. However, these metrics
are modeled as ordinary functions of one variable, thus they can not be employed to
answer how does a component S integrates into an application expecting another com-
ponent C. Moreover, it is difficult to assess which is the most integrable component
for C from a set of candidate services S1, ..., Sn.

At the same time, other efforts have striven to measure interfaces similarity, which to
some degree alleviates the task of integrating services, since intuitively the more similar
the services interfaces, the more integrable they are. Related works focus on assessing
how semantically and syntactically similar the operations names and exchanged data
between two services are [6]. These metrics operate by summing similarity between
pairs of matched operations. A matched operation is an operation from an interface C
for which one operation of an interface S has been assigned as its correspondence.
However, to the best of our knowledge the similarity metrics proposed so far fail at
quantifying the integrability quality attribute, as they do not consider the implications
of non-matched operations. A non-matched operation represents a responsibility of one
of the components for which a link to a responsibility belonging to the other compo-
nent could not be established. Non-matched operations hinder the capability of linking
together different services interfaces to act as a coordinated whole, since they may
represent different mismatch patterns [7] i.e. compatibility problems from a functional
standpoint between two services.

This paper presents a novel algorithm, called AASII, for assessing how compatible,
in integrability terms, two interfaces C and S are. The proposed algorithm bases on a
function to calculate the similarity among a pair of operations from both C and S in-

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 48

terfaces, an assignation problem solver [8], and the Integrability Metric (IM), which is
originally introduced by this paper too. The IM has been designed not only to consider
operation similitude values, but also to penalize non-matched operations. Moreover, the
IM considers the relevance of non-matched operations. The proposed algorithm is flex-
ible in the sense that it can be employed in conjunction with any previously defined
operation similarity function provided this latter adheres to the Nonnegativity property,
in concordance with most of those functions surveyed in [6].

This paper is organized as follows. Section 2 describes the approached problem.
The AASII algorithm and mathematical properties of the IM are presented in Section 3.
Section 4 demonstrates AASII usage through relevant integrability scenarios. Section 5
surveys relevant works on assessing software integrability. Finally, Section 6 presents
concluding remarks and future research opportunities.

2 Problem statement

Recently, different programming models for developing service-oriented applications
have been proposed. In particular, in [4] the authors introduce a programming model
that conceptually organizes service-oriented applications as a set of coordinated com-
ponents working together. From this set, some components –i.e. the internal ones– are
locally implemented, whereas others –i.e. the external ones– are linked to third-party
services. The main requirement of this model is that developers must define the desired
interface of each external component, before actually knowing the details of potential
candidate services.

In an open world setting, where services are built by different organizations, it is
not necessarily true that all the available implementations of an abstract functionality
expose the same public interface [9]. Because of this, in [4] the authors propose to use
a layered architecture that introduces an intermediate layer to abstract away potential
mismatches between those internal components that depend on a desired external in-
terface, and potential target services. Accordingly, the replacement of a service only
requires to modify the intermediate layer, thus internal components remain untouched.

The programming model presented in [4] helps to improve service-oriented appli-
cations maintenance, but at the expense of a higher effort to develop the intermediate
layer, which is commonly materialized using the Adapter design pattern. Here, a ser-
vice adapter accommodates the actual interface of a service to the interface expected
by internal components. In other words, service adapters carry the necessary logic to
transform the operation signatures of the interfaces expected by internal components to
the actual interfaces of selected services. For instance, if a service operation returns a
list of integers, but the application expects an array of floats, a service adapter would
perform the type conversion.

To exemplify this, Figure 1 depicts a desired interface C, which is called from the
internal components C0 and C00. The adapter A is the component responsible for adapt-
ing C to the interface provided by a concrete service S. Concretely, this means that for
an operation of C, there is an operation within A that performs the necessary conversions
for preparing the input expected by the operation of S that best matches the operation
of C, and after calling S operation, A will prepare the obtained result. Afterwards, each

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 49

Client

business

logic layer

Service

adapter

layer

Service

invocation

layer

C'

C''

A

S

A

C

C

Fig. 1. Integrating a service into a service-oriented application using the model proposed in [4].

time the internal component of the service-oriented application C0 and C00 call an op-
eration offered by C, they will be interacting with A, irrespective of which adaptation
process is being executed to reach a concrete provider such as S.

In the previous scenario, the cost of developing service adapters is driven by how
integrable a candidate service interface and a desired (client-side) interface are. Some
intuitive criteria for assessing this cost includes considering:

– the kind and amount of types conversions performed within the adapter,
– the difference on the number of operations provided by each interface,
– the number of matched operations and the number of non-matched ones,
– the relevance of non-matched operations in terms of how many internal components

call them,
– the degree of functional similitude between the operations of C and S.

In this context, the integration cost can be defined as the total effort spent on defining
inter-component links [10]. However, though the intuitiveness and essentialness of hav-
ing a systematic procedure to assess the integrability between services interfaces, as far
as we known this is still an open problem and developers should rely exclusively on
their expertise.

3 AASII: Algorithm for Assessing Services Interfaces Integrability

This section describes a novel algorithm for assessing services interfaces integrabil-
ity called AASII. The algorithm takes as input three elements. First, two interfaces,
namely C and S, where C stands for the interface expected by the internal components
of a service-oriented application, whereas S represents a candidate service interface.
The third input consists of details about the relevance of each operation offered by in-
terface C. Commonly, the relevance of an operation is computed as its individual fan-in.
Then, given these inputs the AASII algorithm performs three steps and returns an inte-
grability metric value. The three steps can be summarized as:

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 50

1. calculate an operations similitude matrix, multiply it by operations relevance, and
normalize it,

2. calculate the best possible assignation between C operations and S operations,
3. calculate the integrability metric.

The first step receives C and S, and a vector of operations relevance r =< r1, .., rnc >,
in which ri stands for the importance of the ith operation opi belonging to interface C.
Commonly, ri represents the number of calls that the operation receives from the system
that owns C. The first step then returns µM, an nc×ns matrix, where ni is the number of
operations offered by either interfaces. The µM matrix results from the normalization
of the operations similitude matrix M. The operations similitude matrix M comprises
nc × ns cells, in whichcelli, j contains the similitude value between the ith operation
of the first interface and the jth operation of the second interface. For calculating the
similitude between two operations, AASII can employ any similitude function available
in the literature, provided it is a function f : opi ×op j →Vsim, where Vsim is the domain
for the similitude values among operations, and the following property is satisfied:

∀i, iε[1, nc] ∧ ∀ j, j ε[1, ns] : f (opi, op j)≥ 0 (1)

The format of the interfaces given as input depend on the function f : opi ×op j →
Vsim. In the case, for example, of employing an f : opi ×op j →Vsim that receives inter-
faces descriptions expressed in the Web Service Description Language (WSDL), then
AASII requires C and S in WSDL as well. Alternatively, UML an any other specifica-
tion language could be employed.

Prior to normalize the operations similitude matrix M, each celli, j of the matrix is
multiplied by the ri element of r. By doing this, each similitude value is weighted in
accordance with the relevance of C operations. Clearly, when the relevance of all the
operations of C is the same, this step can be omitted.

Finally, in order to obtain the normalized operation matrix µM from M, each cell
value is divided by the sum of all cells values, formally: µMi, j =

Mi, j
nc
∑

c=1

ns
∑

s=1
Mc,s

.

The second step consists on calculating the best matching operation. The input of
this step is the normalized operations similitude matrix µM. On the other hand, the out-
put of this step are two vectors a and v, called the assignations vector and the operation
similitude values vector, respectively. A component ai of the assignations vector con-
tains a number value in the range [0, ns], meaning that the ith operation of the C interface
should be assigned to the ai operation of the S interface, or 0 when no target operation
was found. Since calculating a =< a1, ..., anc > is analogous to a classic assignation
problem, AASII can employ, for instance, the well-known Hungarian algorithm [8] to
find best possible assignations. At the same time, a component vi of the operation simil-
itude values vector points to the cell µMi,ai for each i provided ai 6= 0.

It is worth noting that in the context of interface integrability is rather rare to assign,
and in turn bind, two or more source operations to the same target operation. Then, it is
not mandatory that all the operations offered by the first interface (C) be assigned to an
operation of the interface S. This situation occurs when nc > ns. Therefore, the length
of the vector a, i.e. |a|, is always equal to nc, whereas |v| ≤ |a|, because the operation
similitude values vector does not contain components for those operations that could

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 51

not be assigned, i.e. when ai = 0. For the sake of readability, the constant NA represents
the number of not assigned operations, i.e. |v|, the length of the operation similitude
values vector.

Finally, the third step returns a number representing how well the interface S in-
tegrates to those components that are already integrated to interface C. We define this
value as the Integrability Metric (IM) (Equation 2). For calculating the IM, the opera-
tions relevance vector r, the normalized operations similitude matrix µM, the operation
similitude values vector v, and both interfaces sizes are required. Conceptually, the IM
considers not only how well the assigned operations match with regard to the employed
f : opi×op j →Vsim, but also considers how many operations of C could not be matched
onto operations of S, vice versa. Moreover, the IM considers whether non matched op-
erations are relevant. Formally:

IM(µM, v, nc, ns) = (
nc
Σ

i=1
sim(opi))×

1
α
×

nc
∑

i=1
rel(opi)

nc
∑

i=1
ri

× 1
β
× [1− (

ns −A
ns

)] (2)

sim(opi) =

(
0 ai = 0
µMi,ai ai 6= 0

rel(opi) =

(
0 ai = 0
ri ai 6= 0

, where µMi,ai stands for the normalized value that results from calculating f (opc,i, ops,ai),
and A represents the number of operations for which the assignation problem solver al-
gorithm could assign one target operation at step 2 (i.e. |v|). The constants α and β

allows to ponder the significance of having non-matched operations within C and S,
respectively. This is because in most scenarios having a dangling operation in C might
be worst than calling an external service S with extra (non invoked at all) operations. A
dangling operation in C means that the required functionality represented by the opera-
tion could not be fulfilled with the overall functionality offered by S.

3.1 Theoretical validation of the IM

The IM is a new proposed software engineering metric, as such its usefulness should
be proved by a validation process. In the software engineering field, there are several
works for theoretical validation of metrics, most of which consider different criteria,
and are constituted by the definition of mathematical properties to which a software
engineering metric should adhere [11,12].

In [12] the authors propose a validation framework comprising three properties:
Null Value, Monotonicity, and Additivity. The work is considered by several researchers
as the most practical and popular formal validation framework for metrics [13]. Addi-
tionally, we consider two more metric properties, namely Nonnegativity and Commuta-
tivity [11].

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 52

Property 1. Null Value, the IM of two interfaces is null if the resulting assignation vec-
tor is the null vector a =< 0, .., 0 >.

Proof. The IM multiplies operation similitude values by the percentage of operations
that could be assigned. Then, if the rate of assigned operations is zero, the mentioned
multiplication is zero. Formally, ∀i, iε[1, nc] ∧ ai = 0 → sim(opi) = 0.

Property 2. Monotonicity, the IM provides a scale of values.

Proof. The IM multiplies operation similitude values by the percentage of operations
that could be assigned. This multiplication grows as the operation similitude values or
the percentage of operations that could be assigned grows. Then, the more the similar
the operations of two interfaces or the higher the percentage of operations that could
be assigned among them, the higher the IM. The lowest value for IM is 0, because of
property 1. Instead, the higher value for IM is 1, because operation similitude values
are normalized and in turn multiplied by factors ranging from 0 to 1.

Property 3. Not Additive, the IM of two interfaces C and S, is not necessarily equal to
the sum of the IM values of the interfaces ci and si, and c j and s j, where any operation
of C or S is an operation of either cx or sx, and nc = ∑ncx and ns = ∑nsx , respectively.

Proof. There are many different alternatives to split interfaces C and S into smaller
ones, in terms of quantity of operations, while keeping nc = ∑ncx and ns = ∑nsx . Each
splitting alternative from C, i.e. cx, will be differently matched onto sx, i.e. the splitting
alternatives that come from S. Then, each pair of splitting alternatives has its own op-
eration similitude matrix, and assignation vector. However, in order to obtain smaller
interfaces that the sum of their IM results equal to the IM of the original interfaces,
the splitting alternatives should be arranged to reach the best operation assignation. Be-
sides being impossible to do unless a global knowledge of the operations similitude is
known, this means that there are at least one pair of splitting alternatives for which the
best operation assignation is not obtained, therefore the sum of their IM would not be
equal to the original.

Property 4. Nonnegativity, an IM value cannot be a negative number.

Proof. The IM is obtained by the sum of operation similitude values that are always
non-negative numbers because of the first property of f : opi × op j → Vsim (see Equa-
tion 1), and the product of positive factors. Therefore, this property is satisfied.

Property 5. Not commutable, the IM of two interfaces depends on the order used for
evaluating them, regardless f : opi ×op j →Vsim is commutable.

Proof. The IM comprises the multiplication of three factors, namely the sum of op-
erations similitude values, the percentage of assigned operations of the first interface,
and the percentage of assigned operations of the second interface. The second of these
factors depends on which order are given as input the two interfaces under evaluation.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 53

3.2 Computational Complexity Analysis of the AASII

The computation complexity analysis of the AASII algorithm may be determined as the
maximum complexity among calculating the operations similitude matrix (step 1), cal-
culating the best assignations (step 2), and calculating the integrability metric (step 3).

The computational complexity required to compute the similitude matrix is the max-
imum between O(nc × ns) and O(f), in which O(f) represents the complexity of the
operation similitude function employed f : opi × op j → Vsim. When using the Hun-
garian algorithm at step 2, the computational complexity needed to calculate the best
possible assignations is O(n3

c). Finally, the integrability metric has complexity O(nc).
Therefore, the computational complexity of the proposed algorithm is:

O(max(nc ×ns, f , n3
c , nc)) (3)

The next section explains the usage of the proposed algorithm in four relevant inte-
grability scenarios.

4 Integrability scenarios

Table 1. Example of normalized operations similitude matrix for the nc = ns scenario

µM ops,1 ops,2

opc,1 0.21 0.07

opc,2 0.57 0.14

For exemplification purposes, let us assume that the interface C has two operations,
namely opc,1 and opc,2, and the interface S has also two operations: ops,1 and ops,2. This
is the scenario when nc = ns. Also, let us assume that an specific operation similitude
function returns the normalized operations similitude matrix µM shown in Table 1, and
that the relevance of all operations is the same, e.g. r =< 1, 1 >. Furthermore, for
simplicity, the constants α and β are set to 1.

By basing on µM, the best pair of assigned operations are (opc,1, ops,2) and (opc,2, ops,1),
then the resulting assignations vector is a=< 2,1> and v=< 0.07, 0.57>. Having µM,
a, and nc = ns = 2, the IM is calculated as (0.07+ 0.57)× (2/2)× 1− [(2−2)/2] =
0.64×1×1 = 0.64.

Now, for exemplifying the nc < ns scenario, let us assume that an interface S0 con-
taining all operations in S plus another operation ops,3. The new operations similitude
matrix µM is shown in Table 2. For the sake of simplicity, we have chosen the same
relevance vector than before, i.e. ∀i, iε [1,nc], ri = 1. Then, due to the operation added
into S0, the best assignation pairs are represented by the assignations vector a =< 3,1 >
and the operation similitude values vector by v =< 0.15, 0.3 >. Then, the IM for C and
S0 is (0.15+ 0.3)× (2/2)× 1− [(3−2)/3] = 0.45× 1× (0.66) = 0.29. As the reader

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 54

Table 2. Example of normalized operations similitude matrix for the nc < ns scenario

µM ops,1 ops,2 ops,3

opc,1 0.11 0.03 0.15

opc,2 0.3 0.07 0.29

can see, the IM between C and S0 falls with regards to the IM between C and S, because
of the fact that having a “dangling” operation on one interface is penalized.

Table 3. Example of normalized operations similitude matrix for the nc > ns scenario

µM ops,1 ops,2

opc,1 0.11 0.3

opc,2 0.03 0.07

opc,3 0.15 0.29

Let us consider the scenario of nc > ns, by incorporating a new operation opc,3
into C, which results in interface C0. Table 3 presents the resulting operations simil-
itude matrix. The assignation vector is a =< 2, 0, 1 >, which means that operation
opc,2 could not be matched onto any operation of S. As a consequence, the opera-
tion similitude values vector is v =< 0.3, 0.15 >. The IM for C0 and S is computed as
(0.3+ 0.15)× (2/3)× 1− [2−2]/2 = 0.45× (0.66)× 1 = 0.29. Likewise the nc < ns
scenario, a penalization is introduced in the IM because one operation of interface C0

could not be matched.
As the reader can see, the previous two scenarios result in the same IM value. This

stems from the fact that both constants α and β were established to the same value.
Therefore, to penalize in a harder way the fact that there were non matched operations
from C, i.e. nc < ns scenario, then α > β should hold.

Finally, in this example will we show how the AASII algorithm can be employed
for determining which interface is more integrable into another interface C when there
are two candidate interfaces S and S0. Although the example may seem trivial, it allows
generalizing the algorithm to deal with the comparison of n interfaces, in terms of inte-
grability. Table 4 shows two pairs of matrixes. The Mc,s and Mc,s0 matrixes represent the
operation similitude values between the C interface operations and S and S0 interfaces
operations, respectively. Instead, the µMc,s and µMc,s0 matrixes stand for the globally
normalized operation similitude values. In this context, the term “globally” refers to
knowing the overall operation similitude values achieved among all pairs of operations.

Once we have calculated the normalized operation similitude matrix for < C,S >
and < C,S0 >, the next step is to compute an assignation vector for each pair of inter-
faces. The assignation vectors are ac,s =< 2,1 > and ac,s0 =< 1,2 >, and the opera-
tion similitude values vectors are vc,s =< 0.24,0.03 > and vc,s0 =< 0.22,0.16 >. The

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 55

Table 4. Example of operations similitude matrixes for three interfaces: C, S and S0.

Mc,s ops,1 ops,2

opc,1 0.3 0.1

opc,2 0.8 0.2

Mc,s0 ops0 ,1 ops0 ,2

opc,1 0.4 0.53

opc,2 0.75 0.2

µMc,s ops,1 ops,2

opc,1 0.09 0.03

opc,2 0.24 0.06

µMc,s0 ops0 ,1 ops0 ,2

opc,1 0.12 0.16

opc,2 0.22 0.06

next step consists on calculating the integrability metrics ICc,s and ICc,s0 , which results
in 0.27 and 0.38, respectively. Accordingly, S0 is more integrable into C than S.

5 Related work

Previous research in the area of service-oriented computing has emphasized on the im-
portance of services interfaces and more specifically their non-functional concerns, al-
though to the best of our knowledge the integrability quality attribute has not been
specifically treated until now.

In [5] the author describes a metrics suite that consists of different kinds of met-
rics, ranging from common size measurements such as lines of code and number of
statements, to metrics for measuring the complexity and quality of services interfaces.
All the involved metrics can be statically computed from a service interface in WSDL,
since the metric suite is purely based on WSDL schema elements occurrences. The most
relevant complexity metrics included in the suite are Interface Data Complexity, Inter-
face Relation Complexity, Interface Format Complexity, Interface Structure Complex-
ity, Data Flow Complexity (Elshof’s Metric), and Language Complexity (Halstead’s
Metric). On the other hand, the proposed quality metrics are Modularity, Adaptabil-
ity, Reusability, Testability, Portability, and Conformity. Metrics results are expressed
as a coefficient on a scale 0 to 1. For complexity metrics, 0 to 0.4 indicates low com-
plexity, 0.4 to 0.6 indicates average complexity, 0.6 to 0.8 indicates high complexity
and over 0.8 indicates that the service is not well designed at all. Instead, for quality
metrics 0 to 0.2 indicates no quality at all, 0.2 to 0.4 indicates low quality, 0.4 to 0.6
indicates medium quality, 0.6 to 0.8 indicates high quality, and 0.8 to 1.0 indicates very
high quality.

Regarding services interfaces complexity, [14] presents a metric suite whose cor-
nerstone is that the effort required to understand data flowed to and from the interfaces
of a service can be characterized by the structures of the messages used for exchanging
and conveying the data. Basing on this statement, the authors define a suite comprising
4 main metrics, namely Data Weight (DW), Distinct Message Ratio (DMR), Message
Entropy (ME) and Message Repetition Scale (MRS). These metrics can be statically
computed from a service interface in WSDL, since this metric suite is purely based on

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 56

WSDL and XML Schema Definition (XSD), a language to structure XML content that
offers constructors for defining simple types (e.g. integer and string), restrictions and
both encapsulation and extension mechanisms to define complex elements.

There are more related efforts from within the component-based engineering area.
For example, in [15] the authors attempted to design an interface complexity metric for
components to quantify the complexity of a component-based system. Software com-
plexity not only affects maintenance activities (software reusability, understandability,
modifiability, testability) but also integrability. Given a software component, the pro-
posed measure takes into account the interactions among other components, by bor-
rowing notions from graph theory to illustrate interaction among software components
and to compute complexity. The proposed metric relies in turn on two basic metrics,
namely the Average Incoming Interactions Complexity (AIIC), and the Average Outgo-
ing Interactions Complexity (AOIC).

The AIIC and AOIC metrics represent links among components, where a link means
that one component sends a message and other receives it. For example, if a compo-
nent C has an operation or method mc, and mc has a call statement to a method ms of
a component S, then there is a directed link from C to S. Then, the Average Interface
Complexity of a Component Based System, i.e. AIC(CBS), is computed as:

AIC(CBS) =

m
Σ

i=1
AIICi

m
+

m
Σ

i=1
AOICi

m

, where m is the number of components of the software system. Clearly, to compute
AIIC and AOIC, one should have access to component implementations or have an
specification of components dependencies. Having such “glassy” components is not the
case in SOC, where black-box reuse is highly encouraged and services are third-parties
components.

Similarly, in [10] the author defines measures for assessing the maintainability and
integrability of a component-based system. The proposed metrics are Total number of
components (TNC), Average number of methods per component (ANMC), Total num-
ber if implemented components (TNIC), Total number of links (TNL), Average number
of links between components (ANLC), Average number of links per interface (ANLI),
Total number of interfaces (TNI), Average number of interfaces per component (ANIC),
Depth of the composition tree (DCT), and Width of the composition tree (WCT). The
author arranges these metrics in four groups according to their purpose. The goal of
TNC, ANMC, and TNIC is to characterize the components in the system. The TNL,
ANLC, ANLI metrics are intended to characterize the connectors between components.
To characterize interfaces in the system, TNI and ANIC are employed. Finally, DCT and
WCT characterize the composition tree of the system. The proposed set of metrics help
to assess quality attributes of the overall system, but not to assess whether two particu-
lar components could be integrated. Moreover, the second group of metrics requires to
access components implementations, which as mentioned above is not always feasible
in the context described in Section 2.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 57

6 Conclusions and future research opportunities

The growing acceptance of the Service-Oriented Computing paradigm promotes the
research on programming models and software metrics to develop and assess service-
oriented applications, respectively. A service-oriented application can be seen as a
component-based software system having internal components, those locally imple-
mented, and external components, those that have been outsourced to a third-party ser-
vice. During the life cycle of a service-oriented application, the selection and integration
of external services into applications represent essential and non-trivial tasks.

This paper presented a novel algorithm for assessing the effort needed to integrate a
service into an application that adheres to the programming model presented in [4]. The
algorithm assumes that only services functional interfaces descriptions are known, as
occurs in practice, though different approaches have been proposed to add semantically
richer descriptions to services, but these have not been adopted by the industry yet.
Conceptually, the algorithm regards on the degree of similitude between the operations
of the external service and those expected by the internal components, the difference
on the number of operations provided by the service interface and internal components
expectations, the number of matched operations and the number of non-matched ones,
the relevance of non-matched operation in terms of how many internal components call
them. These aspects are assessed by the Integrability Metric (IM), a new software en-
gineering metric. The algorithm outputs an integrability value, which can be used for
determining which service is more integrable into an application from a set of can-
didate services. Therefore, this represents a step towards alleviating the selection and
integration of external services into service-oriented applications.

The computational complexity of the proposed algorithm was presented. Besides,
a framework for evaluating software engineering metrics was employed to evaluate the
IM. Additionally, the usage of the proposed algorithm was illustrated using relevant
integrability scenarios.

In the near future, we plan to conduct empirical evaluations of the proposed algo-
rithm. Currently, we are gathering a data set of real-world, open source service-oriented
applications. Besides gathering the applications, we are implementing the most relevant
operations similitude functions found in current literature [6]. The ultimate goal is to
analyze the implications of different similitude functions on the overall effectiveness of
the algorithm, and whether the effort needed to integrate external services into gathered
applications is reduced or not. Different measures, such as manpower and lines of code,
will be calculated.

In another research direction, we plan to integrate the IM into the approach to dis-
cover services known as Query-By-Example (QBE) for services, which is surveyed
in [6]. The QBE approach allows developers to find services by using a structured inter-
face as query. Then, our hypothesis is that assessing the IM between a list of potential
candidates and the query, i.e. an interface, could modify results ranking with regard to
the effort needed to integrate the services.

References

1. IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990, page 1,

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 58

1990.
2. Hans-Gerhard Gross and Nikolas Mayer. Built-in contract testing in component integration

testing. Electronic Notes in Theoretical Computer Science, 82(6):22 – 32, 2003. TACoS’03,
International Workshop on Test and Analysis of Component-Based Systems.

3. Ivica Crnkovic, Judith Stafford, and Clemens Szyperski. Software components beyond pro-
gramming: From routines to services. IEEE Software, 28:22–26, May 2011.

4. Marco Crasso, Cristian Mateos, Alejandro Zunino, and Marcelo Campo. Easysoc: Making
Web Service outsourcing easier. Information Sciences, to appear, 2010.

5. Harry M. Sneed. Measuring Web Service interfaces. In 12th IEEE International Symposium
on Web Systems Evolution (WSE), 2010, pages 111 –115, September 2010.

6. Marco Crasso, Alejandro Zunino, and Marcelo Campo. A survey of approaches to Web
Service discovery in Service-Oriented Architectures. Journal of Database Management,
22(1):103–134, 2011.

7. Woralak Kongdenfha, Hamid Reza Motahari-Nezhad, Boualem Benatallah, Fabio Casati,
and Regis Saint-Paul. Mismatch patterns and adaptation aspects: A foundation for rapid
development of Web Service adapters. IEEE Transactions on Services Computing, 2:94–
107, April 2009.

8. Zvi Galil. Efficient algorithms for finding maximum matching in graphs. ACM Computing
Surveys, 18:23–38, March 1986.

9. Luca Cavallaro and Elisabetta Di Nitto. An approach to adapt service requests to actual
service interfaces. In SEAMS’08, pages 129–136. ACM, 2008.

10. Noel Salman. Complexity metrics as predictors of maintainability and integrability of soft-
ware components. Journal of Arts and Sciences, 5:39–50, 2006.

11. E.J. Weyuker. Evaluating software complexity measures. Software Engineering, IEEE Trans-
actions on, 14(9):1357 –1365, sep 1988.

12. L.C. Briand, S. Morasca, and V.R. Basili. Property-based software engineering measure-
ment. Software Engineering, IEEE Transactions on, 22(1):68 –86, jan 1996.

13. G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello. Class point: an approach for the
size estimation of object-oriented systems. Software Engineering, IEEE Transactions on,
31(1):52 – 74, jan. 2005.

14. D. Baski and S. Misra. Metrics suite for maintainability of extensible markup language Web
Services. IET Software, 5(3):320–341, 2011.

15. Usha Kumari and Shuchita Upadhyaya. An interface complexity measure for component-
based software systems. International Journal of Computer Applications, 36(1):46–52, De-
cember 2011. Published by Foundation of Computer Science, New York, USA.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 59

