
Text analytics for discovering concerns in

requirements documents

Alejandro Rago1,3, Claudia Marcos2,4, Andrés Diaz-Pace1,3

1 Instituto Superior de Ingeniería de Software Tandil (ISISTAN), CONICET
Campus Universitario, Paraje Arroyo Seco, B7001BBO, Tandil, Bs. As., Argentina

Te: +54 (2293) 439682 Ext. 42 - Fax: +54 (2293) 439681

2 Instituto de Sistemas Tandil (ISISTAN), UNICEN University
Campus Universitario, Paraje Arroyo Seco, Tandil, Bs. As., Argentina

3 CONICET, National Council for Scienti�c and Technical Research
C1033AAJ, Bs. As., Argentina

4 CIC, Committee for Scienti�c Research
B1900AYB, La Plata, Argentina

{arago,cmarcos,adiaz}@exa.unicen.edu.ar

Abstract. Recent trends in the software engineering community advo-
cate for the improvement of textual requirements using (semi-)automated
tools. In particular, the detection of incomplete or understated concerns
at early development stages hold potential, due to the negative e�ects of
untreated concerns on the development. Assistive tools can be of great
help for analysts to get a quick picture of the requirements and narrow
down the search for latent concerns. In this article, we present a tool
called REAssistant that supports the process of discovering concerns
in textual speci�cations. To do so, the tool relies on the UIMA frame-
work and EMF-based technologies to provide an extensible architecture
for concern-related analyses. Currently, the tool is con�gured to process
textual use cases by using a number of textual analytics modules that
identify lexical, syntactical and semantic entities in the speci�cations. We
have conducted a preliminary evaluation of our tool in two case studies,
obtaining promising results when comparing to manual inspections and
to another tool.

Keywords: software requirement, tool-support, natural language processing,
requirements analytics, crosscutting concern, use case speci�cation

1 Introduction

Accomplishing a good understanding of stakeholders' requirements is a necessary
condition for building systems correctly, and more importantly, for developing
the correct system. In general, most software projects use textual speci�cations
for documenting the concerns of a system [15]. The underlying reason for using

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 185



natural-language writing relies on its simplicity, which promotes a �uid commu-
nication between parties. While some of the concerns only address functionality,
there are other concerns whose analysis is vital for reaching a successful project
outcome (e.g., quality attributes, business goals, architectural-signi�cant con-
cerns). Unfortunately, requirements engineering (RE) activities often drive an-
alysts to focus on functional concerns in order to �gure out what the system
should do, leaving little room for attending relevant concerns. Examples of such
concerns are synchronization, performance, distribution, among others. Conse-
quently, it is not uncommon to �nd several key concerns scattered among mul-
tiple documents or lightly treated on supplementary requirements documents.

To overcome this situation, developers need to go through several require-
ments documents skimming concerns and analyzing their e�ects over the system.
Yet, this inspection is a di�cult, time-consuming and error-prone activity, con-
ditioned by the size of requirements speci�cations. In this context, tools able to
support the detection of concerns in a (semi-)automated fashion are of great help
for the analysts. In principle, assistive tools should interpret textual requirements
and reason about their contents for extracting concern information.

In the last few years, several approaches and tools for discovering concerns
have been developed [3,19,1]. The majority of them are ad-hoc solutions that
combine Information Retrieval (IR) and Natural Language Processing (NLP)
techniques. Typical requirements applications of IR and NLP techniques in-
clude the identi�cation of word properties, recurrent concepts, entities, behav-
iors, among others. However, the poor semantic support of existing approaches
prevents the uncovering of crosscutting e�ects, which are really important in the
understanding of a concern. Moreover, existing tools do not always support the
addition of processing modules (such as semantic-aware requirements tagging).

In this article, we use several technologies for discovering concerns and their
e�ects in textual requirements documents. We have developed a tool called RE-

Assistant (REquirements Analysis Assistant) that is composed of two main
components. The �rst component implements an extensible infrastructure for
processing requirements on top of the Unstructured Information Management
Architecture5 (UIMA) [9]. REAssistant uses UIMA to �exibly assemble and ex-
ecute pipelines of NLP modules. The second component deal with the extraction
of concerns from the annotations produced with UIMA. To do so, we opted for a
querying language similar to SQL, built on top of the EMF-Query26 technology.
This choice allows us to express simple but yet powerful concern queries.

The contributions of our work are twofold. First, our infrastructure builds
on UIMA to provide a powerful NLP pipeline for processing textual require-
ments and therefore allows its extension with little e�ort. As a proof of con-
cept, we wrapped several third-party NLP libraries into the UIMA pipeline and
also developed some RE-speci�c modules for �annotating� use cases. Second, we
have integrated a technology for harnessing the outputs of textual requirements
processing modules and provide ways for querying them e�ectively. Using this

5 UIMA project: http://uima.apache.org/
6 EMF-Query2 project: http://www.eclipse.org/modeling/emf/?project=query2#query2

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 186



technology, we provide support for analysts to rapidly inspect the requirements
documents using the knowledge acquired with the analytics pipeline.

We have performed a preliminary evaluation of our infrastructure over two
publicly-available case studies. These experiments consisted on expressing simple
queries for uncovering crosscutting concerns. The results obtained so far are
encouraging, when compared to the manual identi�cation of concerns by humans
or the assistance provided by another concern mining tool.

The rest of the paper is structured into 5 sections. Section 2 introduces the
key ideas of our approach and describes the architecture behind our tool. Section
3 presents a comparative evaluation of our tool. Section 4 is devoted to related
work. Finally, section 5 gives the conclusions and analyzes future lines of work.

2 REAssistant : a tool to analyze requirements

We have developed an infrastructure for processing textual requirements, which
tries to overcome the limitations of existing textual analytics and to incorporate
semantic knowledge of the requirements domain. Instead of building this infras-
tructure from scratch, we investigated and selected state-of-the-art technologies
for tackling these problems. The REAssistant approach works as follows (see Fig-

Fig. 1. REAssistant components

ure 1). Initially, the analyst provides as input a set of textual use cases. These
textual requirements are processed by the UIMA-based Analyzer component. In
simple terms, this component executes a series of text analytics on the use cases
to produce useful information from the sentences. This component relies on the
UIMA framework to deploy and parametrize di�erent analyses. UIMA serves

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 187



as the basis foundation for building analytic applications that process unstruc-
tured information such as requirement documents. Each text analytic in UIMA
is wrapped by a so-called annotator. The output of an annotator are annota-
tions, which identify and label speci�c regions of the text. As end result, the
UIMA-based Analyzer generates an annotation-based representation of the use
cases (see Figure 3). Since REAssistant works with individual sentences, each
use case is decomposed into its behavior steps for processing.

Then, the requirements analyst is able to input and execute queries with the
help of the annotations previously generated. Unfortunately, UIMA does not
process the outcomes of its annotators. To cover for this limitation, REAssis-
tant uses a querying language of EMF model. The Querying Engine component
seamlessly connects the UIMA annotations and the EMF-Query2 technology.
The queries are simple and expressive for searching concerns of interest for the
analysts, and can be further re�ned as new annotators are incorporated to the
UIMA-based Analyzer. A nice property of the Querying Engine is that it allows
to search concerns in very di�erent ways. For instance, an analyst can write down
a query to look for verbs that occur very often in the requirement documents, or
to look for relevant keywords that relate to particular concerns. In our approach,
we take these ideas one step further, using domain knowledge about use cases
to �nd crosscutting concerns.

Finally, the execution of a query in REAssistant will produce as output a
subset of sentences (usually, use case steps) that are related somehow to the
concern being searched. Furthermore, the parts of the sentences can later be
highlighted to show that they are potentially crosscut by the selected concerns.
It is worth mentioning that each query codi�es knowledge about concerns, and
how they relate semantically to natural language expressions. It is up to the
analyst to write and re�ne queries for satisfactory results.

2.1 The requirements processing pipeline

A key aspect of our approach is its reliance on UIMA [9]. The UIMA-based

Analyzer component makes an extensive usage of the annotation mechanisms
provided by UIMA. An annotation identi�es and labels (i.e., annotates) a spe-
ci�c region of a text document. For instance, an annotation can label a noun as
�object� or a verb as an �action� in a sentence. A nice feature of annotations is
that they can be arranged in layers on the same text. As explained above, the
building blocks of an UIMA application are the so-called annotators. An annota-
tor is a module that iterates over an artifact (e.g., a textual document) in order to
discover new annotation types based on existing ones, and updates a shared rep-
resentation structure. Some annotators can work as standalone modules while
others may need the output (annotations) produced by other annotators. An
end-to-end analysis requires the con�guration of several annotators.

The UIMA-based Analyzer implementation comprises several annotators that
are classi�ed in two groups: NLP annotators that process language-independent
text (e.g., the part-of-speech of a word), and RE-aware annotators that take
into account the context of a requirements speci�cation for the analyses (e.g.,

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 188



an actor of a use case step). Figure 2 depicts the arrangement of the annotators
in our pipeline. The �rst group of annotators (leftmost and middle columns) is
in charge of recognizing lexical, syntactical and domain-independent semantic
properties of the text. Particularly, these annotators perform basic tasks such as
detecting sentences and word boundaries, identifying word features (e.g., part-of-
speech, stems), and also advanced tasks such as recognizing relationships (e.g.,
dependencies between words and predicates). The second group of annotators
(rightmost column) is in charge of detecting concepts relevant to the require-
ments engineering domain. For example, REAssistant has annotators that iden-
tify the actors of a use case step, and the roles played by these actors in the
intended behavior (i.e., a conceptual abstraction). Within UIMA, we wrapped
all the NLP algorithms above as annotators. Furthermore, in case of alternative
NLP implementations, the annotators can be easily exchanged (e.g., substitution
of the OpenNLP POS tagger for its counterpart in Stanford CoreNLP).

Fig. 2. UIMA-based Analyzer annotators

As a motivating example, let's consider the use case step �The system com-
putes the credit report through the Billing System�. Figure 3 shows the linguistic
analysis carried out by the UIMA-based Analyzer on this particular sentence.
Each rectangle denotes an annotation that points either to the base text or to
other annotations. The annotations of the �rst level correspond to tokens (Basic
NLP). The annotations of the second and third levels correspond to the Se-
mantic Role Labeling (SRL) module, which reveals the predicate structure and
the meanings of predicates (Advanced NLP). The annotations of the fourth level
have a higher abstraction and encompass RE-speci�c concepts (RE-aware NLP).

NLP annotators The �rst group of annotators executes basic and advanced
NLP tasks. These tasks are responsible for recognizing grammatical structures
in individual sentences (actually, use case steps). This information is progres-
sively extracted by means of several text analytics annotators. The end goal is
the identi�cation of sentence predicates and the semantic arguments �lling the
roles of those predicates [11]. We argue that predicates contribute to clarify the

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 189



Fig. 3. Use case step annotated with the UIMA-based Analyzer

meaning of sentences, hence, they enable the discovery of latent crosscutting
relations in the textual use cases.

The Basic NLP tasks (see Figure 2) include: i) sentence splitting, for
identifying sentence boundaries; ii) token splitting, for extracting token from
sentences; iii) stopwords detection, for discarding irrelevant tokens; and iv)
stemming, for reducing each token to its lexical root. In addition, Part-of-
Speech (POS) tagging is used for identifying the linguistic category of each
token (e.g., noun, verb, adjective, participle, pronoun, preposition, etc.). Im-
plementations of these �ve techniques are already available. Well-known pack-
ages include: OpenNLP7, Stanford CoreNLP8, and Mate-Tools9. For example,
OpenNLP provides algorithms for sentence splitting, token splitting and POS
tagging. Stanford CoreNLP provides similar algorithms but also supports de-
pendency parsing. In the example of Figure 3, annotations from T1 to T10
correspond to tokens. In more detail, T3 is a verb and its stem is �comput�.

We believe that techniques such as POS tagging might not always provide
enough information for identifying crosscutting concerns [16]. For instance, verbs
such as �have� or �do� can be hints of a crosscutting behavior, but the con-
textual information of the verb is needed for a more precise analysis. For this
reason, we enhanced the standard NLP pipeline with three tasks (see Figure
2), namely: lemmatization, dependency parsing and semantic role label-

ing (SRL) [5]. For the purposes of REAssistant, lemmatization and dependency
parsing can be seen as prerequisites for applying SRL. One of the bene�ts of
SRL is the recognition of the semantic arguments associated with a predicate
(or verb) and the classi�cation of these arguments into speci�c roles (e.g., the

7 http://opennlp.sourceforge.net/projects.html
8 http://nlp.stanford.edu/software/corenlp.shtml
9 http://code.google.com/p/mate-tools/

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 190



agent, the patient, the manner, the time, the location, etc.). Existing packages,
such as Mate-Tools, provide algorithms for lemmatization, dependency parsing,
and SRL. The annotations of the second and third level (P1, A1, A2 and A3) of
Figure 3 correspond to the SRL module and provide richer information, such as
the predicate structure or and their meanings. In detail, A1 is an argument and
represents the �calculator� in the phrase.

Requirements-aware annotators Although the SRL annotator does a good
job exposing the predicate structure of the sentences, the interpretation of such
predicates might not take into account intrinsic characteristics of requirements
engineering activities. For instance, none of the NLP annotators can distinguish
subtle di�erences between the participants of use case steps. Although predicate
structures may uncover the participants, they are insensitive for determining
whether a participant is a human actor or an external system. On the contrary,
humans analysts show great interpretation capabilities when analyzing use cases.
Also, human analysts understand phrases/words based on common expressions
and lexicon related to the �story telling� of use case scenarios [7]. For instance,
an analyst can interpret that phrases like �create a new record� and �store the
new information� are semantically-equivalent as requirements for a given system.
The NLP annotators o�er yet little help for detecting these kind of similarities.

The issues above are actually a domain-speci�c characteristic of requirements
that needs to be addressed after the NLP analyses. This is where the RE-aware
domain annotators come into play, providing mechanisms to spot and label do-
main information. The �rst annotator takes as input the SRL annotations and
detects actors and their properties, using arguments as the starting point. The
second annotator uses the notion of domain actions as a mechanism to adapt
(and somehow simplify) the �general� predicates from SRL to the use cases ter-
minology. Speci�cally, we use a dictionary of actions for use cases, which is
re�nement of the work of Sinha et al. [20]. This dictionary contains a hierar-
chy of domain actions, in which the upper levels are action categories and the
lower levels cover abstract actions. Coming back to the example of Figure 3,
the annotations of the fourth level encompass requirements-speci�c concepts. In
more detail, DAn1 and DAn2 are domain actions indicating that P1 is actually
a Process/Calculation behavior in the context of use cases, and DAr2 indicates
that A3 holds a software actor.

Figure 4 shows the hierarchy of domain actions considered in our approach.
The annotator computes domain-action annotations out of predicate annota-
tions. The association of a given predicate to a set of domain actions is performed
using a multi-class/label classi�er (MLC) [21]. Basically, MLC is a machine learn-
ing technique that takes an instance and associates it with one or more disjoint
labels representing conceptual classes. In our case, the classi�er annotates each
predicate with a set of likely domain actions. The predicates are previously �l-
tered by the stemming and stopwords tasks to reduce �noise� in the text. The
algorithms of the Mulan toolkit 10 were used for learning the classi�er.

10 http://mulan.sourceforge.net/

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 191



Fig. 4. Hierarchy of Domain Actions for use cases

Algorithm 1 Simple NLP-based query

select S from
[#Sentence#] as S,
[#Token#] as T

where for T(
stem = 'commun' or lemma = 'interaction' or lemma = 'internet' or
lemma = 'external' or lemma = 'separate' or lemma = 'online' or
lemma = 'server' or lemma = 'o�ine' or stem = 'connect'

)
where T.begin > S.begin
where T.end < S.end

2.2 The querying engine

After processing the textual requirements and generating the corresponding an-
notations, we still have to analyze and extract crosscutting concerns from the
data. We advocate for a solution in which the analysts can make queries in the
annotation space, in a similar way SQL is used for retrieving data from databases.
The Querying Engine component provides searching facilities through a query-
ing language for UIMA annotations. This component relies on the EMF-Query2
technology for several reasons. Since UIMA annotations models are stored in a
EMF-compatible format, the EMF-Query2 development �ts well in our work.
EMF-Query2 can help analysts to customize and re�ne queries on the �y with-
out much e�ort. An interesting feature provided by the Querying Engine is that
requires no implementation changes as new textual annotators are added to the
UIMA-based Analyzer. Furthermore, queries are dynamically linked to the UIMA
annotation typesystems and can reference new types on demand.

Analysts using REAssistant can express search patterns that, when applied
to the UIMA annotations, can reveal the presence of a particular concern in the
requirements documents. A simple query might look for occurrences of concern-
speci�c keywords. In the case of a Distribution concern, for instance, a query
can look for tokens such as 'commun', 'server', 'external', or 'internet', among
others. Algorithm 1 shows this query. However, an analyst can improve the
detection of the Distribution concern by leveraging on the RE-aware annotations.
Let's consider the example use case step of Figure 3. In that sentence, there is
not only a computation, but also an interaction with a secondary actor. So,
with the objective of uncovering a hidden Distribution concern, a second query
could be written to retrieve sentences with domain actions �Communication�,

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 192



Algorithm 2 Advanced RE-aware query

select S from
[#Sentence#] as S,
[#DomainActor#] as DAr
[#DomainAction#] as DAn

where for DAr(label = 'Process')
where for DAn(kind = 'Software')
where DAr.begin > S.begin where DAr.end < S.end
where DAn.begin > S.begin where DAn.end < S.end

�Veri�cation� and �Calculation�, grouped by the class �Process�. These actions
should be linked to the Distribution concern if a �Software� actor is present. Note
that this linkage comes from a semantic interpretation of the use cases, rather
than from a syntactic text analysis. That is, by making the �Process� class and
the �Software� actor explicit, Distribution arises as a candidate concern.

3 Preliminary evaluation

In order to assess the performance of our approach, we conducted a series of ex-
periments with two well-known case studies. The �rst case study is the Course
Registration System (CRS) [4], a distributed system to be used for managing an
university courses and subscriptions. In this system, students can enroll in exist-
ing courses, professors can create new courses and report student's grades. The
CRS documentation consists of 8 use cases (about 20 textual pages). The second
case study is the Health Watcher System (HWS) [12], a web-based system that
serves as a mediator between citizens and the municipal government. Citizens
can register complaints about the healthcare service, read health-related news
and make queries regarding health issues. The HWS requirements speci�cation
consists of 9 use cases (about 19 textual pages) and other researchers have used
as testbed for analyzing its crosscutting concerns and quality-attribute proper-
ties [18,22].

The experiments involved both manual and tool-supported processing of the
case studies. For comparison purposes, we initially established a �golden� stan-
dard (i.e., the ideal solution) for the CRS and HWS. Each golden standard
contained the concerns and crosscutting concerns that are believed to be cor-
rect, according to the information available from the case studies. Three kind
of experiments were conducted. The �rst type of experiments comprised the in-
spection of the requirements documentation by real people. In CRS, we had with
two groups of analysts (referred to as Groups A and B) that separately inspected
and manually labeled crosscutting concerns and analyzed their e�ects. In HWS,
we also had with two groups (referred to as Groups C and D) that conducted the
same analysis. The four groups were allotted 2 hours to complete the analysis.
Group A and B were composed by two senior undergraduate students, while C
and D were composed of two PhD. students each. The second type of experi-
ment was performed only on the HWS case study, and consisted of analyzing

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 193



the textual speci�cation using EAMiner [19]. EAMiner is a third-party tool for
mining concerns. At last, we wrote a small number of queries (similarly to the
examples in Algorithms 1 and 2) for the annotations. Then, we ran those queries
on the two case studies with help of the Querying Engine.

As evaluation criteria, we used standard Information Retrieval (IR) [2] mea-
sures such as Precision and Recall. Unlike similar evaluations [18,1], we used a
�ne-grained approximation to compute the Precision and Recall measurements.
The evaluation represents the occurrence of a crosscutting concern in the text
at the level of sentences. In addition, to solve some discrepancies found in the
names of semantically-equivalent concerns produced by di�erent analysts/tools,
we de�ned two matching tables for CRS and HWS. Thus, the computation com-
pares the sentences tagged in the golden standard against the sentences tagged
in each experiment. A use case step is considered as a true positive if the golden
standard contains a crosscutting e�ect for the step, and the group/tool actually
detected that e�ect. A similar reasoning is used for true negatives, false posi-
tives and false negatives. The interpretations of the measures in this context are
the following: precision measures how many of the crosscutting e�ects detected
by the group/tool are correct; while recall measures how complete the concern
detection is, in the sense that some crosscutting e�ects might be missed. For an
assistive tool, an acceptable precision and a high recall are desirable. That is,
we would like REAssistant to �nd as many crosscutting e�ects as possible, even
at the cost of detecting a few incorrect ones, because the analyst will ultimately
assess the outputs produced by the tool.

The golden standards comprise 8 crosscutting concerns with 143 crosscutting
e�ects (use case steps) and 6 crosscutting concerns with 185 crosscutting e�ects
for the CRS and HWS, respectively. With REAssistant, we used queries for
�nding the following concerns: Integrity Management, Error Management, User
Access Control, Presentation, Distribution, Persistence and Concurrence. Table
1 summarizes the measurements obtained during the experiments. Overall, the

Table 1. Experimentation Results

Precision Recall F-Measure

CRS

Human Group A 0,702 0,230 0,346
Human Group B 0,772 0,391 0,519
REAssistant 0,579 0,643 0,609

HWS

Human Group C 0,761 0,584 0,661
Human Group D 0,962 0,411 0,576

EAMiner 0,654 0,302 0,413
REAssistant 0,789 0,827 0,807

four human groups (A to D) achieved a very good precision (~75% and ~85%
in CRS and HWS, respectively) but a rather low recall (~30% and ~50, respec-
tively). The recall might depend on the expertise of the analysts and also on

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 194



the time spent on the concern analysis. Moreover, there is a clear di�erence in
recall between the groups in CRS (A and B) and those in HWS. We believe
that more experienced analysts are able to discover more concerns than novice
analysts, as it was the case of groups A and B versus groups C and D. Regarding
tools, they achieved a comparable precision (between 60% for CRS and 80% for
HWS) although lower than the precision of the human groups due to the in�u-
ence of false positives. Nonetheless, an important advantage of the tools was the
speed-up to discover candidate concerns. The four groups needed between 90-
120 minutes to perform the analysis, while on the contrary, both EAMiner and
REAssistant took only 10-30 seconds. Regarding the tools' recall, REAssistant
outperformed human analysts in both case studies (~65% vs. ~40% in CRS and
~85% vs. ~60% in HWS). We believe that humans have trouble to �nd all the
relevant concerns, and in this scenario tools such as EAMiner and REAssistant

can become really helpful. Moreover, REAssistant also beat EAMiner's recall
by a considerable margin (~85% vs. ~30%). We argue that this di�erence is due
to the better support for advanced NLP and RE-aware analysis provided by
our approach. The F-measure values obtained from the evaluation consistently
showed the improvements of our approach.

4 Related work

In the last few years, several approaches have been developed to enhance the
analysis of requirements documents, and particularly, those written in natural
language. A study carried out by Mich et al. [15] reported that approximately
80% of the requirements are speci�ed in natural language, with little or no
structure. Many researchers have advocated for the use of Information Retrieval
(IR) [10] and Natural Language Processing (NLP) [14] techniques to automate
the detection of patterns in the text and extract useful information for human
analysts. In the context of this work, we are interested on those approaches that
mine relevant concerns from requirements in a semi-automated fashion.

A large number of existing approaches belong to the early aspects research
community. Rosenhainer [17] applied Information Retrieval techniques to auto-
mate the search of early aspects in software speci�cations. He performs individ-
ual queries on requirements documents, based on regular expressions and string
matching techniques. Baniassad and Clarke developed the Theme approach [3]
as a tool support for aspect orientation at the requirements and design lev-
els. Speci�cally, Theme/Doc builds views of the requirements speci�cations, in
order to expose the relationships between system behaviors and reveal crosscut-
ting functionality. The tool requires two inputs: key actions and key entities,
which are usually provided by an analyst. Later on, Busyairah and Zarinah [1]
developed the 3CI approach based on Theme/Doc. 3CI further automates the
identi�cation of crosscutting requirements by avoiding the manual input of key
entities and actions. This tool relies on various NLP techniques to determine
the dependencies among requirements, mostly derived from the analysis of dom-
inant verbs. The EAMiner tool [19] is another approach for aspect mining that

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 195



performs POS and semantic tagging of textual requirements. The semantic tag-
ger categorizes each word according to a semantic English-grammar taxonomy.
Each semantic tag is associated to non-functional requirements gathered from
the NFR framework [6]. Each word tagged with a semantic category related to
an NFR is proposed as a non-functional early aspect.

REAssistant has similarities with the approaches above but also has distinc-
tive features. A shared characteristic is the application of NLP techniques for
analyzing requirements. Yet, the approaches just discussed have not employed
advanced NLP tasks, such as dependency parsing or semantic role labeling. The
queries of REAssistant can be seen as an evolution of Rosenhainer's queries. The
main di�erence here is that our approach uses a richer query language, and we
can bene�t from the semantic information provided by annotations.

In parallel with the early-aspects work, other authors have investigated di�er-
ent ways to derive abstract requirements models from text, which can later facil-
itate tasks such as consistency checking, or abstract concept extraction. Drazan
& Menzl [8] analyzed the diverse ways of writing use cases, and developed NLP-
based patterns to extract information from use cases. Each pattern represents
grammar structures that are frequent in use cases steps, and the patterns can be
adjusted to the complexity of the sentences. Kamalrudin and Grundy [13] have
recently presented a tool approach that checks requirements for inconsistency.
This work is based on the notion of �essential use cases� and interactions, in which
elements of natural language requirements are linked to their corresponding ab-
stractions. The tool can determine if the use case model is complete, consistent
and correct, by matching the extracted essential use case model against a library
of acceptable essential use case patterns. In our approach, the annotations-based
representation can be seen as a lightweight model of use cases, but it does not
prescribe the types of entities and relationships that a use case structure should
have. Sinha et al. [20] developed a pipeline of UIMA annotators for extracting
characteristics of the behavioral model from textual use cases. The design is close
to our UIMA solution, although it di�ers in the technical details of the analysis
modules and in the model generated by the pipeline. Sinha's pipeline generates
a behavioral model that is intended to support completeness, structural and �ow
checks. To this end, the concepts of semantic actions and context information
are introduced. As we discussed in section 2.1, these concepts are the basis for
our hierarchy of domain actions. Furthermore, we believe that domain actions
work at a higher abstraction level than the essential use case interactions of
Kamalrudin's approach.

5 Conclusions

In this article, we presented a novel tool called REAssistant that brings support
for processing textual requirements documents and for extracting useful informa-
tion from them. In particular, our tool o�ers several modules to discover latent
crosscutting concerns from use case speci�cations. A number of advanced NLP
and RE-aware modules are used for analyzing use case steps and annotate them.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 196



These annotations enable the search for crosscutting concerns through queries
that operate at the level of annotations. The technical contributions of our work
are the assembly of diverse text analytics modules into a single (automated)
analysis pipeline and the integration of a querying language to search through
their outputs.

We have carried out a preliminary evaluation of the REAssistant tool on two
case studies, obtaining encouraging results. Our approach showed a very good
recall, meaning that it was able to �nd most of the concerns hidden and scattered
in the case studies. The precision was not as good as the ones achieved by human
analysts. Yet, it was still within an acceptable range when compared to the
precision of EAMiner. It should be noticed that our tool is not intended to replace
the analyst but rather to assist her with a quick picture of candidate crosscutting
concerns. Furthermore, the ability of REAssistant to �nd latent crosscutting
concerns at the sentence level was very useful for the analysts. The evaluation
of the case-studies also revealed some limitations of the approach. First, the
quality of the text given as input to the tool impacts on the results of the NLP
pipeline. Second, despite the bene�ts of having concern queries expressed in
semantic terms (i.e., annotations), the tool outputs can be a�ected by the way
these queries are written. Third, the classi�er of domain actions might have a
bias towards certain actions, which in turn favor the detection of certain concerns
over others. Also REAssistant does not take into account the importance (i.e.,
priority) of the mined concerns for the system.

As future work, we plan to evaluate REAssistant with more case-studies.
Having additional case-studies will serve us to enrich the current queries and
maybe to arrange them in rules focused on speci�c concerns. In particular, we
are investigating how to apply NLP techniques for spotting quality-attribute con-
cerns, business goals and architecturally-signi�cant requirements. We speculate
that these new �types of concerns� can be incorporated with few tool modi�ca-
tions, thanks to the UIMA framework. If the concern identi�cation is performed
on multiple text documents, we are interested in exploring the traceability links
between the concerns extracted from each document.

Acknowledgments. We would like to thank to the attendees of the �Aspect-
Oriented Software Development� course (given at UNICEN University), who
helped with the analysis of case studies.

References

1. Ali, B., Kasirun, Z.: 3ci: A tool for crosscutting concern identi�cation. In: Com-
putational Intelligence for Modelling Control & Automation, 2008 International
Conference on. pp. 351�355. IEEE (2008)

2. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 463.
ACM press New York. (1999)

3. Baniassad, E., Clements, P., Araujo, J., Moreira, A., Rashid, A., Tekinerdogan,
B.: Discovering early aspects. Software, IEEE 23(1), 61�70 (2006)

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 197



4. Bell, R.: Course registration system. http://sce.uhcl.edu/helm/RUP_course_

example/courseregistrationproject/indexcourse.htm (2011)
5. Bjorkelund, A., Hafdell, L., Nugues, P.: Multilingual semantic role labeling. In:

Proceedings of the Thirteenth Conference on Computational Natural Language
Learning: Shared Task. pp. 43�48. CoNLL '09, Association for Computational Lin-
guistics, Stroudsburg, PA, USA (2009), http://dl.acm.org/citation.cfm?id=
1596409.1596416

6. Chung, L., do Prado Leite, J.: On non-functional requirements in software engi-
neering. Conceptual modeling: Foundations and applications pp. 363�379 (2009)

7. Cockburn, A.: Writing e�ective use cases, vol. 1. Addison-Wesley Reading, MA
(2001)

8. Drazan, J., Mencl, V.: Improved processing of textual use cases: Deriving behavior
speci�cations. SOFSEM 2007: Theory and Practice of Computer Science pp. 856�
868 (2007)

9. Ferrucci, D., Lally, A.: Uima: an architectural approach to unstructured informa-
tion processing in the corporate research environment. Natural Language Engi-
neering 10(3-4), 327�348 (2004)

10. Frakes, W., Baeza-Yates, R.: Information retrieval: data structures and algorithms.
Prentice Hall PTR (1992)

11. Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational Lin-
guistics 28(3), 245�288 (2002)

12. Greenwood, P.: Tao: A testbed for aspect oriented software development. http:
//www.comp.lancs.ac.uk/~greenwop/tao/ (2011)

13. Kamalrudin, M., Hosking, J., Grundy, J.: Improving requirements quality using
essential use case interaction patterns. In: Software Engineering (ICSE), 2011 33rd
International Conference on. pp. 531 �540 (may 2011)

14. Manning, C., Schutze, H., MITCogNet: Foundations of statistical natural language
processing, vol. 59. MIT Press (1999)

15. Mich, L., Franch, M., Novi Inverardi, P.: Market research for requirements analysis
using linguistic tools. Requirements Engineering 9, 151�151 (2004), http://dx.
doi.org/10.1007/s00766-004-0195-3, 10.1007/s00766-004-0195-3

16. Rago, A., Abait, E., Marcos, C., Diaz-Pace, A.: Early aspect identi�cation from
use cases using nlp and wsd techniques. In: Proceedings of the 15th workshop on
Early aspects. pp. 19�24. ACM (2009)

17. Rosenhainer, L.: Identifying crosscutting concerns in requirements speci�cations.
In: Proceedings of OOPSLA Early Aspects. Citeseer (2004)

18. Sampaio, A., Greenwood, P., Garcia, A., Rashid, A.: A comparative study of
aspect-oriented requirements engineering approaches (2007)

19. Sampaio, A., Rashid, A., Chitchyan, R., Rayson, P.: Ea-miner: towards automa-
tion in aspect-oriented requirements engineering. Transactions on aspect-oriented
software development III pp. 4�39 (2007)

20. Sinha, A., Paradkar, A., Kumanan, P., Boguraev, B.: An analysis engine for de-
pendable elicitation of natural language use case description and its application to
industrial use cases. IBM Research Report RC24712 (2008)

21. Tsoumakas, G., et al.: Multi label classi�cation: An overview. International Journal
of Data Warehousing and Mining 3(3), 1�13 (2007)

22. Zhang, H., Ben, K.: Architectural design of the health watch system with an inte-
grated aspect-oriented modeling approach. In: Computer Design and Applications
(ICCDA), 2010 International Conference on. vol. 1, pp. V1�624 �V1�628 (2010)

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 198

http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://dl.acm.org/citation.cfm?id=1596409.1596416
http://dl.acm.org/citation.cfm?id=1596409.1596416
http://www.comp.lancs.ac.uk/~greenwop/tao/
http://www.comp.lancs.ac.uk/~greenwop/tao/
http://dx.doi.org/10.1007/s00766-004-0195-3
http://dx.doi.org/10.1007/s00766-004-0195-3



