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Abstract. In many biological systems it is crucial to detect changes,
as accurate as possible, in the parameters that govern their dynamics.
In this work we propose a new method to perform an online automatic
detection of such changes, making use of a well known nonlinear fore-
casting algorithm. The approach takes advantage of the characterization
of an interval of a signal by the reconstruction of its phase space through
time-delay embedding. To this end, the optimal delay and embedding
dimension are estimated, and a method is proposed for determining the
forecasting parameters, after which it is possible to predict future values
of the studied signal. In this novel approach the method is used as a way
of detecting changes in the dynamics of a system, given that the forecast
is performed using a template of the signal where its parameters remain
constant. At this point, the measure of the prediction error is used to
detect a change in the dynamics of the system. We also propose a second
estimator of this change, namely prediction failure, which is a stronger
binary estimator of change in the dynamics. The results are analyzed by
a cumulative sum algorithm (CUSUM ) to obtain a detection point. In
order to test their behavior, both methods are applied to deterministic
discrete and continuos synthesized data, and to a simulated biological
model.

Keywords: nonlinear event detection, nonlinear forecasting, prediction error.

1 Introduction

Frequently, changes in the dynamics of a system are due to the change of just one
of its parameters. In particular, in biological systems their governing laws might
present strong nonlinearities. Their behavior can be chaotic, and these changes
can be related to a pathological condition of the biological system. Therefore,
the correct analysis of the outcome signal of such a system is crucial to the
understanding and detection of disorders.

When nonlinear dynamics are present, the conventional analysis based on
Fourier theory sometimes yields results that can not represent the underlying
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dynamics in its full magnitude. A variety of methods have been proposed to
undertake the study of such signals (correlation dimension, Lyapunov exponents
and other complexity measures), and they have been applied in several fields,
including the analysis of biological systems and signals.

When the dynamics can be represented by a set of differential equations,
analytical methods can provide information to characterize the corresponding
systems. However, in real applications this representation is not always available
and the system’s reconstructed phase space by means of time-delay embedding
becomes an important tool of analysis. It enables the study of the dynamics of
a systems from one of its output signals. These techniques have been widely
applied to the study of changes and non-stationarity in biological systems [1–4].

In this paper we propose a novel approach to this aim by using the prediction
error of a nonlinear forecasting algorithm as an indicator of slight parameters
changes. Previous works were focused on the use of forecasting algorithms to
either detect changes in a system or to prove chaotic behavior. Altunay et al. [5]
studied the detection of epileptic seizure from electroencephalogram recordings
by means of a linear prediction method. Sugihara et al. [6] studied a nonlinear
short term forecasting algorithm aiming to detect chaos from measurement noise.
The authors state that under chaotic dynamics the accuracy of the nonlinear
predictor decreases with the increasing prediction time interval, at a rate which
gives an estimate of the maximum Lyapunov exponent, while uncorrelated noise
should not depend on the prediction interval. A nonlinear prediction algorithm
was used by Dushanova et al. [7] to detect the presence of chaos in a signal, and
was applied to the study of single-trial readiness potentials. In their method the
authors use the same signal under analysis for both library and prediction, and
their method provides good results for chaotic sequences in between non-chaotic
deterministic signals. However, the approach doesn’t prove to be effective in
detecting small changes in the parameter of system under chaotic behavior, and
the detection relies on the overall change in the dynamics, not necessarily on the
presence of chaos, as stated by the authors.

In 1997, Torres et al. [8] proposed a method to detect slight parameter
changes in nonlinear systems. In 2003, Torres et al. [9] proposed an automatic
method to perform this task. The authors applied this approach to the automatic
detection of seizure episodes of petit-mal epilepsy [10]. Using multiresolution en-
tropies (MRE, a combination of wavelet decomposition and entropies evaluated
on sliding windows by scales), they showed that the changes could be found as
statistical variations at each scale of analysis. After extracting the corresponding
principal component of the MRE matrix, the point in which the complexity of
the system changed was obtained using a statistical change detection algorithm.

In this work, we present a novel approach to the automatic detection of slight
changes in a system. Given a signal which is considered to be the output of an
unknown system, the proposed method allows to detect, if present, changes in
the parameters of the system, making use of a nonlinear non-parametric predic-
tion algorithm. The method is explained and applied to deterministic maps and
continuos flow systems, as well as to a simulated biological data.
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2 Methods

2.1 Phase space embedding

Given a deterministic system, its state at a time n can be specified by a vector
yn ∈ Rm . The evolution of the states determines trajectories in a phase space.
In the particular case of nonlinear chaotic systems, they present complicated ge-
ometrical shapes, often called strange attractors. However, in real cases we don’t
have access to either the states of the system nor to its governing equations, but
to a series of scalar measures. Then, it is necessary to reconstruct the evolution
of states of the system.

Given a time series with real samples xn, a delay reconstruction in m dimen-
sions is obtained by the vectors yn [11], given by:

yn =
(
xn−(m−1)τ , xn−(m−2)τ , ..., xn−τ , xn

)
(1)

where m is the embedding dimension (minimal number of independent variables
needed to represent the dynamics of the system), and τ is the reconstruction
delay. The trajectories provided by the reconstructed vectors yn will approximate
the original trajectories of the real states of the system as long as m is larger than
twice the box counting dimension of the attractor [12]. It is easy to determine
the embedding parameters when some information about the system, such us
the number of independent variables, is available. However, when the system
is unknown, it is necessary to estimate the optimal values. In most practical
applications, the product mτ is more important than the individual values, since
mτ is the time span represented by each state vector yn.

Several methods have been proposed to estimate τ . In this work we set the
delay time to be the first minimum of the mutual information of the signal, as
proposed by Fraser et al. [13].

2.2 Nonlinear forecasting

In this novel method, given a signal we select a template from it, in a time inter-
val where the parameters of the corresponding systems are assumed to remain
constant. This template will serve as a library used to predict future samples of
the signal.

Let xn, n = 1...N be the sampled signal. The template, of length L, will
then be chosen to be xtn = xn, n = l...l + L− 1. This length will depend on the
system under study. We then perform the phase state reconstruction of the
template through time delay embedding, evaluating for that purpose the optimal
embedding dimension m and time delay τ . The dynamics of the system can either
be periodic, quasiperiodic or chaotic.

Then, under the hypothesis that the studied signal is the outcome of some
deterministic system, it is possible to predict future values of the time series
making use of the information of the trajectories of the phase space. We apply
here the algorithm proposed by Schreiber [11], so we consider a neighborhood in
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the reconstructed phase space, centered at yn and of radius ε, namely Un. Then
we find the average of the future samples corresponding to every state included
in the neighborhood:

x̂n+∆n =
1

|Un|
∑

yk∈Un

xtk+∆n, (2)

where x̂n+∆n stands for the prediction ∆n samples into the future, |Un| denotes
the number of elements yk found inside Un, and xtk+∆n is the value ∆n samples
ahead of the one corresponding to the state yk reconstructed from the template.
For this algorithm we need to determine the scalar radius (ε) and how far into the
future the forecast can be made (∆n). There are basically two ways of defining
ε: either choosing a fixed value for the parameter, or determining a number of
neighbours to be included in Un, adapting the radius to each yn. In this work we
will consider a fixed radius ε, so we express it in terms of the minimum distance
between neighbors in the template reconstructed phase space (rmin):

rmin = max
i

{
min
j 6=i

{∥∥yi − yj
∥∥}} , (3)

where || · || represents here the Euclidean distance. Setting ε = rmin ensures that
at least one neighbor will be found for each state in the template. The prediction
time is set ∆n = 1.

This is a non parametric algorithm where the predicted samples rely on the
characteristics of the system expressed by the trajectories of the reconstructed
attractor, for which it is necessary to have a set of samples from which to make
the predictions. The efficiency of the method depends on the value of ε, since
a very small radius would not allow to find neighbors and hence no prediction
could be obtained. Otherwise, if the radius is too large, the accuracy of the
predicted sample would be very poor since many different trajectories could be
taken into account and averaged out.

2.3 Dynamics change indices

In order to perform the detection of a change in the parameters of the system
we propose two indices. Assuming that the real future samples are known, the
absolute error of the forecasting method can be quantified as:

en+∆n = |xn+∆n − x̂n+∆n|, (4)

where | · | stands for the absolute value. If we compute the prediction along the
whole signal, en will therefore be a measure of the likelihood of the actual current
dynamics of the system to that of the template.

We introduce here a second index for the dynamical change detection, which
we name prediction failure En. It is defined by

En =

{
0 if |Un| 6= 0
1 if |Un| = 0

(5)
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Therefore, if at least one neighbor is found inside the hypersphere of radius
ε centered at yn, En will be zero. Otherwise, if no neighbors are found in Un,
the algorithm will not be able to perform any forecast and so En = 1. Thus, the
prediction failure is a binary measure of how good the template is to predict the
future samples of the given time series xn.

This suggests that if the predictions are performed with a template taken
from an interval where the parameters of the underlying system are assumed to
be constant, both the prediction error and the prediction failure would increase
their mean values as the dynamics of the system changes. Indeed, a change in
some parameter of the system will be reflected on the shape of the reconstructed
attractor. So, when searching for neighbors in the trajectory after the change,
either the states inside Un will cast bad predictions, or no neighbor will be found
at all.

In order to perform this detection automatically, we implemented and applied
a cumulative sum (CUSUM) algorithm to the absolute error prediction, enabling
to obtain a detection point given an appropriate threshold. The CUSUM algo-
rithm was first proposed by Page [14]. The method consists in studying the
logarithmic likelihood rate, Sk, which presents a negative slope as long as the
mean value doesn’t change, and a positive slope after the change. The stopping
point is the sample at which the difference between Sk and its minimum value
mk exceeds certain threshold, hk, which is a free parameter [15].

3 Results and Discussion

In order to test the method described in the previous section, we have applied
it to three simulated data with well known chaotic behavior, corresponding to
discrete maps and continuos systems. We have imposed slight changes in only
one parameter governing their complex dynamics.

3.1 Henon Map

The Henon map is a discrete-time system given by:{
xn+1 = 1− αxn2 + yn
yn+1 = β xn

(6)

For certain values of the parameters α and β the system’s dynamics is chaotic
[12]. In this example, the signal was obtained using the classical values α = 1.40
and β = 0.30, except from n = 2001 to n = 3000, where α = 1.32. Note that
there are two abrupt changes in the value of α. The resulting data is shown in
Figure 1.a, where the vertical lines indicate where the parameter α changes.

In this example, the embedding parameters are τ = 1 and m = 2. We used
as prediction parameters ∆n = 1 and ε = 0.3 rmin. The template was taken as
the first 1000 samples of the signal. The obtained prediction error en is shown
in Figure 1.b, and the prediction failure index En in Figure 1.c. A noticeable
increase in the mean value of en can be observed in all the interval where the
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Fig. 1. Henon map. a) Henon-map signal studied, where the parameter is changed in
the interval 2001–3000. b) Prediction error en of the signal in (a). The detection point
n = 2011 has been obtained by the CUSUM analysis. c) Prediction failure En.

parameter differs from the one in the template. The prediction failure index
intermittently goes to one as the change in the dynamics is such that the method
can’t find any neighbors, providing strong evidence of change in the system.

The value of ε accounts for the sensitivity of the algorithm. If the reconstructed
phase space of the template (or attractor in the case of chaotic dynamics) is not
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Fig. 2. Signal x(t) corresponding to Lorenz system, with a change of parameter β in
between samples 8000 and 10000.

too disperse (i.e. the trajectories don’t diverge too quickly) then the radius might
be set to a lower value than rmin and still have neighbors for every state of the
template. Consequently, the algorithm would be more specific and more subtle
changes might be detected.

On the other hand, the bigger the template is, the more number of trajectories
will be reconstructed in the attractor of the system. Therefore, the distance rmin
will be lower, which means that smaller radii could be used in the algorithm,
making it more specific and sensitive.

3.2 Lorenz System

The Lorenz system is a well know continuos system given by three ordinary
differential equations, originally developed as a model for convection between
plates. It is given by: x′(t) = σ(y − x)

y′(t) = x(ρ− z)− y
z′(t) = xy − βz

(7)

Its chaotic behavior for some values of its parameters has became a symbol
of chaos theory, and Lorenz system has became one of the most studied ones.

In this example we take as the signal under study the first component x(t) of
the system in (7). Classical parameters σ = 10, ρ = 28, and β = 8/3 have been
considered, with a sampling frequency of 100 samples per time unit. The Runge-
Kutta method was employed. A 2000 samples segment corresponding to β = 1.5
was added in between the signal, from sample 8000 to 10000. The resulting signal
is shown in Figure 2.

The proposed algorithm was then run using ε = rmin, with embedding pa-
rameters τ = 12 and m = 3. The first 3000 samples of the signal have been
selected as the template for the phase space reconstruction.
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Fig. 3. Lorenz system. First component shown in 2 with a change of the parameter
β in between samples 8000 and 10000. a) Prediction error en. The detection point at
n = 8072 is marked out. b) Prediction failure En from the same signal.

In Figure 3 we can observe that the change in the parameter β is clearly
evidenced by both the increase in the mean of the prediction error en and by
the prediction failure En. The detection point was n = 8072. The alternating
increases of en is due to the bad forecasting from those states in the points of the
attractor where the change is more noticeable. These points are also manifested
in the prediction failure, where En = 1. In this example, both en and En provide
a clear evidence of a correct detection of the samples where the change have
occurred.

3.3 Sil’nikov-like Chaos

It is known that many biological systems have a chaotic behavior and pathologic
states are often related to changes in the dynamics of the system. Friedrich and
Uhl [16] showed that the characteristic behavior of EEG signals with petit-mal
epilepsy is related to Sil’nikov type dynamics. Several mathematical models have
this sort of behavior. Here we consider the one proposed in [17], defined as:
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Fig. 4. Sil’nikov-like chaos signal. Vertical lines indicate the interval where parameter
a in equation (8) changes according to equation (9).

x′(t) = y
y′(t) = z
z′(t) = µx− y − εz − ax2 − bx3

(8)

For certain values of the parameters this system exhibits a chaotic behavior.
In particular, for a 6= 0, µ = 0.65, ε = 0.55, and b = 0.65, the dynamical
system in (8) generates the essential behavior of the brain. A chaotic behavior
is obtained in the signal x(t) from (8) when fixed values of the parameter a are
considered (a = 0.008 or a = 0.2217). In order to simulate the dynamics of the
brain, we evaluate the signal x(t) with a smooth change in the parameter a in
the sample interval [nc − r , nc + r], according to:

a(n) =
a1 + a2

2
+
a2 − a1
π

tan−1
(
n− nc
r

)
(9)

where a1 = 0.008 and a2 = 0.2217. Seeking to study a gradual change in the
dynamics, we set the change radius r = 200, centered at the point n = 6000. The
system was solved using a Runge-Kutta method. The studied signal is shown in
Figure 4.

For the analysis, the embedding parameters where chosen to be m = 3 and
τ = 3. The detection algorithm was run with ε = rmin, using as a template the
first 3000 samples of the signal.

The results of this example are shown in Figure 5. Note that the detection
point obtained by the algorithm is n = 6110, which is within the changing in-
terval. The increase in the mean prediction error en is noticeable, as well as the
jump of the prediction failure En from zero to one.
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Fig. 5. a) Prediction error en of the signal in (4), where the detection point has been
marked out in n = 6110. b) Prediction failure En.

4 Conclusion

In this paper, we have proposed a new method for the automatic detection of
slight changes of the parameters in nonlinear dynamics. It has been applied
to deterministic signals of both discrete and continuos systems, and also to a
simulated biological model, showing in all cases its ability to accurately detect
the changes.

Our method is based on a non-parametric nonlinear prediction algorithm. In
order to make it reliable, it is necessary to select a template where the parameters
of the governing system are assumed to remain constant. Then, the phase-space
is reconstructed by time-delay embedding.

It is known that if some parameter change occurs, the dynamics and the
corresponding phase space of the system will change. In this case, the forecast
from the template of the signal will be inaccurate. In this work we propose
two indices in order to measure this: the absolute prediction error (en) and the
binary quantity prediction failure (En). The first one has shown to be a reliable
measure of change in the dynamics and it shows fluctuations that are inherent
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to the proposed method. The addition of CUSUM algorithm for mean change
detection allows to automatically detect the changing point. On the other hand,
En enables us to detect when the change in the system is big enough not to find
neighbors in the reconstructed phase space. In future works we will compare
these two indices studying their robustness. We will also conduct studies in
order to determine optimal values for the parameters ε and ∆n.

We have shown that this nonlinear approach for the detection of parameter
changes is promising. Further studies will be conducted to study the perfor-
mance of the method on real biological signals. Slightly more complex detection
algorithms could provide a robust tool for identification of changes in complex
nonlinear systems.
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