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Abstract. In this work we analyze the integration of multiple Global
Navigation Satellite Systems to get the user position solution. We de-
scribe and analyze the different ways that the problem can arise and
propose an approach to generalize them onto the same formulation. To
solve the resulting problem, we propose two different numerical opti-
mization techniques, the steepest descent method and the Quasi-Newton
method.
We validate and asses the performance of the proposed technique by
means of simulation. Extensive simulations are also employed to analyze
the solution availability and performance that the multi-constellation
integration can offer. The enhancement obtained justifies the use of the
proposed solution method.
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1 Introduction

Global navigation satellite systems (GNSS) are constellations of satellites de-
signed to provide positioning and timing information for users on Earth and
space [1]. There are several systems that are either fully operational today, such
as GPS (USA) and GLONASS (Russia), or in the development stage, as Galileo
(European Union) and Compass (China) [2].

The concept of GNSS receiver is evolving from the old conception of a stand-
alone GNSS system receiver (e.g. GPS receiver or GLONASS receiver) to a
multi-constellation receiver that is able to process signals from multiple GNSS
systems. These receivers provide several advantages on obtaining user position
and time. Firstly, since each GNSS system is independent from the others, this
provides redundancy against the failure of one system. Secondly, there is an
increase in the availability of signals, which is critical to maintain the coverage
in applications where visibility is severely restricted, e.g. in urban environments.
Thirdly, this increase in availability enables an increase in performance against
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the stand-alone solution. The multi-constellation integration, however, presents
several challenges to be overcome.

The operation of a GNSS system is based on the measurement of the time of
arrival (TOA for short) of the signal from the different satellites that form the
system constellation. This TOA is related to the user-to-satellite range by the
velocity of propagation of the electromagnetic wave in the medium.1 Once the
range to at least three satellites is known, the three position coordinates of the
user can be obtained by a technique called trilateration [2]. This assumes that
the receiver was able to measure TOAs in the GNSS time reference system, i.e.
it has a clock that keeps perfect synchronism with the satellites’ atomic clocks.
Since this is not generally true, the measurements are equal to the geometric
range plus a term proportional to this non synchronism (referred as user clock
bias) and are called pseudo-range measurements. To solve the problem, an extra
unknown that takes into account the user clock bias must be incorporated, and
so at least four satellites are necessary to solve it.

The problem takes the aforementioned form only when we use one GNSS
system. Several formulations to obtain a close solution to it are presented in
[3][4]. In case we want to use measurements from multiple constellations we need
to account for the differences in the space-time frame of reference of each system.
Each GNSS system keeps its own time frame, thus providing independence of
operation among them, so the user clock bias is different for each system, and
needs to be incorporated as an extra unknown in the problem. On the other
hand, the spatial frame differences remain the same along time and can be
easily corrected.2 In summary when we incorporate measurements for a system
we add a new unknown into the problem. The exact analytic solution of the
two-constellation GNSS navigation problem is exposed in [5].

In this paper, we focus on the multi-constellation integration problem. In
Sect. 2, we formulate the problem of positioning and timing in this particu-
lar situation. We analyze different possible cases, and propose an approach to
generalize them by the same formulation. We solve this problem by means of nu-
merical optimization techniques, described in Sect. 3. In Sect. 4, we analyze how
the measurement’s uncertainty affect the performance of the solution through
the geometry of the problem, an effect called dilution of precision. In Sect. 5, we
present simulation results. Based on them we analyze the aforementioned facts
of increment in availability and performance that multi-constellation integration
can offer. We also verify the applicability of the proposed numerical optimiza-
tion approach to solve the described problem. Finally, in Sect. 6 conclusions are
drawn.

1 In general it is assumed that this velocity corresponds to the speed of light in vac-
uum, and some corrections (estimated) are made to incorporate ionospheric and
tropospheric delay effects.

2 They depend on the different geodetic frames adopted by each system.
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2 Problem Formulation

If we denote with u the user’s position, and sα
j the position of the j-th satellite,

corresponding to the α GNSS system, the geometric range results

d(u, sα
j ) , ‖u− sα

j ‖ (1)

where ‖ · ‖ is the Euclidian’s norm. The pseudo-range measurements then result

ρj = d(u, sα
j ) + ̺α + νj (2)

where ̺α is the user clock bias in the system α translated into distance and νj is
noise that corrupts the measurement. We assume that the latter is uncorrelated
and identically distributed with zero mean and variance σ2

ρ. In absence of multi-
path we can consider it as additive white gaussian noise (AWGN).

As stated before, when we incorporate measurements from a given system,
we also incorporate an extra unknown to the problem. Therefore, it doesn’t
make sense to incorporate only one measurement for such a system, because
we increase both, the number of equations and the number of unknowns. On
the other hand, if we have four or more measurements from one of the GNSS
systems (e.g. system a) we can solve the positioning problem using only the
measurements of that system, and then solve for the other systems clock bias
unknowns replacing in (2) (e.g. system b).

Based on the previous analysis, we can say that there are three problems
really worth solving: when we have four measurements from the same system
(four unknowns), when we have three and two measurements from two different
systems (five unknowns) and, when we have three pairs of measurements, each
pair from a different system (six unknowns). We want to use a single technique
to solve the problem arising in all three different cases. To do that, we can
eliminate the bias unknowns from the measurements of the form (2) choosing
one measurement of each system involved and taking the difference between it
and the other measurements of the same system. The three different cases are

– Case I: Only one system, four measurements:

ρ12 = d(u, sa
1) − d(u, sa

2) + ν12 (3)

ρ13 = d(u, sa
1) − d(u, sa

3) + ν13 (4)

ρ14 = d(u, sa
1) − d(u, sa

4) + ν14. (5)

– Case II: Two Systems, five measurements (three for one system and two for
the other):

ρ12 = d(u, sa
1) − d(u, sa

2) + ν12 (6)

ρ13 = d(u, sa
1) − d(u, sa

3) + ν13 (7)

ρ45 = d(u, sb
4) − d(u, sb

5) + ν45. (8)
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– Case III: Three Systems, six measurements (two measurements in each sys-
tem):

ρ12 = d(u, sa
1) − d(u, sa

2) + ν12 (9)

ρ34 = d(u, sb
3) − d(u, sb

4) + ν34 (10)

ρ56 = d(u, sc
5) − d(u, sc

6) + ν56 . (11)

Where we have defined

ρij , ρi − ρj (12)

νij , νi − νj . (13)

It can be observed from (3) to (11), that the three cases can be stated in
the same way as the intersection of three hyperboloids. Case I can be solved in
closed form as is presented in [4], but this solution cannot be extended to the
other cases because it is based on the fact that the three hyperboloids share a
common focus. We propose to solve the presented problem by means of numerical
optimization.

Once the vector u is obtained from these equations, the clock bias for each
system can be obtained from any of the equations of the form (2). It is worth
noting that once we have a good estimate of the different biases, and therefore of
their differences, we can think that these differences will not change very much
in time. Then we could put all measurements on the same space-time frame and
the problem reduces to the classical one presented in [3], and can be solved with
at least four satellites in view.

3 Optimization Problem Formulation

From (3) to (11), we define the k-th element of the measurement residual column
vector as

[ǫ(u)]k , d(u, si(k)) − d(u, sj(k)) − ρ∗k (14)

where the system reference superscript was dropped to simplify the notation,
we denoted the subscript of the satellite position vector as i(k) and j(k), and
we redefined the measurement ρ∗k, which incorporates the effect of additive noise
and whose subscript has been renumbered by k. We define the cost function to
be minimized from these measurement residuals as

J(u) = ǫT (u) · C−1
ν · ǫ(u) (15)

where Cν is the covariance matrix of the measurement noises.
The covariance matrix depends on the case. If all measurements of the form

(2) have noise with the same variance, σ2
ρ, this matrix results

C(I)
ν = σ2

ρ ·





2 1 1
1 2 1
1 1 2



 , C(II)
ν = σ2

ρ ·





2 1 0
1 2 0
0 0 2



 , C(III)
ν = σ2

ρ ·





2 0 0
0 2 0
0 0 2



 (16)
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where the superscripts stand for the case I, II or III, respectively. The twos in
the main diagonal appear because each νij in (13) is the difference of two non-
correlated noises. The off-diagonal elements that are equal to one consider the
correlation between measurements that have a common noise.

Although the problem was formulated in the three “minimal measurements
cases”, it can can also be applied when the number of measurements exceeds
the minimum required by each particular case. We only need to expand the
corresponding case in (3) to (11) to add more measurements, and rewrite the
rest of the formulation respectively. We then analyze the advantages that this
extension can bring.

3.1 Gradient Calculation

For the implementation of the various numerical optimization methods we re-
quire the analytical expression of the cost function gradient, whose m-th com-
ponent is

[∇J(u)]m = 2 ǫT (u) · C−1
ν ·

∂ ǫ(u)

∂ [u]m
(17)

[

∂ ǫ(u)

∂ [u]m

]

k

=
∂ d(u, si(k))

∂ [u]m
−

∂ d(u, sj(k))

∂ [u]m

=
[u]m −

[

si(k)

]

m

d(u, si(k))
−

[u]m −
[

sj(k)

]

m

d(u, sj(k))
(18)

where [u]m and
[

sj(k)

]

m
stand for the m-th component of the user’s position

vector, and the m-th component of the j-th satellite position, respectively.

3.2 Steepest Descent Method

The simplest method to solve the optimization problem is the so called steepest
descent method [6],

u(l+1) = u(l) − αl · ∇Jl (19)

∇Jl , ∇J(u(l)) (20)

where u(l) refers to the l-th iteration step of the vector u. The αl parameter is
obtained by means of some inexact search algorithm. Its value must satisfy the
Wolfe conditions [6],

J(u(l) + αl · ∇Jl) ≤ J(u(l)) − c1 · αl · ∇JT
l ∇Jl (21)

∇J(u(l) + αl · ∇Jl)
T ∇Jl ≤ c2 ∇JT

l ∇Jl . (22)

This is the simplest of the analyzed methods (it requires only gradient eval-
uation), but it has a very slow rate of convergence as we will see in Sect. 5.3.
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3.3 Quasi-Newton Optimization

A way to achieve a better rate of convergence is by means of the so called Quasi-
Newton methods. Like the steepest descent method, they requiere only gradient
evaluation of the objective function at each iteration step. By measuring the
changes in gradients, they construct a model of the objective function that pro-
duces superlinear convergence. We implement the Quasi-Newton SR1 method
with a Trust-Region approach. To solve the subproblem, we implement the so
called Dogleg Path [6].

3.4 Initialization

In these iterative schemes we need to provide an initial point, u(0), to start
the optimization process. If the differences in system biases are not very large,
we can solve the original system of equations (2), by the closed form proposed
on [3], obtaining a solution perhaps not so far from the real one, that can be
used to initialize the algorithm. Another way to obtain the initial point could
be projecting the position of one satellite (or some point in the middle of the
positions of available satellites) on Earth’s surface, or take the center of Earth
(i.e. point p0 = (0, 0, 0)).

In the former case, we need to be careful because the closed form solution
provides a dummy solution in addition to the real one, that must be discerned
using additional information (e.g. the user position should be on the Earth’s
surface).

4 Dilution of Precision

To analyze how the measurement errors affect the computed user position we
use the concept of dilution of precision (DOP). Following the derivation made
in [2], if we linearize equations (3) to (11) around the correct solution, we can
write

H ·∆u = ∆ρ (23)

where we define ∆ρ the error in the measurements and ∆u the error in the
solution. Then, the error covariance matrix can be obtained as

C∆u = H♯ · Cν · H♯T
(24)

where

H♯ =
(

HT ·H
)

−1
·HT (25)

is a generalized inverse of the matrix H. Then, the DOP can be obtained from
the elements of the matrix C∆u. The position DOP (PDOP), represents the
amplification factor of the standard deviation of the measurement errors into
the position solution [2], and is given by

PDOP =
√

[C∆u]11 + [C∆u]22 + [C∆u]33. (26)

13th Argentine Symposium on Technology, AST 2012

41 JAIIO - AST 2012 - ISSN 1850-2806 - Page 233



5 Simulation Results

5.1 Simulation Scenario

To analyze the multi-constellation user position solution performance, we pro-
pose a simulation scenario based on the next considerations:

– Nominal system constellations for GPS, GLONASS and GALILEO. In case
of GPS we consider 30 satellites distributed in 6 orbital planes (5 satellites
per plane) with an inclination of 55◦. The ascending nodes are distributed
every 60◦. In case of GLONASS we consider 24 satellites distributed in 3
orbital planes (8 satellites per plane) with an inclination of 64.8◦. The as-
cending nodes are distributed every 120◦. In case of GALILEO we consider
27 satellites distributed in 3 orbital planes (9 satellites per plane) with an in-
clination of 56◦ The ascending nodes are distributed every 120◦. In all three
cases, we consider that satellites have a uniform distribution on their plane
(the mean anomaly). For simplicity, we consider circular orbits. Here, the
coarsest approximation is a uniform distribution of satellites per plane. The
actual GPS constellation has a spacing that has been optimized to minimize
the effects of a single satellite failure on system degradation [7].

– A user position on the Earth surface with a randomly generated longitude
with a uniform distribution between −180◦ and 180◦, and a randomly gener-
ated latitude with a uniform distribution between −75◦ and 75◦, which are
sufficient for almost every Earth application.

– A time of evaluation randomly generated with a uniform distribution within
a week. Time is important because the constellations distribution depends
on it.

– Different elevation masks. These masks determine which satellites are visible
from those that are on sky in a given time and in a given user location. The
elevation mask is an oversimplified way to take into account the effects of
obstacles (e.g. buildings, trees) in the signal path. In a more realistic scenario
the interference on signals would depend on both azimuth and elevation
rather than only on elevation.

– A bias to the measurements of each system randomly generated with a uni-
form distribution between 0 an 1000 meters.

With these considerations we run a set of 10000 simulation trials.

5.2 Measurements Availability

One of the facts to analyze by means of simulation is measurements availability
to solve the problems of positioning and time, in one of the three cases mentioned
in Sect. 2. In Fig. 1 we can see the relative frequency (over the simulation runs)
of the event “measurements are sufficient to solve the problem” (availability),
with different elevation masks. In the sub-figure labeled as case I, we can see the
availability of the positioning solution (also known as position fix) using case I, if
we consider only GPS system, GPS and GALILEO systems or GPS, GLONASS
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Fig. 1. Probability of having sufficient measurements to solve the problem on different
cases and different elevation masks

and GALILEO systems. In each case we solve the problem using only one of
them, but we have one, two or three possibilities. As expected, the availability
increases with the addition of more systems

In the sub-figure labeled as case II, we can see the availability of the position-
ing fix using case II, considering either GPS and GALILEO systems or GPS,
GLONASS and GALILEO systems. In each case, we solve the problem using
two of them, but we have one, or three possibilities (3 choose 2). As in case I,
the availability grows when we incorporate a new system. We can also see that
the availability also grows related to case I, particularly with higher restrictive
elevation masks.

On the bottom sub-figure, we compare the availability using the three sys-
tems, if we are able to solve using the different cases aforementioned. We can see
that in general availability grows when we enable multi-constellation solution.
We also see that there are situations where the solution could only be obtained
using one of the cases (the situations where only case I is applicable are negligi-
ble). It is worth mentioning that there are situations where more than one case
is possible.

This GPS-centrist analysis is due to the fact that GPS is the system that
has been fully operational since its creation, while GLONASS has had ups and
downs in coverage and GALILEO is on development stage. So, we take GPS as
the primary system. A similar analysis could be done changing the order.

5.3 Numerical Solutions

To verify the correct operation of the proposed algorithms, we analyze the iter-
ation steps obtained in three different cases, using the steepest descent method
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and the Quasi-Newton method. In Fig. 2, we can see the error in the three coordi-
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Fig. 2. Iteration steps in case I using steepest descent method and Quasi-Newton
method

nates of position through different iteration steps when we consider a simulation
trial where there were 4 GPS satellites available, and we solve using case I. Here,
we haven’t yet incorporated the effect of the measurement noise.

For the steepest descent method we show only around the first quarter of
steps which are representative. We can see that with the second method we
achieve a higher rate of convergence (6 against 120 steps, using the same stop
criteria). In Fig. 3, we can see the error in the three coordinates of position
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Fig. 3. Iteration steps in case II using steepest descent method and Quasi-Newton
method

through different iteration steps when we consider a simulation trial where there
were 3 GPS and 2 GLONASS satellites available, and we solve using case II. The
conclusions are similar to the previous case. In Fig. 4, we can see the error in the
three coordinates of position through different iteration steps when we consider a
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Fig. 4. Iteration steps in case III using steepest descent method and Quasi-Newton
method

simulation trial where there were 2 GPS, 2 GLONASS and 2 GALILEO satellites
available, and we solve using case III. The conclusions are similar to the previous
case.

In the three cases we have obviated the clock biases solutions. These can be
obtained in a simple way once the position is known.

The results obtained on the other simulation trials are similar, and when we
incorporated the effect of the measurement noise, the statistics of the error verify
that provided by the DOP. These results verify the operativity of the proposed
algorithm in the three cases, and are not shown because of space considerations.

5.4 Performance

We have analyzed the increment in availability that the multi-constellation in-
tegration can offer, and a way to solve the positioning problem in the multi-
constellation case. A question that arises is whether it is convenient to incorpo-
rate measurements of a second system when the solution can be obtained using
only one. To answer that, in Fig. 5 we compare the PDOP obtained, in trials
when we could get a position solution using both GPS alone, and GPS plus
GLONASS. In the left sub-figure we consider the trials when just 4 GPS mea-
surements were available. We can see that adding GLONASS measurements in
this case we can considerably improve the performance, reducing the PDOP.

In the right figure, we consider all the trials where both solutions are appli-
cable. We can see that the PDOP also increases, as logical.

In both cases, the PDOP reduction is expected because we increase the num-
ber of measurements, but the analysis shows that the effort that the addition
of another system requires (we could solve the problem using only GPS), re-
sults in a considerable performance enhancement. Also, in Fig. 6 we compare
the PDOP obtained, in trials when we could get a position solution using both
GPS plus GLONASS and GPS plus GLONASS plus GALILEO. In the left sub-
figure we consider the trials when just 3 GPS and 2 GLONASS measurements,
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Fig. 5. PDOP enhancement by incorporation of GLONASS system
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Fig. 6. PDOP enhancement by incorporation of GALILEO system

or viceversa, were available, while in the right one we consider all the trials
aforementioned. We can see that the improvement is more appreciable in the
former.

6 Conclusions

In this work, we analyzed the problem of solving for user position using multiple
GNSS systems. We discriminate three possible cases that could arise: when there
are at least 4 measurement from the same GNSS system; when there are at least
three measurement from one given GNSS system and at least two measurements
from another given GNSS system; and when there are at least two measurements
from each of three GNSS systems.

We proposed an approach to integrate the three cases onto the same formula-
tion. In this way, we make this formulation independent of each particular case.
We used two numerical optimization techniques to solve this problem. It is worth
mentioning that although the problem was formulated in the three “minimal
measurements cases”, it can also be applied when the number of measurements
exceeds the minimum required by each particular case.
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By means of simulation we validated the applicability of the proposed tech-
niques. As expected, we obtained a faster rate of convergence when using the
Quasi-Newton implementation. Based on simulation results, we also analyzed
the availability of user position and the enhancement of performance that can
be obtained if multiple GNSS system are integrated.

Issues as the existence and uniqueness of the solution in the multi-constellation
case is a matter of discussion [5] and needs to be analyzed in more detail. The fea-
sibility of implementing the proposed algorithms into a real-time GNSS receiver
must also be analyzed.
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