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Abstract. We explore systems with a large number of fermionic degrees of 
freedom subject to non-local interactions. We study both vector and matrix-
like models with quartic interactions. The exact thermal partition function is 
expressed in terms of an ordinary bosonic integral, which has an eigenvalue 
repulsion term in the matrix case. We calculate real time correlations at 
finite temperature and analyze the thermal phase structure. When possible, 
calculations are performed in both the original Hilbert space as well as the 
bosonic picture, and the exact map between the two is explained. At large N, 
there is a phase transition to a highly entropic high temperature phase from a 
low temperature low entropy phase. Thermal two-point functions decay in time 
in the high temperature phase.
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1. Introduction

In this paper we are interested in the physics of a large number of non-locally interact-
ing fermionic degrees of freedom. We will study quantum mechanical fermions with a 
 vector-like index structure as well as a matrix-like index structure. Part of the motiv-
ation comes from recent investigation of similar systems [1–8] which may play a use-
ful role in understanding certain problems in black hole physics. Another motiv ation 
comes from recent investigations on the emergence of bosonic matrix models from 
discrete systems [9–13]. Moreover, we are interested in how the original fermionic 
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degrees of freedom and Hilbert space might be encoded (if at all) in those of the 
bosonic matrix3. Our goal is to study tractable systems with rich interactions. Unlike 
the purely fermionic models of [2], our models do not have any quenched disorder (see 
also [14–17]). Instead, their complexity stems from the matrix-like interactions. Given 
a matrix structure, we might hope, eventually, to relate our systems to some gravita-
tional description for a new class of models.

Here, we take some small steps in this direction by carefully analyzing and solving 
such systems with quartic interactions. Our approach is to express the systems in terms 
of auxiliary bosonic variables allowing us to use standard large N techniques. When 
possible, we carry forward the analysis in both the fermionic Hilbert space picture as 
well as the bosonic path integral picture and map physical questions from one picture 
to another. The bosonic systems exhibit a (0  +  1)-dimensional emergent gauge field 
and the corresponding (broken) gauge symmetry is crucial in our ability to solve the 
systems. Part of our treatment is in some regard a (0  +  1)-dimensional analogue of the 
analysis in [18, 19]. Fermionic correlation functions are related to the calculation of 
certain Wilson line operators of the gauge field. At the end, for both matrix and vector 
models, we are able to express the exact finite N thermal partition function as an ordi-
nary integral. In the matrix case, this integral is a matrix-like integral with a modified 
Vandermonde term that consists of the sinh or sin of the dierence in eigenvalues 
rather than the dierence eigenvalues themselves. Such eigenvalue integrals appear in 
the study of unitary random matrix models as well as Chern–Simons theories. At large 
N the systems exhibit a non-trivial phase structure which is naturally characterized, in 
the matrix case, by the connectivity of the eigenvalue distribution, somewhat similar 
to the situation encountered in [12]. We note that ordinary fermionic matrix integrals 
was considered in [20–22].

The structure of the paper goes as follows: we begin by analyzing the vector model 
in the early sections. We show how the fermionic thermal partition function, initially 
expressed as a path integral over Grassmann valued functions of Euclidean time, can 
be expressed in terms of an ordinary bosonic integral over a single real variable. We 
analyze both the thermal phase structure and fermionic correlation functions. The 
latter are expressed in terms of the expectation values of non-local in time variables, 
resembling Wilson line operators of an emergent gauge field. We show, at large N, 
a transition from a low entropy phase to one with entropy extensive in N. These 
results are generalized to the matrix case in the latter sections, where the structure is 
significantly more intricate. The thermal partition function now reduces to a matrix 
integral, which as mentioned, contains a modified Vandermonde interaction among 
the eigenvalues. We end discussing the thermal phase structure and thermal correla-
tion functions of the matrix model at large N. At large N, we find that the real time 
two-point function decays significantly faster in the matrix case than the vector case. 
In appendices A and B we discuss certain generalizations of the models studied in the 
main body.

3 In a very broad sense, this perhaps is somewhat analogous to how the ‘deconfined gluons’ of N = 4 super Yang-

Mills at large N are encoded in the bulk gravitational/string degrees of freedom propagating in AdS × S5
5.
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2. Fermionic vector model

In this section we consider N complex Grassmann degrees of freedom { ¯ }ψ ψ,I I  interact-
ing via a quartic interaction. The index = …I N1, 2, ,  is a U(N) index, under which the 

ψI transform in the fundamental and the ψ̄I in the anti-fundamental representation.
The thermal partition function of our model is given by:

∮[ ] ( ) ¯ ( )
¯ ( ) ( ) ( ¯ ( ) ( ))⎜ ⎟

⎛
⎝

⎞
⎠∫β ψ τ ψ τ=

τ ψ τ ψ τ γ ψ τ ψ τ− −
N D DZ e .I I N

d ˙ 1
4

I I I I 2

 (2.1)

We have a periodic Euclidean time coordinate τ τ β∼ + , such that our integration 

 variables obey ( ) ( )ψ τ β ψ τ+ = −I I . The fermion variables are dimensionless and the 

parameter γ is a positive number with units of τ. (In appendix B we carry over our 
results for the vector model to the case with negative γ.) Using a Hubbard–Stratanovich 
transformation the Euclidean action can be written as

∮[ ( ) ¯ ( ) ( )] ( ¯ ( ) ( ) ( ) ¯ ( ) ( ) ( ) )ψ τ ψ τ λ τ τ ψ τ ψ τ λ τ ψ τ ψ τ γλ τ= + +S N, , d ˙ ,E
I I I I I I 2

 (2.2)

with ( )λ τ  a periodic function of τ with units τ−1. The only dimensionless quantity, other 
than N, is /γ β. It grows with increasing temperature. We set β = 1 unless otherwise 
stated.

2.1. Exact evaluation of path integral

In this subsection we evaluate the fermionic path integral exactly. Going back to (2.2), 
evaluation of the fermionic path integral yields:

∮( ) [ ( )] ( )∫ λ τ λ τ= ∂ +τ
γ τλ τ−N DZ det e .N N d 2

 (2.3)

The functional determinant has a local invariance [11]:
→ ( ) ( ) → ( )/ ( )τ τ λ τ λ τ τ′f f, . (2.4)

This can be viewed as a time-reparameterization of an einbein ( )λ τ , and it is an exact 
symmetry of a system of non-interacting fermions. Due to the above invariance, the 
functional determinant will only depend on the Matsubara zero-mode of ( )λ τ , namely 

∮ ( )λ τλ τ≡ d0 . Let us see this perturbatively. Working in Fourier space, and taking into 

account that Fermions are anti-periodic along the thermal circle, we are interested in 
the object

[ ( )] [( ) ˜ ]λ τ λ∂ + = +τ
−Glog det tr log ,n m n m

1
, , (2.5)

where the Green function Gn,m contains the diagonal component of the λn m, :

( / )π λ
δ=

+ +
G

n

1

2 i 1 2
.n m n m,

0
, (2.6)

and λ̃ has Toeplitz form:

https://doi.org/10.1088/1742-5468/aa668f
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{λ̃ λ= ≠
=

− n m

n m

,

0
.n m

n m
, (2.7)

We can expand the logarithm on the right hand side of (2.5) in a matrix Taylor 
expansion:

[ ( )] ( ) ( ˜)
Z
∑λ τ λ∂ + = +

−
⋅τ

−

∈

+

+

G
n

Glog det tr log
1

tr .
n

n
n1

1

 (2.8)

The zeroth order piece, using the standard Euler infinite product formula, can be 
 written as4

[ ( / ) ]∑ π λ
λ

= + + =−G ntr log log 2 i 1 2 log cosh
2

.
n

1
0

0
 (2.9)

The first non-trivial contribution in λ̃ to (2.8) is quadratic and involves

( ( / ) ) ( ( / ) )Z
∑ π λ π λ+ + − + +

= ∀ ≠
∈ n n m

m
1

2 i 1 2

1

2 i 1 2
0, 0.

n 0 0
 (2.10)

The vanishing of the above expression implies that no derivatives of ( )λ τ  are generated 
to leading order. It is not hard to check that this behavior continues to higher orders. 
Thus, the path integral (2.3) in a thermal frequency basis becomes

Z
ZN ∫ ∏ λ

λ
= ∑γ λ λ

∈

− ∈ −Z d cosh
2

e .
n

n
N N0

n n n
 (2.11)

Performing the integration over the non-zero modes, we arrive at:

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ ∫∫ λ

λ
λ

=
γλ

γλ
−

−Z
2

d e
d cosh

2
e ,

N

N

N N

0

0
0

0
2

0
2

 (2.12)

where we have fixed the normalization constant in (2.11) by demanding that in the 
infinite temperature limit we get the Hilbert space dimension Z  =  2N. We see that the 
partition function can be reduced to a simple integral over λ0 (the unique quantity 
invariant under (2.4) that can be constructed out of ( )λ τ ). The integral over λ0 can be 
explicitly done. Reinstating β, we find:

[ ] ( ) /( )∑β = β γ

=

−Z C e ,
n

N

n
N N n N

0

2 162

 (2.13)

where Cn
N are the binomial coecients. From [ ]βZ  we can read o the spectrum and 

degeneracies:

( )
γ

= −
−

=E
N n

N
d C

2

16
, .n n n

N
2

 (2.14)

Note that the spectrum is symmetric under → ( )−n N n .

4 The infinite constant is absorbed in the normalization factor N  in (2.3).

https://doi.org/10.1088/1742-5468/aa668f
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2.2. Hilbert space picture

Can we understand the above result from the point of view of the Hilbert space? 
Upon quantizing the system, we impose anti-commutation relations { ¯ }ψ ψ δ=,I J IJ. If 
we define an empty state ⟩|0  as annihilated by all the operators ψI, then the full set 

of states is given by acting with any amount of ψ̄I on ⟩|0 . This gives 2N states. The 
Hamiltonian of the system is given by:

ˆ ( ¯ ) ¯
γ
ψ ψ

γ
ψ ψ

γ
= − + −H

N

N1

4

1

4 16
,I I I I2

 (2.15)

where we have fixed the normal ordering constants such that the spectrum matches 
that of (2.14). Our model is reminiscent of the large N approximation to the single site 
Hubbard model considered in [23]. The spectrum is non-positive for γ> 0. The dou-

bly degenerate ground state has energy /( )γ= −E N 16g . Since the operator ˆ ( ¯ )ψ ψ=N I I  
commutes with the Hamiltonian, we can organize the spectrum in terms of eigen-

states of the N̂  operator, which counts the number of ψ̄I hitting ⟩|0 . For example 
ˆ ¯ ¯ ⟩ ¯ ¯ ⟩ψ ψ ψ ψ| = |N 0 2 01 2 1 2 . Thus, states with n ψ̄’s acting on ⟩|0  have an energy En given in 

(2.14) and a degeneracy given by the binomial coecients =d Cn n
N. As expected, if we 

sum over all the degeneracies with find: ∑ =C 2n n
N N. At large N the spectrum peaks 

sharply about n  =  N/2, with // π∼ + Nd 2 2N
N

2
1 , consisting of states with EN/2  =  0.

2.3. Thermodynamic properties

From the thermal partition function we can study various thermodynamic properties. 
At very low temperatures the entropy is ( )O 1  while the energy goes as ( )O N , and the 
free energy = − = −F T Z E TSlog  is dominated by the energy piece. As we increase 
the temperature, the energy and entropy contributions begin to compete since the 
number of states begins to grow exponentially in N. More precisely, at large N the 

degeneracies behave as /
( ) /( )≈ − −d C en N

N N n N
2

2 22
. When = ≈ βd e en

S En n, which at large 

N gives β γ≈ 8 , we expect a transition. Above this temperature, the entropy become 
( )O N  and dominates over the energy. The transition becomes increasingly sharp as we 

increase N. We show a numerical example in figure 1. Note that in the high temper-
ature phase, the entropy of the system is extensive in the number of degrees of freedom.

3. Correlation functions of the vector model

In this section we discuss the correlation functions of the model in both real and 
Euclidean time. We do this both in the path integral picture and the corresponding 
Hilbert space picture.

3.1. Fermionic Hilbert space picture

To compute the thermal correlator in the Fermionic Fock space picture, recall that we 
can organize the Hilbert space in terms of number eigenstates:

https://doi.org/10.1088/1742-5468/aa668f
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⟩ ¯ ¯ ⟩ ⟨ ⟩  ψ ψ δ δ| = … | | =′ ′I I I I In m n, 0 , , , .n
I I

m n, ,
n1

 (3.1)

The Ii are all dierent and { }≡ …I I I I, , ,n n1 2  denotes the particular (ordered) collection 
of creation operators, with = …n N0, 1, , . The energy and degeneracy of ⟩|n  states are 
given in (2.14).

The real time two-point function in the thermal ensemble is explicitly given by:

⟨ ( ) ¯ ( )⟩
[ ]

( )∑ψ ψ
δ
β

=β
β

=

−
− − − −+t

Z
C0 e e .A B

AB

n

N

n
N E t E E

0

1
1 in n n1 (3.2)

The (N  −  1) in −Cn
N 1 comes from the reduction in the number of states in ⟩| In, n  when hit 

with the operator ψ̄B. We note that the Green function (3.2) satisfies ⟨ ( ) ¯ ( )⟩ /ψ ψ =β0 0 1 2A B .
At low temperatures, the two-point function oscillates with a frequency given by 

the dierence in energy of the two lowest lying states. At high temperatures, the domi-
nant contribution to (3.2) comes from the most entropic configurations, which have 

/≈n N 2. Moreover, noting that:

γ
− =

− −
+E E

N n

N

2 1

4
,n n1 (3.3)

we expect to see recurrent patterns in the two-point function for time separations of the 
order γ∼t N . In figure 2 we display a plot of ( )βG t  exhibiting this behavior.

3.2. Path integral expression

The generating function for Euclidean fermion correlation functions is given by:

∮[ ¯ ( ) ( )] ( ) ¯ ( ) ( ) [ ¯ ] ( ¯ ¯ )∫ξ τ ξ τ ψ τ ψ τ λ τ= ψ ψ λ τ ξ ψ ψ ξ− − +N D D DZ , e e .A A
I I S , , dE

I I
A

A A
A (3.4)

Integrating out the fermions we get

∮ ∮[ ¯ ( ) ( )] ( ) [ ( )] ( ) ¯ ( )( ( )) ( )∫ξ τ ξ τ λ τ λ τ= ∂ +τ
γ τλ τ τξ τ λ τ ξ τ− ∂ +τ −

N DZ , det e e .A A
N N d d A A

2 1

 (3.5)
Consequently, the exact Euclidean time two-point function is given by:

Figure 1. (a) Energy ⟨ ⟩ [ ]β= −∂β βE Zlog  as a function of β (left). (b) Entropy 
⟨ ⟩ ( ) [ ]β β= − ∂β βS Z1 log  as a function of β. We have taken N  =  500 and γ = 1. 
Notice the transition occurring near β γ= 8 .

https://doi.org/10.1088/1742-5468/aa668f
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∮
( ˜) ⟨ ( ˜) ¯ ( )⟩

[ ]
( ) [ ( )] ( ( ˜))( )

˜∫

τ ψ τ ψ

β
λ τ λ τ λ τ δ

≡

= ∂ + ∂ +

β β

τ
γ τλ τ

τ
− −N

D
Z

G 0

det e .

AB A B

N N ABd 1
2 

(3.6)

The dierential operator:

( ) ( ( ) ( ) ( ))  τ τ δ τ τ δ τ τ λ τ= − ∂ + −′ ′ ′ ′τ
−

′G , 1 (3.7)

obeys the following equation:

˜ ( ˜)( ( ˜)) ( ˜ ) ( )˜∫ τ δ τ τ λ τ τ τ δ τ τ− ∂ + = −′ ′τ Gd , . (3.8)

For τ τ β< <′0 , , we find:

( )
 

( )

( )

⎧
⎨
⎪

⎩⎪

∫

∫
τ τ

τ τ

τ τ
=

>

<
′

′

′

λ

λ

−
+

−
−

′

′

τ

τ

τ

τG
c

c

,
e , for

e , for .

u u

u u

d

d
 (3.9)

The jump in ( )τ τ′G ,  at τ τ= ′ imposes [ ( ) ( )]→ τ τ τ τ+ − − =′ ′ ′ ′ε εG Gεlim , , 10 , which 
implies − =+ −c c 1. At this point, we must fix the remaining constant. This follows from 
the fermionic nature of the correlator under a shift in β, i.e. ( ) ( )τ β τ τ τ+ = −G G, ,1 2 1 2 . We 
thus have:

= + τλ τ
+

−
−

c 1 e .d
1( )∮ ( )

 (3.10)

Notice that ( )τ τ′G ,  is now only invariant under the transformations (2.4) that leave the 
end points unchanged. Recalling the interpretation of ( )λ τ  as an einbein, we can view 

( )τ τ′G ,  as a gravitational Wilson line.
Since ( )τ τ′G ,  can be expressed as the exponential of a local integral of ( )λ τ , we 

are now in a position to evaluate the path integral. Upon evaluation of the functional 
determinant, a cancellation occurs between c+ and one of the powers of the cosh in 
(2.12), and we can express the path integral as:

Figure 2. Plot of ( )βG t  in the high temperature regime for /γ β = .5, and N  =  100. 
The orange curve is the imaginary part, and the blue curve is the real part. 
Recurrences occur for π γ∼ ≈t N4 623.

https://doi.org/10.1088/1742-5468/aa668f


Solvable quantum Grassmann matrices

9https://doi.org/10.1088/1742-5468/aa668f

J. S
tat. M

ech. (2017) 043102

∮( ˜)
[ ]

( ) [ ( )( )/ ( ) ] ( )
˜

∫ ∑ ∫τ
δ
β

λ τ=β
τ λ τ γλ τ τ λ τ

=

−
− − − −

τ

N D
Z

CG e e .AB
AB

n

N

n
N N n N

0

1
1 d 2 2 d2

0 (3.11)

Performing the Gaussian integrals pointwise, and reinstating β we find for τ̃ β< <0 :

⟨ ( ˜) ¯ ( )⟩
[ ]

˜( )∑ψ τ ψ
δ
β

=β
β τ

=

−
− − − −+

Z
C0 e e .A B

AB

n

N

n
N E E E

0

1
1 n n n1 (3.12)

The normalization constant N  has been fixed by imposing ( ) /=βG 0 1 2AB . This agrees 

precisely with (3.2) upon Wick rotating to Euclidean time → τ−t i .
Finally, given (3.5) we can express all fermionic correlators as expectation values of 

various collections of Wilson line operators in the bosonic theory. We might view the 
anti-periodic boundary condition on ( )τ τ′G ,  as being caused by the fermions living at 
the endpoints of the Wilson lines.

3.3. Large N approximation

We would like to see how much of the exact structure previously uncovered is con-
tained in a large N approximation. It is convenient to express the partition function in 
terms of thermal Fourier modes and reinstate β. From (2.9) and (2.11) we get:

[ ]
Z

Z

⎛

⎝
⎜

⎞

⎠
⎟

∫ ∏β λ=
∑βλ βγ λ λ

∈

−
∈

−
NZ d e .

n

n

N log cosh
2

n

n n
0

 (3.13)

The large N saddle point equations for ( )λ τ  are:

βλ
γλ=tanh

2
4 ,0

0 (3.14)

     λ = ≠n0, 0,n (3.15)

amounting to a constant solution for ( )λ τ . For low temperature one finds three saddles, 
which to leading order in the large β limit are: λ = 00  and /λ γ=±1 40 , the one at the 
origin being subdominant. As we increase the temperature and reach β γ= 8  the λ ≠ 00  
saddles coalesce to the origin. Recall that β γ= 8  was the temperature at which the free 
energy exhibited a thermal transition. For large temperatures, β γ< 8 , a single saddle 
is found corresponding to ( )λ τ = 0.

3.3.1. Low temperatures. In the Hilbert space picture, the dominant behavior in the 
→β ∞ limit comes from the vacuum and its first excited state. From (3.2) we get in 

the large N limit

( )
→ →

=
β

β γ
∞ ∞

−
tGlim lim

1

2
e ,

N

AB
ti

4 (3.16)

which shows a single oscillatory behavior in time with frequency given by the energy 
dierence of the first excited state with respect to the vacuum. In the large N limit this 
is given by / γ∆ =E 1 4  .

https://doi.org/10.1088/1742-5468/aa668f
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This behavior is recovered, in the path integral description, from the saddles at 
/λ γ=±1 40 . The Fourier space expression for (3.6) is

Z

ZN
⎜ ⎟
⎛
⎝

⎞
⎠∫ ∏

δ
β

λ ω δ λ= +∑
β

βλ
βγ λ λ

∈

− −∈ −

Z
G d e i ,AB

p q

AB

n

n
N

p p q p q,
log cosh

2
, ,

1n n n
0

( )
[ ]

  ( ) (3.17)

with ( / )/ω π β= +p2 1 2p  and Z∈p q, . We can expand the Green function as:

( ) (( ˜ ˜ ˜ ) )ω δ λ λ λ λ+ = − + +…− G G G Gi 1 ,p p q p q p q, ,
1

, (3.18)

with G, and λ̃ defined in (2.6)–(2.7). Inserting (3.18) into (3.17), we see that the λn 
integrals ( ≠n 0) suppress each term in (3.18) order by order by higher powers of N. 
To leading order in N we therefore keep the 1 in (3.18). In the small temperature limit 

we transform back to τ replacing → ∫β ω∑ dp  and we also have ≈βλ β λ| |
log cosh

2 2
0 0 . 

Evaluating (3.17) at the saddles we get

( )  
→

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∫τ ω

ω ω
=

+
+

−

=

β
β

ωτ

γ γ

τ
γ

∞

−

Glim
1

2
d e

1

i

1

i

1

2
e

AB i
1

4

1

4

4

 

(3.19)

which coincides with (3.16) when Wick rotating to real time →τ ti . Notice that τ> 0 (τ< 0) 
implies that only the /λ γ= +1 40  ( /λ γ= −1 40 ) saddle contributes to the ω contour integral.

3.3.2. High temperatures. Consider first the Hilbert space picture. The high 
temper ature limit of (3.2) is dominated by the /≈n N 2 terms due to the high degen-

eracy of states. At large N we can approximate → ∫∑ xdn
N

2
. Using further that 

( )/
( ) /( )≈− −

− − − − −C C en
N

N
N N n N1

1 2
1 1 2 2 22

 and defining the variable x  =  −(N  −  (2n  +  1))/N we 

get:

( ) ( )
( )

( / ) ( / )

∫δ

δ

≈

=

β

β
γ γ

γ γ β
β

γ γ β

−
−

−

−
−

−
−

t c xG d e e e ,

2
e e .

AB AB
x N
N

Nx
N

tx

AB t
N

t
N

2 2

1
16

i
4

32 8
i

32 8

2 2 2

2 
(3.20)

Again, the normalization constant c was fixed by demanding that ( ) /=βG 0 1 2AB . In the 

second line, we have kept only the leading in N terms in the exponent. Interestingly, 
the correlation functions decay to exponentially small values after a time of order 

( / )γ γ β∼ −t N 8 . This is in spite of the correlator not exhibiting an initial exponential 

decay of the form /β−e t , characteristic of thermal systems. As mentioned below (3.3), 
we expect the approximation to fail and find recurrences when all the oscillating fac-
tors near /≈n N 2 are in phase. This happens for π γ∼t N4 . So, the recurrences in the 
vector model occur much more frequently than for a strongly coupled (chaotic) system 
[28], where they might be separated by exponential in N (or even super-exponential) 
time scales. These features suggest that the system has a flavor of integrability. The 
approximate result (3.20) agrees well with the exact answer (3.2) for times � π γt N4 .
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We now consider the path integral picture. From (3.6) we have

∮

∮

( ˜) ( )

( )

( ) ( )

( ) ( ) ( )

˜

˜

⎜ ⎟
⎛
⎝

⎞
⎠∫

∫ ∫

∫

∫

τ δ λ τ

δ λ τ

=

≈

β

λ
γ τλ τ τ λ τ

λ λ
γ τλ τ τ λ τ

− −
+

−
−
+ + − −

τ

τ

N D

N D

c

a

G e e e

d e e e .

AB AB N N

AB
a

N
a N

log cosh
2 d d

8
1

2
2 d d

0 2

0

2

0
0 2

0

 
(3.21)

The auxiliary parameter, a, is introduced to make the exponent local in τ. The approx-
imation in the second line corresponds to taking the →β 0 limit. In this limit λ � 10  
and we can approximate the /λlog cosh 20  by a quadratic approximation. We can now 
perform the Gaussian integral (3.22) as was done in (3.12), getting

( )
→

( / ) ( / )τ
δ

=β

τ
γ γ β

τβ
γ γ β

∞
−

−
−Glim

2
e e ,

N

AB
AB

N N32 8 32 8

2

 (3.22)

where again we have fixed the normalization such that ( ) /=βG 0 1 2AB  at τ = 0. This 

coincides with (3.20) upon Wick rotating. Note that in the large N approximation used 
above, we have gone being the leading saddle point approximation for which ( )λ τ = 0, 
leading to a constant correlation function in τ. The τ-dependence in (3.22) arises from 
the next to leading (Gaussian) correction about the large N saddle point.

As a final note, we should mention that at β γ= 8 , the correlator exhibits a trans-
ition between the high temperature decaying correlator and the low temperature oscil-
latory one. At large N and β γ= 8 , we must consider the /λlog cosh 20  term beyond the 
quadratic approximation. For instance, keeping only the quartic term we are able to 
approximate the correlator at β γ= 8 . In real time, it takes the form:

( )
( )( )

/⎡

⎣

⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦

⎥
⎥

δ
β β β

≈ +
Γ −

Γ
β γ= t F

t

N

t

N
F

t

N
GRe

2

1

2
,
3

4
;

3

4

3 5

4
,
3

2
;

3

4
.AB

AB

8 0 2

4

4

1

4

1

4

4

4

1 2

0 2

4

4

 

(3.23)

The above agrees well with numerics at large N, as seen in figure 3. It falls to small 

values after / β∼t N1 4 , which is parametrically faster than the high temperature case.

Figure 3. The orange curve is a plot of ( )βG tRe  for β γ= =8 1 and N  =  300. The 
blue curve is our large N approximation (3.23).
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Our large N analysis is generically not sensitive to the presence of recurrences. 
Indeed, for large times (3.22) will receive significant corrections from the terms in 
(3.18) that were discarded. This requires us to go beyond the saddle point approx-
imation. These are responsible in restoring the fine structure of the correlation 
function5.

3.4. Alternative view of the low energy sector

Here, we provide an alternative view to the fermion determinant independence of 
the non-zero modes of ( )λ τ  (2.4) and describe the theory’s eective dynamics at low 
temper ature. This approach will be useful when we analyze the fermionic matrix mod-
els in what follows.

The fermionic functional integral:

∮[ ( )] ( ) ¯( ) ( ¯( ) ( ) ( ) ¯( ) ( ))∫λ τ ψ τ ψ τ∂ + =τ
τ ψ τ ψ τ λ τ ψ τ ψ τ− +D Ddet e d ˙

 (3.24)

enjoys the following non-compact U(1) gauge symmetry:

( ) → ( )    ¯( ) → ¯( )    ( ) → ( ) ( )( ) ( )ψ τ ψ τ ψ τ ψ τ λ τ λ τ φ τ− ∂φ τ φ τ
τ

−e , e , (3.25)

with ( ) ( )φ τ β φ τ+ = . We can write:

( ) ( )λ τ λ φ τ= + ∂τ .0 (3.26)
The determinant, being gauge invariant, will only depend on λ0. A constant piece in 

( )λ τ  cannot be gauged away with a ( )φ τ  periodic in τ.
At low temperatures, we can insert (3.26) into (2.3) and take λ0 to be localized at its 

saddle value /λ γ= 1 40 . We arrive at an eective low temperature theory:

[ ] ( )
→

( ( ))∫ ∫β φ τ= ′
β

β
γ γ τ φ τ

∞

− ∂τN DZlim e e ,
N

N16 d 2

 (3.27)

where ( )φ τ′D  runs over the space of non-constant periodic functions ( )φ τ . Thus we have 
at low energy a degree of freedom ( )φ τ , with an ordinary kinetic term. Following the 
discussion of [26, 27], this can be viewed as a low energy hydrodynamic mode capturing 
the fluctuations of the global U(1) charge.

Fermionic vacuum correlation functions are given by inserting Wilson lines in the 
bosonic path integral. Plugging (3.26) into (3.6) one obtains a correlation function 
involving local insertions:

⟨ ( ) ¯ ( )⟩
( )

( )→

( ) ( ) ( ) ( ( ))

( ( ))

∫
∫

ψ τ ψ τ
δ φ τ

φ τ
=

′

′

∫

∫β

τ τ φ τ φ τ γ τ φ τ

γ τ φ τ∞

− − − − ∂

− ∂

γ
τ

τ

D

D
lim

e

2

e e

e
.A B

AB N

N
2 1

d

d

1
4 2 1 1 2

2

2 (3.28)

which evaluates to:

⟨ ( ) ¯ ( )⟩
→

( )ψ τ ψ τ
δ

=
β

τ τ γ
∞

− − −
lim

2
e .A B

AB N
N2 1

1
42 1

 (3.29)

5 Perhaps there is an analogy between this simple model and general observations about correlation functions in 
black hole backgrounds in the gravity limit [24], where correlation functions also decay to zero at late times.
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Once again, we find agreement with the zero temperature correlator of the fermionic 
theory:

⟨ ( ) ¯ ( )⟩
→

( )ψ ψ
δ

=
β

γ
∞

− − −
t tlim

2
e .A B

AB
t t N

N2 1
i 1

42 1

 (3.30)

4. Fermionic matrix model

Having understood the fermionic vector model in detail, we now turn to the fermi-

onic matrix model consisting of NL complex fermions { ¯ }ψ ψ,iA Ai  with = …i N1, ,  and 
= …A L1, , . The indices i and A transform in the bifundamental of a ( ) ( )×U N U L  sym-

metry. The bosonic variable ( )λ τ  introduced in (2.2) is replaced by an ×N N  Hermitean 
matrix ( )τMij , which transforms in the adjoint of the U(N). We introduce the parameter 

/α≡ L N  for later convenience. The thermal partition function of interest is:

D D
⎜ ⎟
⎛
⎝

⎞
⎠∫β ψ ψ=

τ ψ ψ γ ψ ψ ψ ψ− −
Z e ,iA iA L

d ˙ 1
4

Ai iA Ai iB Bj jA∮[ ] ¯ ¯ ¯ ¯
 (4.1)

where as before the fermions are anti-periodic in Euclidean time. It is convenient to 
consider γ> 0 such that the quartic term has the opposite sign from the vector case 
previously studied. At finite N, our expressions will be analytic functions of γ such 
that we can analytically continue γ over the complex plane. As before, we set β = 1 
unless otherwise specified, in the end everything will depend on the dimensionless 
 combination /γ β.

The corresponding Hilbert space will now consist of ×N L fermionic operators sat-

isfying { ¯ }ψ ψ δ δ=,Ai Bj j ABi , with a ×2N L dimensional Hilbert space. The Hamiltonian 
governing their interactions will have a quartic term in which the indices are traced in a 

matrix-like fashion, i.e. ( ) ¯ ¯γ ψ ψ ψ ψ= − ∑−H L4 A B i j
Ai iB Bj jA1

, , , , plus normal ordering terms 

which will be quadratic. The models are considerably more intricate than their vector 
counterpart and we will analyze them entirely in terms of the corresponding bosonic 
path integrals.

4.1. Eective action

Prior to integrating out the Grassmann matrix ( )ψ τiA  we have the following Euclidean 
action:

∮ ( ¯ ¯ )τ ψ ψ ψ ψ γ= ∂ + +τS M L M Md i .E
Ai A Ai

ij
jA

ij ji
i

 (4.2)

We wish to understand the eective action of ( )τMij  obtained upon integrating out the 

( )ψ τiA . The partition function becomes:

∮( ) [ ( )]∫ τ τ= ∂ +τ
γ τ−N DZ M Mdet i e ,ij

L
ij

L Mtr d 2

 (4.3)

where N  is a normalization constant which we will fix shortly.
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Note that both the measure over ( )τMij  and the functional determinant are invari-
ant under the gauge symmetry:

( ) → ( ) ( ) ( ) ( ) ( )† †τ τ τ τ τ τ− ∂τM U M U U Ui , (4.4)

where ( )τUij  is a τ-dependent unitary matrix. The above gauge symmetry implies that 
the determinant is a function of the Polyakov loop:

∮= τPW tr e ,Mi d (4.5)

where P denotes path ordering. However, the quadratic in Mij part of the action resem-
bles a mass term of the gauge field and is hence not gauge invariant. Fortunately, one 
can take advantage of the gauge symmetry in the following sense. We can introduce a 

Hubbard–Stratanovich field ( )τΛij  such that:

∮ ∮( ) ( ) ( ) ( )∫ τ= Λ γ τ τ τ τ τ− Λ ΛN DZ e e .ij L M
1

4
tr d itr d

2

 (4.6)

Note that the Mij dependent piece of the integrand is simply the generating function 
of correlation functions of Mij, now viewed as a U(N ) gauge field in a theory of free 
fermionic matrices. We can analyze this piece more carefully:

∮ ∮( ) [ ]( ) ( ) ∫ τ≡ ∂ +τ τ τ
τ

τΛ ΛDM Me det i e .M
ij

L
ij

Mitr d i tr d
 (4.7)

Under a change of variables, one can write the Hermitean matrix Mij as:

( ) ( ) ( ) ( )† †τ µ τ τ τ= − ∂τM U U U Ui . (4.8)

Here ( )µ µ µ= …diag , , N1  is a diagonal matrix with τ-independent elements and 
( ) ( )τ ∈U U Nij . We can thus express (4.7) as [25]:

∮

∮ ∮

[ ]( ) ( )

( )† †

D ⎜ ⎟
⎛
⎝

⎞
⎠∫ ∏ ∏µ

µ µ

µ

=
−

×

τ τ τ

τ µ τ

Λ

= <

Λ − Λ

Ue d sin
2

cos
2

e e .

M

i

N

i
i j

i j

L i U U UU

itr d

1

2

itr d itr d i ˙

 

(4.9)

where [ ]DU  is the U(N ) Haar measure. We now make the transformation ˜ †Λ = ΛU U , leav-

ing the Λ-measure invariant. The µi integral acquires chemical potentials ∮˜ ˜ ( )λ τ≡ Λhtri i  

for each eigenvalue6, giving rise to a dressed partition function. All of the U dependence 

appears in the ∮ ( ˜ )†τ ΛU Ud i ˙  piece. This piece is independent of the constant part of 
˜ ( )τΛij , which we can separate out of the ˜ ( )τΛtr

2
 term. Performing the ˜ ( )τΛij  integral, 

we obtain:

∮[ ] ( )†

N D ⎜ ⎟
⎛
⎝

⎞
⎠∫ ∫ ∏ ∏ ∏µ

µ µ µ
=

−γ γµ

= < =

−Z U e d sin
2

cos
2

e .L UU

i

N

i
i j

i j

i

N
L i Ltr ˙

1

2

1

i

2
2

 (4.10)

6 λ̃i are the zero modes of the Cartan components of τΛ̃( ) with hi the Cartan generators of U(N ).
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The term ∮ ( )†
UUtr ˙ 2 is analogous to the ∮ ( )τφ τd ˙ 2 in the vector case. It is decoupled 

from the eigenvalue integral. The normalization constant is given by:

N D ⎜ ⎟
⎛
⎝

⎞
⎠∫ ∫ ∏ ∏ ∏µ

µ µ
=

−γ γµ− −

= < =

−U2 e d sin
2

e .L L UU

i

N

i
i j

i j

i

N
L1 tr ˙

1

2

1

i

2
2∮[ ] ( )†

 (4.11)

From the above expression, we can also obtain the case for γ̃ γ= − > 0 by analytic 
continuation of →µ µii i:

Q ⎜ ⎟
⎛
⎝

⎞
⎠∫ ∏ ∏ ∏µ

µ µ µ
=

−
γµ

= < =

−Z d sinh
2

cosh
2

e ,
i

N

i
i j

i j

i

N
L i L

1

2

1

i
2˜ ˜

 (4.12)

where now the normalization constant becomes:

Q ⎜ ⎟
⎛
⎝

⎞
⎠∫ ∏ ∏ ∏µ

µ µ
=

−
γµ− −

= < =

−2 d sinh
2

e .L

i

N

i
i j

i j

i

N
L1

1

2

1

i
2˜

 (4.13)

In this case, what was a unitary matrix Uij in (4.10) now becomes an element of the 
group generated by anti-Hermitean matrices.

It is of interest to note that the eigenvalue repulsion is due to a modified version of 
the usual Vandermonde, that involves the sin or sinh of the dierence in eigenvalues. 
This is characteristic of gauge theories at finite temperature [25].

It is useful to consider some simple examples, to ensure that the integrals defined 
above indeed give a positive definite spectrum. Consider the case with L  =  1 and N  =  2, 
i.e. ×2 1 fermionic matrices. Here the Hilbert space is = ×4 22 1 dimensional. An explicit 
evaluation of the integral (4.12) gives:

˜[ ] ˜ ˜β = +
β
γ

β
γZ e 3e .

5
8 8 (4.14)

For L  =  2 and N  =  2 we find:

˜[ ] ˜ ˜ ˜ ˜ ˜β = + + + + +
β
γ

β
γ

β
γ

β
γ

β
γZ 3 4e 3e 4e e e .8 4

3
8 2

3
4 (4.15)

The states add up to = ×16 22 2, which is the correct dimension of the Hilbert space. 
For L  =  2 and N  =  3 we find:

˜[ ] ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜β = + + + + + + + + + + +
β
γ

β
γ

β
γ

β
γ

β
γ

β
γ

β
γ

β
γ

β
γ

β
γ

β
γZ 4 6e 6e 10e 8e 8e 8e 4e 4e 2e 2e 2e .8 4

3
8 2

5
8

3
4

7
8

9
8

5
4

11
8

 (4.16)
The states add up to = ×64 23 2, which is the correct dimension of the Hilbert space.

4.1.1. Summary. Thus we see that much of the structure of the vector model is car-
ried forward to the matrix model. Instead of an ordinary integral over a single variable, 
we now have a partition function given by an ordinary matrix integral. Instead of a 
large N saddle point value for a the single variable, we will find large N eigenvalue dis-
tributions. Finally, instead of a single low energy field ( )φ τ , we now have a low energy 
unitary matrix ( )τUij . The spectral information about the Hilbert space of the fermionic 
model is subsumed entirely into the structure of the eigenvalue integral, rather than 
the low energy fluctuations of ( )τUij .
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We now explore the thermal phase structure and correlations of the fermionic 
matrix model.

5. Thermal phase structure and correlations

In this section we discuss the thermal phase structure of the matrix model. We will 
consider the case with γ̃ > 0. To analyze this we read from (4.10) the potential acting 
on the eigenvalues:

( ) ˜⎜ ⎟
⎛
⎝

⎞
⎠∑µ γ µ
µ

= −
=

V L log cosh
2

.i
i

N

i
i

1

2
 (5.1)

As before, we fix units where β = 1 and study the partition function as a function of 
/α≡ L N , which we keep fixed in the large N limit, and γ̃.

5.1. High and low temperature limits

We can develop a schematic idea of how the eigenvalue distribution should look. The 
minima of the potential acting on the eigenvalues depends on the temperature. As 
in the vector model, at low temperatures there are two minima. The eigenvalues will 
accumulate near these two minima, and will repel each other by the Vandermonde 
interactions. There will be many such distributions that are solutions. For instance, all 
N eigenvalues might be located in either minimum or one on the left and all (N  −  1) 
others on the right and so on. Eigenvalues in one minimum can thermally tunnel to the 
other. As we increase the temperature, the double well profile is lost and instead there 
is a single minimum at the origin. Consequently the eigenvalues will be distributed 
around a single minimum at high temperatures.

5.1.1. High temperatures. In the ˜ →γ ∞ limit the Gaussian part of the potential act-
ing on the µi dominates. Thus, the partition function receives a large contribution from 
small values of µi and we can approximate our partition function by expanding the 

/µcosh 2i  in (5.1) to quadratic order. We obtain the following Gaussian matrix integral:

Q ⎜ ⎟
⎛
⎝

⎞
⎠∫ ∏ ∏µ

µ µ
≈

−
α γ µ

< =

− −Z d sinh
2

e ,i
i j

i j

i

N
N2

1

1 8 i
2( ˜ / )

 (5.2)

where Q is defined in (4.13). This matrix integral has appeared in studies of Chern–
Simons theory on an S 3 [29, 30]7. The eigenvalue distribution is connected (single cut) 
and centered around the origin. Its explicit form is given by:

t

t
( )

/
/

ρ
π

=
−−y

y

y

1
tan

e cosh 2

cosh 2
,1

2

 (5.3)

with range t 2 t 2[ ]/ /∈ − − −y 2 cosh e , 2 cosh e1 1 , where t ( ˜ / )α γ≡ −− 2 1 81 .

7 Given the curious connection to Chern–Simons theory and the general relation between matrix models and string 
theories, it might be interesting to investigate any relation between our fermionic matrix models and topological 
strings [31].
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5.1.2. Low temperatures. At low temperatures, i.e. in the ˜ →γ 0 limit, the eigenvalue 
potential develops two minima around / ˜µ γ=±1 4i . Around these, the eigenvalue poten-
tial is approximated by:

( )
˜

˜ ˜

⎛
⎝
⎜

⎞
⎠
⎟∑

µ
αγ µ

γ
α
γ

≈ ± −
=

V

N

1

4 16
.

low i

i

N

i
1

2

 (5.4)

From the result for the eigenvalue distribution (5.3) we can read the width of the 
distribution.

Consider the case where all eigenvalues are located around one of the minima. We 
have:

˜
[ ]

˜
/ /

⎛
⎝
⎜

⎞
⎠
⎟µ
γ αγ

± ∈ − =− − g
1

4
2 cosh e , 2 cosh e ,

1

2
.g g1 2 1 2

 (5.5)

In the ˜ →γ 0 limit we can approximate // ≈ +− gcosh e log 2 2g1 2 . Note that for 
/( ˜ )α γ> −2 1 8 log 2 , the eigenvalue distribution has compact support away from µ = 0. 

For /( ˜ )α γ< −2 1 8 log 2  we cannot have an eigenvalue distribution with compact sup-
port away from the origin. More generally however, due to the repulsion of eigenvalues 
the lowest energy configuration will favor the distribution of eigenvalues evenly among 
the two minima. Whether the eigenvalue distributions are disconnected will depend 
on α. A small α broadens the potential, enhances the eect of repulsion and connects 
the two distributions. For parametrically large α the eigenvalues peak sharply about 

/ ˜µ γ=±1 4 .
In summary, the global phase structure goes as follows. At large enough temper-

atures there is a single cut eigenvalue distribution located near the origin. At low 
temper atures, the eigenvalue distribution senses two minima in the eigenvalue poten-
tial, and may be connected (for large α) or disconnected (for small α). It is interesting 
to note the similarity of our phase structure to the one studied recently in [12]. We will 
present a detailed analysis of the phase structure in future work.

5.2. Matrix correlation functions

Finally, we would like to briefly discuss the correlation functions of ( )ψ τiA . 
Following the discussion for the vector case, we must invert the dierential operator 

( ) ( ( ) ( ) ( ))G τ τ δ τ τ δ τ τ τ= − ∂ + −′ ′ ′τ
− M,ij ij

1 . Using a parallel argument to the non-matrix 

case, we find:

I

I
G

P P

P P P

⎧

⎨
⎪⎪

⎩
⎪
⎪

∫

∫
τ τ

τ τ

τ τ
=

+ >

− + <

′
′

′

τ

τ

−
×

−
−

− −
×

−
−

′

′

τ

τ

τ

τ
,

e e for ,

e e e for .

ij

M
N N

M

M M
N N

M

d
1

d
1

( )
( )

∮

∮ ∮
( )

   

  (5.6)

We see that the inverse operator is naturally expressed in terms of Wilson lines. Note 

that ( ) ( )τ β τ τ τ+ = −′ ′G G, ,ij ij . Consequently, at the endpoints of the Wilson lines we 
have fermionic matrices, rather than vectors. Going to the gauge (4.8), we can write 
for τ τ> ′:
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( )∮ ( ) ( )
( )

†IP P
⎛
⎝
⎜

⎞
⎠
⎟∫ τ τ+ =

+
′τ

τ τ µ

µ
−

×
−

− − −

−′

′
τ

τ

U Ue e diag
e

1 e
.

M
N N

M
ij jk

d
1

j

j
 (5.7)

At large N we calculate:

⟨ ( ) ¯ ( )⟩ ( ) ( )†ψ τ ψ τ τ τ=
+

′ ′β

δτ µ

µ

−

−U U
e

1 e
iA Aj

ij jk

j

j
 (5.8)

with ( )δτ τ τ≡ − ′ . Explicitly, we must calculate two pieces. One comes from the Uij 
sector:

⟨ ( ) ( )⟩
[ ] ( ) ( )

[ ]

∮

∮
†

˜ ( ) †

˜ ( )

†

†

∫

∫
τ τ

τ τ
≡′

′γ

γ

D

D
U U

U U U

U

e

e
.ij jk U

L UU
ij jk

L UU

tr ˙

tr ˙

2

2 (5.9)

The above piece is analogous to the contribution coming from the quadratic ( )φ τ  action, 
as in (3.28). At large γ̃L , The dominant part of the dynamics comes from the eigenvalue 
piece, which in the large N limit, we can express as an eigenvalue density integral:

( ) ( )∫δτ ρ≡
+

δτ−

−G y yd
e

1 e
.

y

y (5.10)

For high temperatures, the above integral can be computed numerically using the single 
cut eigenvalue distribution (5.3). For Lorentzian times we take →δτ δi t. In figure 4 we 
show an example ( )δG t . We can give an analytic approximation of ( )δτG  at high enough 
temperatures, or equivalently γ̃ large. There, the eigenvalue distribution is close to 

Wigner’s semi-circle law, so we can approximate (5.10) by using t t( ) ( )ρ π≈ −−y y2 41 2. 

Recalling that t ( ˜ / )α γ= −− 2 1 81  implies that t is a small number at high temperatures. 

Moreover, the range of y is t( )O  and thus to leading order in small t we find:

t

t
t ,

( )
( ) ( ) δτ

δτ

δτ
= +OG

i 2

2

1
 (5.11)

where In(z) is the modified Bessel function of the first kind. This function agrees well 

with the numerical result. For ( ˜ / )δ α γ −�t 1 8 , we find it decays as ( ) /δ δ∼ −G t t 3 2. 

Figure 4. Plot of ( )δ| |G t  for g  =  0.1.
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This is a significantly faster decay than the vector model at high temperatures, which 

only experiences a sharp decay after times of order ( / )δ γ γ∼ −t N4 2 1 8 . A similar 

calcul ation will hold for the low temperature (sub-dominant) saddle where all eigen-

values are gathered around a single minimum and αγ= 1 2t /( ˜). Higher point functions 
will be given by computing expectation values of products of Wilson lines. We hope to 
analyze the matrix correlators at the critical point ˜β γ= 8  in future work.
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Appendix A. More general potentials

In this appendix, we express the partition function of a vector theory with general 

potential ( ¯ )ψ ψV I I  as a simple integral. One begins by introducing a δ-functional:

( ( ) ¯ ( ) ( )) ( ) ( )( ( ) ¯ ( ) ( ))∫ ∫δ τ ψ τ ψ τ λ τΛ − = τλ τ τ ψ τ ψ τΛ −D e .I I i d I I

 (A.1)

Consequently, we can express the partition function of the fermionic theory as:

( ) ( ) ( ( )) ( ( )) ( ) ( )∫ ∫ ∫τ λ τ λ τ= Λ ∂ +τ
τ τ τλ τ τ− Λ + ΛD DZ det i eN Vd i d

 (A.2)

As in the main text, ( ( ))λ τ∂ +τdet i  will only depend on the zero Fourier-mode of ( )λ τ . 
Consequently, upon performing the path integral over the non-zero modes of ( )λ τ , 

the term ( ) ( )∫ τλ τ τΛi d  in the eective action will produce δ-functions for the Λn with 

≠n 0. Hence we will remain with an integral over λ0 and Λ0. We can write the partition 
function:

[ ] ( ) / ( )∫∑β λ λ= β λ βλ β

=

− Λ − ΛNZ C d d e e e .
n

N

n
N N n V

0

0 0
i 2 2 i0 0 0 0 (A.3)

Integrating over λ0 gives us a δ-function ( ( ) / )δ β λΛ + −N n2 20 0 , thus allowing us to 
evaluate the integral in its entirety:

[ ] ( )/( )∑β α= = − −β α

=

−NZ C N ne , 2 2.
n

N

n
N V

n

0

n (A.4)

A general ( )ΛV 0  will be an order N polynomial:

( ) ∑αΛ = Λ
=

V .
i

N

i
i

0

0
0 (A.5)

https://doi.org/10.1088/1742-5468/aa668f


Solvable quantum Grassmann matrices

20https://doi.org/10.1088/1742-5468/aa668f

J. S
tat. M

ech. (2017) 043102

Appendix B. Vector model with γ < 0

In this appendix we collect some results on the vector model with ˜γ γ≡− < 0. The par-
tition function is now simply:

˜[ ]
( )

˜∑β =
β
γ

=

− −
Z C e .

n

N

n
N

N n
N

0

2
16

2

 (B.1)

The bosonic path integral becomes:

∮˜[ ] ( ) ˜ ( )∫β λ τ
βλ

= γ β τλ τ−N DZ cos
2

e ,N N0 d 2

 (B.2)

There is no analogue of the large N low and high temperature phases. The large N 
saddle point equation is:

˜βλ
γλ= −tan

2
4 .0

0 (B.3)

The above equation has many solutions, but the dominant saddle lives at λ = 00 . As 
we lower the temperature, we must include an increasing number of saddles to obtain 
a good approximation.

Correlation functions of the fermions are given in the bosonic picture by expectation 
values of the following non-local operator:

∫λ τ∂ + = +τ
τλ τ τλ τ− − −

−
τ

τ

i e 1 e .1 i d i d
1

1

2

∮( ( )) ( )( ) ( ) (B.4)

The correlation function exhibits the Gaussian decay observed for the γ> 0 model dis-
cussed in the main text, except that it now does so for all temperatures.
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