
Mesenchymal Stem Cells Therapy Improved
the Streptozotocin-Induced Behavioral and Hippocampal
Impairment in Rats

Abstract
Sporadic Alzheimer’s disease (sAD) is the most prevalent neurodegenerative pathology with no effective therapy until date. This
disease promotes hippocampal degeneration, which in turn affects multiple cognitive domains and daily life activities. In this
study, we hypothesized that long-lasting therapy with mesenchymal stem cells (MSC) would have a restorative effect on the
behavioral alterations and cognitive decline typical of sAD, as they have shown neurogenic and immunomodulatory activities. To
test this, we chronically injected intravenous human MSC in a sAD rat model induced by the intracerebroventricular injection of
streptozotocin (STZ). During the last 2 weeks, we performed open field, Barnes maze, and marble burying tests. STZ-treated rats
displayed a poor performance in all behavioral tests. Cell therapy increased exploratory behavior, decreased anxiety, and
improved spatial memory and marble burying behavior, the latter being representative of daily life activities. On the hippocam-
pus, we found that STZ promotes neuronal loss in the Cornus Ammoni (CA1) field and decreased neurogenesis in the dentate
gyrus. Also, STZ induced a reduction in hippocampal volume and presynaptic protein levels and an exacerbated microgliosis,
relevant AD features. The therapy rescued CA1 neurodegeneration but did not reverse the decrease of immature neurons,
suggesting that the therapy effect varied among hippocampal neuronal populations. Importantly, cell therapy ameliorated
microgliosis and restored hippocampal atrophy and some presynaptic protein levels in the sAD model. These findings, by
showing that intravenous injection of humanMSC restores behavioral and hippocampal alterations in experimental sAD, support
the potential use of MSC therapy for the treatment of neurodegenerative diseases.
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Introduction

Alzheimer’s disease (AD) is the most common cause of de-
mentia, accounting for an estimated 60 to 80% of cases [1]. It is
characterized by a progressive loss of memory and cognitive
functions. The predominant cases are sporadic Alzheimer’s
disease (sAD), which is multifactorial and involves several
etiopathogenicmechanisms. Neuroinflammation, head trauma,
impaired brain glucose/energy metabolism, and diabetes
are some of the risk factors for sAD [2]. Anatomical
signs of AD include progressive brain atrophy, particu-
larly in the hippocampus. Specifically, the Stratum
Radiatum (SR) and the pyramidal layer of Cornus
Ammonis 1 (CA1) are hippocampal regions highly sus-
ceptible to AD [3–5]. However, other hippocampal areas
may present alterations, such as the dentate gyrus (DG),
where the granular cells show morphological changes
[6]. Importantly, these degenerative modifications
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correlate with cognitive decline in AD, supporting their
potential as early biomarkers [3].

Novel and effective therapeutic approaches for sAD are
urgently needed, which should be tested pre-clinically in ani-
mal models of the disease. A rodent model that mimics many
aspects of sAD-type neurodegeneration has been generated by
an intracerebroventricular (icv) injection of streptozotocin
(STZ) [7–10]. Several studies have provided evidence that a
single icv-STZ injection in middle-aged rats reduces the cen-
tral metabolism of glucose and concomitantly impairs cogni-
tive function and extensive neuroinflammation involving ac-
tivation of both astrocytes and microglia [11–16].

There is an increasing interest in the therapeutic potential of
mesenchymal stem cells (MSC) in the brain, as they are able
to modulate inflammatory responses [17–19] and migrate to
injury sites [20–22]. In particular, birth-associated tissues rep-
resent a very promising source and are under study as advan-
tageous candidates for cell therapy due to their lower donor
variability, faster doubling time, and ready availability,
avoiding the need of invasive procedures and eliminating oth-
er ethical concerns [23–27].

Even though there have been some works on the effect of
MSC therapy to treat neurodegenerative diseases [28–32],
in vivo studies for sAD are still limited. The goal of the current
study was to evaluate the neuroprotective potential of human
umbilical cord MSC against the deleterious effects caused by
the rat brain exposure to STZ as a sADmodel. To this end, we
assessed the effects of chronic intravenous (iv) injection of
MSC on cognition and behavior in this model. In addition,
since the hippocampus is particularly affected in AD, we fo-
cused our analysis on this brain region. Specifically, we stud-
ied SR volume, mature and immature neurons, glial cells, and
synaptic markers to support the potential of systemic MSC
therapy for the treatment of sAD.

Material and Methods

Animals

For this work, 3-month-old male Sprague-Dawley (SD) rats
weighing 280–330 g (INIBIOLP, School ofMedical Sciences,
University of La Plata, La Plata city, Argentina) were used.
Three animals were housed per cage in a temperature-
controlled room (22–24 °C) on a 12-h light/12-h dark cycle
(lights on 7 am–7 pm) with food and water available ad
libitum.

Isolation of MSC

MSC were isolated from human umbilical cord perivascular
tissue obtained from healthy donors at the Hospital
Universitario Austral (Pilar, Buenos Aires, Argentina) as

previously described [24]. MSC were characterized according
to the International Society for Cellular Therapy guidelines
[33], as previously described [20].

Experimental Design

On experimental day 0, animals were anesthetized with keta-
mine hydrochloride (40mg/kg; ip) plus xylazine (8 mg/kg; im)
and placed in a stereotaxic apparatus. Rats were randomly
divided into three experimental groups, 7 animals each: (A)
SHAM, each rat received a bilateral icv injection (5 μl/ventri-
cle) of artificial cerebrospinal fluid (aCSF) (120 mM NaCl,
3 mM KCl, 1.15 mM CaCl2, 0.8 mM MgCl2, 27 mM
NaHCO3, and 0.33 mM NaH2PO4, pH 7.4). (B) STZ and (C)
STZ +MSC (Fig. 1a). Each rat of groups B and C received a
bilateral icv injection of STZ (Sigma-Aldrich, CAS#18883-66-
4) at a dose of 3 mg/kg. A STZ volume of 5 μl/ventricle was
administered. The stereotaxic coordinates for icv infusion were
measured as 0.92 mm posterior to bregma, 1.5 mm lateral to
sagittal suture, and 3.9 mm beneath the brain surface [34].
Following surgery, a single dose of ampicillin was injected.

For the MSC therapy, animals were injected in a tail vein;
each rat of C group received an iv-saline suspension of 1 ml
containing 1 × 106 MSC on days 24, 42, 60, and 78 (every
18 days). Cell therapy started on day 24 based on our previous
studies showing that at this stage, the STZ rats already display
cognitive deficits.

For the open field (OF) test protocol, rats were individually
placed into the center of the open arena on day 86 and allowed
to explore the apparatus for 5 min. After the 5-min test, rats
were returned to their home cages. Two days later, rats were
submitted to the Barnes maze (BM) protocol for 4 days, which
consisted on the habituation plus 3 days with 2 acquisition
trials (ATs) each. On day 92, 24 h after the last AT (AT6), rats
were submitted to the probe trial (PT). On the following day,
the Marble burying (MB) test was performed. All rats were
euthanized on day 95 by rapid decapitation.

Exploratory and Anxiety Behavior

The OF test [35] consisted of a square box (65 × 65 × 45 cm),
whose floor was divided into 16 equal squares. Rats were
placed in the center of the arena and allowed to explore freely
for 5 min. The behavioral variables were the following:

Crossing: number of grid lines crossed by the rat with all
four paws. A high frequency of this behavior indicates
increased locomotion and exploration and/or a lower lev-
el of anxiety.
Center square entries: frequency of entry to the inner area
by the rat with all four paws into the central square. A
high frequency/duration of this behavior indicates high
exploration and low anxiety [36, 37].
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Grooming: time a rat spent scratching or licking itself.
This behavior has proved to be useful in the behavioral
investigation of anxiety and stress [38].

Spatial Memory Assessment

The modified BM protocol used here was previously docu-
mented [15, 39]. In brief, it consists of an elevated black
acrylic circular platform, 122 cm in diameter, containing 20
holes around the periphery. The escape hole is numbered as
hole 0 for graphical normalized representation purposes, while
the remaining holes are numbered 1 to 10 clockwise, and − 1
to − 9 counterclockwise. A 90-dB white-noise generator and a
white-light 500-W bulb provided the escape stimuli from the
platform. At the beginning of the experiment, rats were habit-
uated to the task. An ATconsists of placing a rat in the starting
chamber, located at the center of the platform for 30 s; the
chamber is then raised, the aversive stimuli (bright light and
high pitch noise) are switched on, and the rat is allowed to
freely explore the maze for 120 s. The purpose of ATs is to
train the rats to find the escape box (hole 0). The PT is similar
to an AT except that the escape box is removed; its purpose is
to assess recent spatial memory retention in 120 s. Behavioral
parameters assessed were as follows:

Spatial learning parameters:

Latency. Time a rat spent since its release from the start
chamber until it enters the escape box (during an AT), or
until the first exploration of the escape hole (during the
PT).
Errors. Number of explorations of holes different from
the escape one. Each exploration of an incorrect hole is
counted as an error, provided that the rat lowers its nose
below the plane of the table surface.

Spatial memory parameters:

Hole exploration frequency. The explorations number for
each hole of the maze, during the PT.
Exploration frequency in goal sector (GS). The sum of
explorations number for the hole 0 divided by the sum of
total explorations number, during the PT.

The seeking behavior for the escape hole was used to cat-
egorize rats’ search strategies per trial based as follows [40]:

Direct-to-goal. Scored when all exploration-involved
holes were within two holes from the goal and fewer than
3 total errors were made.
Serial search. Scored when at least 3 errors were made
and 75% of holes explored were adjacent or within 1 hole
of each other and when animals searched them in order.

Random search. Scored when at least 3 errors were made
and when 50% of holes explored were non-adjacent or
non-localized to a given maze quadrant (4-hole span) or
when animals made more than 2 changes of direction or
traverses across the maze center.

Marble Burying Behavior

MB test is based on the observation that rodents bury either
harmful or harmless objects (e.g., glass marbles) in their bed-
ding [41]. Marble burying is considered as a species-typical
behavior and has been related to hoarding in rats [41]. This test
was carried out 94 days after icv-STZ injection. Individual
subjects were placed in a housing cage (30 × 30 × 17 cm) with
5 cm of fresh hardwood chip bedding. An array of 16 glass
marbles (1.5 cm in diameter, arranged in a 4 × 4 grid) was
evenly spaced over the surface. The number of marbles buried
during a 30-min period was analyzed. In this procedure, a
marble was considered buried if at least 2/3 of the marble were
covered with bedding [42].

Brain Processing and Immunohistochemistry

Brains were rapidly removed and divided into right and left
hemispheres. The left hemispheres were fixed in phosphate-
buffered para-formaldehyde 4% (pH 7.4) overnight at 4 °C.
Afterwards, brains were reserved in cryoprotectant solution
(30% ethylene glycol, 1% polyvinylpyrrolidone, 30% su-
crose, in phosphate buffer 0.1 M, pH 7.4) at − 20 °C until
use for immunohistochemistry. For this aim, brains were cut
coronally in 40-μm-thick sections with a vibratome
(VT1000S; Leica Microsystems). From the right brain hemi-
spheres, the hippocampus was carefully dissected as previous-
ly described [43] and stored at − 80 °C until Western blot
(WB) analysis.

Immunohistochemistry

All immunohistochemistry techniques were performed on
free-floating sections. For each animal, separate sets of sec-
tions were processed using the following antibodies: goat anti-
Doublecortin (DCX) polyclonal antibody (immature neurons
marker; 1:250; Santa Cruz Biotech c-18, Dallas, TX); mouse
anti-NeuN antibody (neuronal marker; 1:850; Millipore
Cat#MAB377); rabbit anti-Iba1 polyclonal antibody
(microglial cells marker, 1:1000; Wako Cat#016-20001);
and rabbit anti-Glial fibrillary acidic protein (GFAP) polyclon-
al antibody (astrocyte marker; 1:1500; DAKO Cat#Z0334).
Briefly, after overnight incubation at 4 °C with the primary
antibody, sections were incubatedwith biotinylated horse anti-
goat antibody (1:300; Vector Laboratories Cat#BA-9500),
goat anti-mouse antibody (1:300; Vector Laboratories
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Cat#BA-9200), or a goat anti-rabbit antibody (1:300; Vector
Laboratories Cat#BA-1000), as appropriate, for 120 min,
rinsed and incubated with avidin-biotin-peroxidase complex
(1:500; Vector Laboratories Cat#PK-6100) for 90 min and
then incubated with 3,3-diamino benzidinetretrahydro-

chloride (DAB) (Vector Laboratories Cat#SK-4600). DAB
revealed sections were counterstained with cresyl violet
(Nissl staining) as described elsewhere [39].

Finally, sections were dehydrated and mounted with
Vectamount (Vector Laboratories) and used for image analysis.

Fig. 1 Experimental design and MSC therapy effect on behavioral
performance in open field test and marble burying test. On ED 0, STZ
(3 mg/kg) or aCSF was stereotaxically injected (icv). On days 24, 42, 60,
and 78, STZ +MSC group received 1 × 106MSC iv. On ED + 86, OF test
was performed. Barnes maze habituation was performed on ED +88;
subsequently, on ED + 89 onward ED + 91, all animals were submitted
to 120 s AT (2× day). PT was performed on ED + 92. On ED + 94, MB
test was performed. Finally, on ED + 25 rats were sacrificed and their
brains were removed for further analysis (a). During the OF, there was a
significant increase in grooming (b), together with a reduction of crossing
(c), and entries to the inner area (d) in the STZ-treated rats. MSC

treatment restored the grooming and crossing to normal values, but not
the entries. In the MB test, it is observed that cell therapy causes a signif-
icant increase in the number of buried balls (e), a parameter previously
affected by STZ. Abbreviation: aCSF, artificial cerebrospinal fluid; AT,
acquisition trial; ED, experimental day; H, habituation; icv, intracerebro-
ventricular; iv, intravenously; MB, marble burying test; OF, open field
test; PT, probe trial. N = 7 per group. All data were represented as mean
± SEM. Comparisons were made between groups. *P < 0.05; **P < 0.01;
***P < 0.001. The undepicted comparisons account for a non-significant
difference between groups
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Image Analysis

Asmentioned earlier, we focused our stereological assessment
on NeuN(+) mature neurons of the CA1, DCX(+) immature
neurons in the DG, and Iba1(+) microglial cells and GFAP(+)
astrocytes cells in the SR. The SR upper limit is the CA1
pyramidal layer, lower limit is Stratum Lacunosum
Moleculare, and lateral limit is the Stratum Lucidum of the
dorsal hippocampus [34]. The total number of cells was esti-
mated using a modified version of the optical dissector meth-
od [6]. Individual estimates of the total cell number (n) were
calculated according to the following formula: n = RQR.1/
ssf.1/asf.1/tsf, where RQR is the sum of counted cells, ssf is
the section sampling fraction, asf is the area sampling fraction,
and tsf is the thickness sampling fraction, as previously de-
scribed [39, 44]. All morphological parameters were assessed
unilaterally in the left hippocampus. The microscopical anal-
ysis was performed with an Olympus BX-51 microscope at-
tached to an Olympus DP70 CCD video camera (Tokyo,
Japan). In each hippocampal block, one out of six serial sec-
tions was selected in order to obtain a set of non-contiguous
serial sections spanning the dorsal hippocampus.

Volume of the Stratum Radiatum

In order to assess the volume of the SR, a stereological ap-
proach on rat brain coronal sections was carried out. Four
NeuN immunoreactive (NeuNir) sections were sampled, with
a separation of 240 μm along the anterior-posterior axis. Our
region of interest was set up as the area delimited by the CA1
pyramidal layer as the upper limit, the Stratum Lacunosum
Moleculare as lower limit and a width of 520 μm as lateral
limit, whose midpoint was the peak point of curvature in the
pyramidal layer.

Immature Neurons Analysis

Doublecortin immunoreactive (DCXir) cell number was
assessed in the DG, which includes the hippocampal
subgranular zone and granular cell layer [34], as previously
described in the “Volume of the Stratum Radiatum” section,
with asf = 1, tssf = 1/6, and tsf = 1. Four DCX-stained sections
per animal were sampled. Estimates were based on counting
DCXir cell bodies as they came into focus.

Mature Neurons Analysis

Mature neurons were detected as NeuNir cells.We determined
NeuN immunoreactive area (IRA) and considered a decrease
within as an overt sign of sAD-mediated neurodegeneration.
For this purpose, 5 sections per animal and 3 fields per section
corresponding to NeuNir neurons in the CA1 pyramidal layer
were digitally segmented using the Image Pro Plus v5.1

software (IPP, Media Cybernetics). For each calculation,
backgroundwas determined bymanually adjusting the system
density window as previously described [45], until only the
NeuNir neurons were selected. For each animal, the sum of
immunoreactive areas was multiplied by the section sampling
number (NeuNir area × 6).

Microglial Cell Analysis

Microglial cells were identified as Iba1 immunoreactive
(Iba1ir) cells in the hippocampal SR. The Iba1ir cell number
was estimated as previously described in the “Volume of the
Stratum Radiatum” section, with asf = 0.387, ssf = 1/6, and
tsf = 1. Five sections per animal and three corresponding SR
fields per section were analyzed. Iba1ir cells were morpholog-
ically classified as types I, II, III, IV, and V based on previ-
ously documented criteria [15, 46]. Types I, II, and III were
categorized as non-reactive glia, whereas types IVand V were
considered reactive. The Iba1ir reactive and non-reactive cell
percentage of each animal group was calculated.

Astroglial Cell Analysis

Morphological assessment of GFAP immunoreactive
(GFAPir) astrocytes was performed in the SR. To estimate
the GFAP IRA occupied by cell bodies and processes,
GFAPir astrocytes were segmented as described in the
“Microglial Cell Analysis” section; for each animal, the sum
of immunoreactive areas was multiplied by the section sam-
pling number (GFAPir area × 6). The total number of cells was
estimated as previously described in the “Volume of the
Stratum Radiatum” section, with asf = 1, ssf = 1/6, and tsf =
1. Five sections per animal and three corresponding SR fields
per section were analyzed. Additionally, to study branching
complexity, GFAPir astrocytes were submitted to the Sholl
analysis [47]. The length of the astrocyte processes and their
branching complexity at every distance from the soma were
averaged, and these output data were used for the statistical
analysis between groups as we have previously described
[15].

Western Blot Analysis

Sample Preparation

In order to obtain protein lysates, right hemi-hippocampi
were homogenized with precooled RIPA buffer (150 mM
NaCl, 1% Triton X-100, 0.5% sodium deoxycolate, 0.1%
sodium dodecyl sulfate (SDS), 50 mM Tris-HCl pH 8,
and appropriate protease inhibitors, pH 7.4). Finally, pro-
tein concentration was measured by Bradford protein as-
say. Bovine serum albumin (BSA, 0.1–1 mg/ml) was
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used as a standard. Samples were aliquoted and stored at
− 80 °C.

Immunoblotting

Equal amounts of protein (50 μg) for every sample were sep-
arated by 10% SDS-PAGE and transferred to nitrocellulose
membranes (Bio-Rad). The membranes were blocked by in-
cubation in 5% non-fat milk in Tris-buffered saline/Tween-20
(TBS-T) for 1 h at room temperature and then incubated with
primary antibodies against synaptotagmin 1 (SYT1) (1:200;
mAb 48 (asv 48), DSHB), synaptotagmin 2 (SYT2) (1:150;
Znp-1, DSHB), synaptophysin (SYP) (1:200; Santa Cruz
Biotechnology, sc-17750), synaptic vesicle protein 2 (SV2)
(1:200; SV2, DSHB), glutamic acid decarboxylases (GAD)
(1:200; Santa Cruz Biotechnology, sc-365180), in their iso-
forms GAD65 and 67, vinculin (1:200; Santa Cruz
Biotechnology, sc-73614), and β-actin (1:1000; Santa Cruz
Biotechnology, sc-47778), overnight at 4 °C. Then, mem-
branes were washed with TBS-T and incubated with the sec-
ondary antibody conjugated with horseradish peroxidase
(1:20000, Jackson ImmunoResearch Laboratories, Inc.,
#115-035-003) for 3 h at room temperature. After being
washed with TBS-T, membrane visualization was performed
with Super Signal West Pico PLUS Chemiluminescent sub-
strate (Thermo Fisher Scientific, #34577) on a Chemidoc
Image Station (Bio-Rad, Hercules, CA, USA). Relative opti-
cal density of protein bands was analyzed using a gel docu-
mentation system. Sample loading for SYP and SYT1 was
normalized to relative density of the Vinculin band. Sample
loading for SYT2, SV2, GAD65, and GAD67was normalized
to relative density of the β-actin band.

Statistical Analysis

For BM latency, errors and search strategies analysis data
from each AT were averaged; these parameters together with
Iba1ir reactive and non-reactive cells were analyzed by two-
way analysis of variance (ANOVA) with repeated measures.
The remaining behavioral and stereological data were ana-
lyzed by one-way ANOVA. Tukey’s multiple comparison
post-hoc tests were used where appropriate. All analyses were
conducted by statistical software, GraphPad Prism 6 (Graph-
Pad Software, San Diego, CA, USA).

Results

MSC Therapy Improved Exploratory, Anxiety,
and Species-Typical Burying Behavior

The OF test is a widely used procedure for examining the
behavioral effects of treatments and anxiety. In the OF test,

STZ injection induced an increase in grooming behavior,
which was reversed by the stem cell treatment (one-way
ANOVA F(2,18) = 5.379; P = 0.0147) (Fig. 1b) and a decrease
in the number of quadrant crossings, also restored by the ther-
apy (one-way ANOVA F(2,18) = 13.05, P = 0.0003) (Fig. 1c).
The STZ treatment led to a decrease in the number of entries to
the inner area; the STZ +MSC group displayed a higher num-
ber of entries than STZ group, but this difference was not
significant (one-way ANOVA F(2,18) = 3.858, P = 0.0403)
(Fig. 1d). In the marble burying test, the STZ group buried
fewer marbles; this species-typical burying behavior was im-
proved by the MSC therapy (one-way ANOVA F(2,18) =
12.72, P = 0.0004) (Fig. 1e).

MSC Therapy Improved Spatial Learning and Memory

In order to evaluate hippocampal-dependent spatial behavior,
we performed the BM test. The groups displayed no statisti-
cally significant difference in learning performance, as
depicted by the ATs learning curves for both errors and laten-
cies (two-way ANOVA group factor F(2,18) = 0.3304, P =
0.7229; F (2 ,18) = 0.7565, P = 0.4837, respectively)
(Fig. 2a, b). Regarding memory evaluated in the PT, the
STZ group made more errors than the SHAM control; inter-
estingly, upon MSC therapy, the subjects made significantly
fewer errors (one-way ANOVA F(2,18) = 4.944, P = 0.0194)
(Fig. 2c). The same tendency was observed for the PT latency,
though no significant differences were found for this parame-
ter (one-way ANOVA F(2,18) = 2.952, P = 0.0779) (Fig. 2d).
We also analyzed the escape strategies of the animals in the
second trial of each experimental day. STZ group inclined
towards a random strategy to escape the maze (Fig. 2e, f);
the therapy promoted a shift of some STZ subjects towards a
serial strategy (two-way ANOVA group factor F(2,18) = 4.167,
P = 0.0326). In order to get a clear rendering of the number of
hole explorations of each animal during the PT, we construct-
ed sunflower plots, from where we observed that the STZ
subjects explored all holes at random to a greater extent.
This behavior was restored by the MSC therapy, since the
exploration was shifted to the goal sector (Fig. 2g). The STZ
treatment caused a decrease in the percentage of exploration
frequency in the GS; the STZ +MSC group displayed a higher
number of this parameter as compared with STZ group, but
this difference was not significant (one-way ANOVA F(2,18) =
4.413, P = 0.0276) (Fig. 2h).

MSC Therapy Restored Hippocampal Volume and CA1
Neuron Count but Did Not Reverse Neurogenesis Fall

The sAD pathological process involves neuronal changes in
the histological structure and volume of the hippocampus.
Thus, we examined the hippocampal neuronal populations
and the SR volume. STZ injection induced a frank decrease
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in the SR volume, which was reversed by the stem cell therapy
(one-way ANOVA F(2,18) = 6.021, P = 0.0100) (Fig. 3a–d).
The same result was observed for NeuN (+) neuron immuno-
reactive area in the CA1 (one-way ANOVA F(2,18) = 6.215,
P = 0.0089) (Fig. 3e–h). The analysis of DCX (+) immature
neurons revealed that the STZ injection decreased
neurogenesis rate dramatically, which was not reversed by
the stem cell therapy (one-way ANOVA F(2,18) = 82.42,
P < 0.0001) (Fig. 3i–l).

MSC Therapy Ameliorated Microgliosis but Not
Astrogliosis of the Hippocampus

In order to evaluate the immunomodulatory effect of MSC
in the brain, we studied the microglial and astroglial cells.
We confirmed that STZ injection produced an overwhelm-
ing inflammatory gliosis. GFAP immunoreactive area as-
sessment showed a vast increase in the STZ group; this
astrogliosis could not be reversed by the MSC therapy
(one-way ANOVA F(2,18) = 30.53, P < 0.0001) (Fig. 4a–
d). In order to figure out whether the cause of this incre-
ment of immunoreactive area was hyperplasia or hypertro-
phy, we estimated GFAP(+) cell number. We did not find

any significant difference in the GFAP(+) astrocytes num-
ber in the experimental groups (Supplementary Fig. S1A.
One-way ANOVA F(2,18) = 1.772, P = 0.1983), suggesting
that the mechanism of astrogliosis was hypertrophy, rather
than hyperplasia.

In addition, we recorded no differences in SR branching
complexity, neither in the mean length of astrocyte processes,
nor in the number of branches emerging from the cell soma in
the Sholl analysis (Supplementary Fig. S1B-D. Two-way
ANOVA group factor F(2,18) = 1.176, P = 0.3311; one-way
ANOVA F(2,18) = 1.365, P = 0.2807; one-way ANOVA
F(2,18) = 0.9792, P = 0.3947, respectively). This result indi-
cates that entire arbors were conserved 3 months after STZ-
icv administration.

By means of Iba1 immunohistochemistry, we recorded an
important rise in the total number of Iba1 cells in STZ and
STZ + MSC groups (Supplementary Fig. S2. One-way
ANOVA F(2,18) = 10.86, P = 0,0008). As we evaluated cell mor-
phology, STZ displayed a significant increase in the percentage
of reactive microglia (activated stage) together with a decrease
of non-reactive microglia (resting stage); these STZ-induced
modifications were ameliorated by MSC therapy (two-way
ANOVA group factor F(2,36) = 59.39, P < 0.0001) (Fig. 4e–h).

Fig. 2 MSC therapy effect on behavioral performance in the Barnes
Maze test. Errors and latency to the escape box in BM ATs (a and b,
respectively) and PT (c and d, respectively). There is an increase in the
number of errors made during PT by the STZ animals and a decrease in
the STZ +MSC group (c), but no differences were observed in learning
errors (a). Regarding latency (b and d), no significant differences were
observed between the groups. Schematic representation of the maze from
above, containing 20 holes around the periphery and the search strategies:
direct, serial, and random (e). STZ group showed a significant use of
random search strategy, i.e., increase in strategies score (f), while
SHAM rats exhibit a preference for direct strategy; the therapy

promoted some STZ subjects to shift towards a serial strategy instead.
The sunflower plot (g) depicted the hole exploration frequency in the PT.
The STZ treatment produced a decrease in the percentage of GS
exploration frequency (h) in the PT, while the STZ +MSC group
displayed a higher number of this parameter as compared with STZ
group, but this difference was not significant. Abbreviation: AT,
acquisition trial; BM, Barnes maze; GS, goal sector; PT, probe trial. All
data were represented as mean ± SEM. N = 7 per group. *P < 0.05. The
undepicted comparisons account for a non-significant difference between
groups
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Synaptic Protein Levels After MSC Therapy

Since synaptic dysfunction of the hippocampus is characteris-
tic of AD, we set out to evaluate whether MSC therapy re-
stored the levels of relevant synaptic proteins in the sADmod-
el. STZ rats displayed a significant reduction in SYT1
(Fig. 5d), SYP (Fig. 5e), and GAD 65 (Fig. 5i) protein levels,
which was reversed by the MSC therapy (one-way ANOVA

F(2,18) = 6.696, P = 0.0067; F(2,18) = 7.792, P = 0.0036;
F(2,18) = 6.019, P = 0.0100, respectively). SYT2 protein level
was decreased in STZ rats, while STZ +MSC group did not
differ from the SHAM control (one-way ANOVA F(2,18) =
5.350, P = 0.0150). Of note, we did not find any significant
difference in SV2 and GAD67 protein levels (one-way
ANOVA F(2,18) = 3.101, P = 0.0696; F(2,18) = 2.962, P =
0.0772).

Fig. 3 Morphometric analysis of Stratum Radiatum (SR) volume, mature
neuron in CA1 pyramidal cells, and immature neurons in dentate gyrus.
Coronal sections of the SR in representative animals of each group show-
ing NeuN immunoreactive (NeuNir) cells (a–c, 40×; e–g, 1000×).
Quantification of the SR volume (d) showing a hippocampal atrophy
process in the STZ-treated group and an improvement with the MSC
treatment. A reduction in NeuN IRA in the hippocampal CA1 pyramidal
layer (h) was observed in STZ group and it was reversed byMSC therapy.
DCX expression in the DG of in representative animals of each group

showing DCXir neurons (i–k). DCX cell numbers are plotted in l. Note
the sharp STZ-related fall in DCX cell numbers. Abbreviations: CA1,
Cornus Ammoni 1; DCXir, doublecortin immunoreactive; DG, dentate
gyrus; GCL, granular cell layer; IRA, immunoreactive area;ML, molecu-
lar layer; SO, Stratum Oriens; SR, Stratum Radiatum. Scale bar 250 μm
(a) and 25 μm (e). N = 7 per group. All data were represented as mean ±
SEM. Comparisons were made between groups. *P < 0.05; **P < 0.01;
***P < 0.001. The undepicted comparisons account for a non-significant
difference between groups
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Discussion

In the current study, we used icv-STZ injection in rats, a model
widely accepted due to its recapitulation of several AD path-
ological features and behavioral phenotypes, which was pre-
viously validated by us and others [2, 7–16].

To the best of our knowledge, MSC administration in the
icv-STZ rat model of sAD has been hitherto poorly investi-
gated [48, 49]. Among the therapies, intracerebral engraftment
strategies using MSC in animal models of neurodegenerative
disorders, other than AD, have been shown to improve cog-
nitive deficits [28, 30, 32, 50]. In fact, we have previously

Fig. 4 MSC therapy effect on
GFAP immunoreactive astrocytes
and Iba1 immunoreactive
microglial cells in the
hippocampal Stratum Radiatum.
Coronal sections of the SR in
representative animals of each
group SHAM (a, e), STZ (b, f),
and STZ +MSC (c, g), showing
GFAPir (a, b, c, 40×; right
magnified microphotography:
1000×) and Iba1ir (e, f, g, 40×;
right magnified
microphotography: 600×) cells.
Quantification of GFAP IRA (d)
displayed a vast increase in the
STZ group that could not be
reversed by the MSC therapy.
Analysis of %Iba1 reactive and
non-reactive cells (h); notice a
dramatic increase in Iba1 reactive
cells in STZ group and a signifi-
cant decrease caused by the MSC
therapy. On the contrary, Iba1
non-reactive cells show a de-
crease in STZ group and higher
levels in STZ +MSC group.
Abbreviations: IRA, immunore-
active area; SR, Stratum
Radiatum. Scale bar 50μm (a and
e). N = 7 per group. All data were
represented as mean ± SEM.
Comparisons were made between
groups. *P < 0.05; ***P < 0.001;
****P < 0.0001. The undepicted
comparisons account for a non-
significant difference between
groups
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shown that icv-MSC therapy exerts neuroprotective effects
[51] and cognitive improvement [51, 52] in the aging rat. In
the present study, however, we chose a less-invasive route for
delivery ofMSC (intravenous), which allowed us to perform a
long-term treatment employing repeated (4 in 10 weeks)MSC
injections in the AD model. Importantly, in order to minimize
the risk of emboli formation, we resuspended the cells in a
large volume of saline and injected them very slowly and
carefully at a rate of 10 μl/s [53].

Recent works have shown the safety of this injection para-
digm [53], with clear clinical advantages over direct central
nervous system (CNS) administration [54]. Thus, in a study in
cynomolgus monkeys, no stem cell transplantation toxicity
was found after umbilical cord MSC injection once every
2 weeks, for 6 weeks [55]. Most importantly, in a phase I
clinical trial, a research group evaluated the safety of intrathe-
cal and intravenous transplantation of autologous bone mar-
row cells in children with cerebral palsy. They were evaluated
for motor and cognitive functions, and finally by MRI, which
showed this procedure was safe [56].

Furthermore, other studies have indicated that iv-MSC can
migrate and localize into brain regions in different models of
ischemic stroke [57, 58], Huntington’s disease [59], and AD
[60]. Moreover, some initial research suggested that MSC
engrafted at the site of injury could differentiate into neuronal
cells [61–63]. However, the importance of engraftment and
frequency of transdifferentiation remains controversial. In
fact, it is also known that iv administered MSC accumulate
in the lungs and have a short systemic survival time [64]. For

that reason, only a small percentage of implanted MSC could
reach the inflamed tissue, suggesting that their therapeutic
action might be due to the bioactive molecules with immuno-
modulatory and trophic activities that they secrete [65, 66].
More recently, it has been also demonstrated that monocytes
and neutrophils contribute to the clearance of MSC from the
lungs by phagocytosis and, subsequently, these cells migrate
via the blood stream to other body sites. In turn, phagocytosis
ofMSC induced functional changes in monocytes, which then
modulated the adaptive immune cell compartment [67]. In line
with this, previous studies have indicated that MSC lead to
neuroprotection via interaction with non-neurological organ
systems such as the spleen in traumatic brain injury [68].
Taking all these into account, we suggest that the MSC ther-
apeutic effect could be mediated by soluble factors or other
cells such as microglial cells or monocyte/macrophages.

During the OF test, the natural tendency of animals in a
new environment is its exploration. In line with previous find-
ings that demonstrated the exploratory and anxiety behavior
decline in this model [69, 70], rats receiving STZ presented
higher grooming time and less crossing activity, indicative of
their poor exploratory behavior. We also observed an increase
in their anxiety behavior, as represented by the lower entries to
the inner area. MSC rats improved these parameters as they
were similar to those of the control group, corroborating the
beneficial effect exerted by MSC therapy against exploratory
and anxiety behavior impairment. It is worth noting that, be-
fore the initiation of cognitive assessment, we evaluated motor
performance and no significant differences were found in icv-

Fig. 5 MSC therapy effect on rat synaptic protein levels. Representative
images of Vinculin, SYT1 and SYP (a), SYT2 and β-actin (b), and SV2,
GAD 67, GAD 65, andβ-Actin (c) rat hippocampal protein levels of each
experimental group. Quantification of protein levels of SYT1 (d), SYP
(e), SYT2 (f), SV2 (g), GAD67 (h), and GAD 65 (i), normalized to
relative density of Vinculin (d–e) or β-actin (f–i), as previously shown
in a, b, and c. A significant decrease in SYT1, SYT2, SYP, and GAD65

protein levels were observed for the STZ group, whereas cell therapy led
to a recovery of SYT1, SYP, and GAD65 levels. Abbreviation: SYT,
synaptotagmin; SYP, synaptophysin; SV2, synaptic vesicle protein 2;
GAD, glutamic acid decarboxylase. N = 7 per group. All data are repre-
sented as mean ± SEM. Comparisons were made between groups.
*P < 0.05; **P < 0.01. The undepicted comparisons account for a non-
significant difference between groups
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STZ animals (data not shown), in accordance with our previ-
ous studies and others [15, 71–73].

Deterioration in the ability to perform “activities of daily
living” is an early sign of AD. It has been proposed that the
species-typical behavior in laboratory rodents could be con-
sidered equivalent to these human activities [74, 75]. Rats
bury familiar and unfamiliar objects (marbles) placed into
their home cages as a species-typical behavior [41, 75].
Recently, it was observed that the integrity of the hippocam-
pus is vital for the performance of species-typical tasks of
mice [74]. In this work, icv-STZ leads to decreased burying
in the MB test. In line with this observation, previously re-
ported results showed that transgenic ADmice (Tg-APP/PS1)
buried fewer marbles than non-transgenic mice [76].
Importantly, MSC therapy significantly ameliorated the mar-
ble burying behavior in STZ rats. Therefore, we suggest the
treatment improves hippocampal function, which is conse-
quently reflected in this species-typical behavior recovery.

We observed that, 3 months after icv-STZ, BM spatial
learning of the rats was fairly preserved; contrarily, STZ rats
showed an affected spatial memory, as evidenced by a rise in
errors and an increasing trend of latency in the PT. These
results are in accordance with our previous study performed
within a month after icv-STZ [15] and also replicated the
spatial memory deficits observed in the Morris water maze
[77, 78]. The present results demonstrated that MSC treatment
was able to improve the aforementioned STZ-induced mem-
ory deficits observed in the PT. Moreover, we found that MSC
therapy showed a tendency to restore goal seeking activity in
the strategies carried out along the ATs and PT (i.e., less use of
random search strategy) and improved memory retention dur-
ing the PT, two components that contribute to the magnitude
of the goal hole exploration frequency.

Several studies proposed that volume and neuronal loss in
CA1 of the hippocampal formation are early hallmarks of AD
and are strongly correlated with cognitive status [3, 4, 15, 79,
80]. In a recent report, STZ induced neurodegeneration in the
hippocampus, particularly in the CA1 area, 21 days after icv
injection [81]. In our previous work, we similarly observed a
decrease in NeuN immunostaining in STZ rats, which we
suggested to be related to neuronal death in the dorsal hippo-
campus [15]. In accordance, in the present work, our results
show that 3-month icv-STZ induces a SR volume reduction
and CA1 pyramidal neurons loss. Interestingly, we observed
that MSC therapy restored both SR volume and neuron loss. It
is likely that the paracrine signaling of MSC could ameliorate
structural SR and CA1 atrophy of STZ-induced hippocampal
neurodegeneration and cognitive impairment.

The DG niche of adult born neurons is susceptible to dete-
riorate under several factors, e.g., aging and AD [44, 82]. In
this regard, the STZ injection produced an overt decrease in
the neurogenesis rate, which had been previously observed
[83, 84]. Since MSC therapy improved cognitive function of

several and varied orders, our results give rise to two theses:
either DG adult neurogenesis is dispensable to carry out the
cognitive tasks hereby evaluated, or, if not, therapy is able to
circumvent or compensate for this hippocampal feature by
reactive microglia regulation and the protection of mature
neurons and synapses. Further studies are needed to investi-
gate these possibilities in detail.

It is well-established that neuroinflammation plays a sig-
nificant role in AD [85–88]. In the CNS, astrocytes and
microglial cells are often activated in neurodegenerative dis-
eases. As mentioned above, the icv-STZ caused a frank in-
crease in hippocampal gliosis, which is in line with previous
studies at different time points post injection [15, 89–91] and it
seems to contribute to cognitive deficits in the STZ-induced
sAD model [83].

In a previous report, 25 days after STZ-icv, we observed an
increased GFAPir area without change in GFAPir cell number
[15], a similar effect observed in the present study, 95 days
post injection. This suggests that, in this STZ model, hippo-
campal astrocytes are hypertrophied. In this line, AD patients
were found to display GFAP hyper-reactivity with signs of
cellular hypertrophy in the hippocampus [92] and in the cere-
bral cortex [93]. Based on our current work, MSC therapy did
not exert a pronounced effect on the astrocytic population.

One relevant feature of AD and the senile brain is the pro-
gressive development of reactive microglia [94, 95].
Previously, we evaluated the effect of MSC on the senile rat
brain, where we found that MSC therapy did not change the
total number of microglial cells but reduced the proportion of
reactive cells instead [51]. In accordance with this previous
work, iv-MSC therapy decreased the reactive microglial cells,
although it actually failed to reach the SHAM levels. Thus, we
suggest that the neuroprotective effect of MSC could be me-
diated by the conversion of microglial cells to a different phe-
notype. It is known that microglial activation is heterogeneous
and has been categorized into two opposite types: pro-
inflammatory M1 phenotype (classical activation) and anti-
inflammatory M2 phenotype (alternative activation) [96].

In line with this hypothesis, MSC have been shown to
reprogram M1-to-M2 switching in microglia and to improve
neuron survival [30, 97, 98]. Additionally, it has been reported
that MSC are able to maintain the resting phenotype or to
control microglial activation through their production of sev-
eral factors [99]. MSC have also been shown to inhibit acti-
vated microglia proliferation in vitro by modulating the cyto-
kine response [100].

Consequently, MSC impact on microglia, either by secret-
ing paracrine molecules or by direct cell-to-cell contacts, can
cover different aspects given the multiple MSC’s capacities.
Thus, the aforementioned anti-inflammatory/immunomodula-
tory [17–19, 97, 100–102] and regenerative [103, 104] prop-
erties could inhibit M1 microglia proliferation, whereas acti-
vated microglia could be converted to the M2 phenotype.
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Since the determination of cytokines, M1/M2 microglia pop-
ulation, and MSC integration were beyond our scope, further
studies will be needed to elucidate the effect of MSC on
microglia.

It has been established that synaptic loss, a widely charac-
terized feature in AD, is a major correlate of cognitive impair-
ment [105], suggesting a causal role for dwindling synaptic
integrity in the etiology of the disease [106–108]. In the pres-
ent study, we observed decreased levels of presynaptic pro-
teins in the hippocampus of STZ animals. Interestingly, MSC
treatment restored the levels of SYT1, SYP, and GAD65 syn-
aptic markers, indicating that the cell therapy confers protec-
tion against synaptic proteins loss. Although the specific
mechanism remains to be further studied, the synaptic proteins
reduced in STZ group are known to affect the neuron trans-
mitter release, thereby affecting the physiological functions of
the neurons [108–112]. As we discussed before, the hippo-
campal volume is highly involved in behavioral functions.
Consequently, cell therapy presumably restores the physiolog-
ical functions of the hippocampal neurons by protecting the
synaptic integrity.

It was previously shown that microglial processes make
intimate but transient connections with neuronal synaptic ele-
ments [113, 114]. In our work, we observed a long-lasting
hippocampal microglial activation in the STZ rats, which
has been shown, to be related to pro-inflammatory cytokines
release by other studies. This in turn contributes to cognitive
function impairment [115–118]. MSC treatment prevented
cognitive damage in the STZ rats, as demonstrated in the
behavioral tests, whose mechanism we speculate to be related
to reduced inflammation and synaptic protection.

A diabetes rodent model widely used consists of intraper-
itoneal (ip) injection of STZ. This induces a vast increase in
blood glucose levels and similar effects as our icv-STZ model
in the brain and cognition. Two recent studies on this model
have revealed interesting findings, mostly in line with our
current work. Thus, in one work, bone marrow-derived mes-
enchymal stem cells were iv injected in STZ ip injected mice
[119]. This cell therapy led to a shorter latency in finding the
target quadrant in theMorris water maze, as well as to a higher
time spent in the target quadrant. In the hippocampal CA1,
they found the therapy increased NeuN cell count, SYP levels,
and decreased Iba1 total cells, thus counteracting STZ effects.
Interestingly, they observed the same effects in the hippocam-
pus by replacing the cell therapy with an icv injection of the
purified exosomal fraction of the stem cells, suggesting that
the therapeutic effect was mediated by secreted factors inside
the exosomes. The same group published 2 years later a study
which showed that an enriched environment (EE) alleviated
cognitive deficit and restored CA1 NeuN immunoreactivity
and SYP levels in the ip-STZ model. The authors suggested
a mechanism for this effect would be an anti-inflammatory
action of endogenous bone marrow MSC-derived exosomes,

which, under EE, produce great amounts of miR-146a [120].
Even though this is a different model of cognitive deficit, it
provides strong evidence that MSC exosomes carry relevant
neuroprotective molecules, which is of great interest towards
novel therapies against AD.

Overall, the present data show that the iv-MSC injection is
a promising therapy to restore behavioral decline, a character-
istic symptom of sAD. Our study supports the concept that the
neuroprotection of the injectedMSC is exerted by their restor-
ative capacity on structural hippocampal atrophy, neurodegen-
eration and, partially, microgliosis. STZ-activated microglia
release a variety of pro-inflammatory and cytotoxic factors
whose accumulation is thought to contribute to the loss of
neurons. However, a relevant finding is that hippocampal
gliosis may play a significant role in burying behavior recov-
ery together with an improvement of synaptic damage.

The development of MSC therapy for neurodegenerative
diseases is still in its early stages and future studies should be
pursued to unravel specific mechanisms of this promising
treatment. In this regard, based on recent and growing evi-
dence, MSC exosome therapy would provide a fair trade-off
between treatment efficacy and animal cell engraftment-
related risks.

Conclusion

In summary, the results obtained from our study reveal the
effectiveness of repeated intravenous administration of human
umbilical cord MSC to treat behavioral impairment and neu-
rodegeneration caused by icv-STZ in rats, at 3-month post-
injury. Our data demonstrate a MSC potential in the treatment
of neurodegenerative diseases such as sAD by regulating
microglial activation and rescuing hippocampal volume re-
duction, mature neuron loss, and synaptic proteins levels.
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