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In this paper, I discuss a recent application of a variational homotopy perturbation
method to rather simple nonlinear oscillators. It is shown that the main equations are
inconsistent and for that reason the results may be of scarce utility. C° 2012 American
Institute of Physics. [doi:10.1063/1.3681790]

I. INTRODUCTION

There has recently been great interest in developing simple solutions to textbook models of
nonlinear oscillators (Refs. 1–5, and references therein). Some of those results are of questionable
utility as argued, for example, by Sanchez:6 “A perturbation technique valid for large parameters
was presented by He.1 It is not an appropriate procedure and it leads to a wrong conclusion” or
Rajendran et al.7 who concluded that He’s calculations of the limit cycle of the van der Pol oscillator2

“contain several errors which once rectified make the method inapplicable to it.” I have disclosed
several inconsistencies in a paper by Ren and He3 and even proposed how to tidy up and improve
their calculations.8

Here I discuss a recent application of a variational homotopy perturbation method to
rather simple nonlinear oscillators.5 In Sec. II, I analyse their results and in Sec. III draw
conclusions.

II. VARIATIONAL HOMOTOPY PERTURBATION METHOD
FOR NONLINEAR OSCILLATORS

Akbarzade and Langari5 were interested in equations of the form

A(u) − f (r ) = L(u) + N (u) − f (r ) = 0, (1)

where L and N are the linear and nonlinear parts of the operator A, and u is the solution. They
proposed the “homotopy perturbation structure,”

H (v, p) = (1 − p)[L(v) − L(u0)] + p[A(v) − f (r )] = 0, (2)

where p is an embedding parameter (dummy perturbation parameter in the language of the well-
known perturbation theory) and u0 is the first approximation that satisfies the boundary conditions.

They expanded the solution in p-power series v = v0 + v1 p + v2 p2 + . . . and obtained the
solution to Eq. (1) as u = v0 + v1 + v2 + . . . provided that the series converges for p = 1.

In particular, the authors concentrated in nonlinear oscillators of the form

u00 + ω2
0u + ² f (u) = 0, (3)
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where f is a nonlinear function of u00, u0, and u, and considered the “variational functional” (Ref. 5
and references therein)

J (u) =
Z t

0

·
−1

2
u02 + 1

2
ω2

0u2 + ²F(u)

¸
dt, (4)

where dF/du = f. Note that I have corrected a misprint in the authors’ Eq. (9). Obviously, J(u) is
minus the well-known action integral9 for a particular time interval.

In order to introduce the basic idea, the authors first modified the well-known Duffing equation10

u00 + u + ²u3 = 0, u(0) = A, u0(0) = 0 (5)

as

u00 + ω2u + p
£
²u3 + (1 − ω2)u

¤ = 0 (6)

and derived the perturbation equations of order zero,

u00
0 + ω2u0 = 0, (7)

and first order

u00
1 + ω2u1 + ²u3

0 + (1 − ω2)u0 = 0, (8)

where

u0(t) = A cos(ωt) (9)

already satisfies the boundary conditions, and

u1(0) = u0
1(0) = 0. (10)

Note that in this way the approximate solution uapp(t) = u0(t) + u1(t) satisfies the correct boundary
conditions at t = 0.

According to the authors, “ω will be identified from the variational formulation for u1, which
reads”

J (u1) =
Z T

0

·
−1

2
u02

1 + 1

2
ω2u2

1 + (1 − ω2)u0u1 + ²u3
0u1)

¸
dt, T = 2π

ω
. (11)

They argued that the simplest trial function is5

u1 = B

·
cos(ωt) − 1

3
cos(5ωt)

¸
. (12)

Surprisingly, this function satisfies one of the boundary conditions u0
1(0) = 0 but not the other one

because u1(0) = 2B/3 = 0 leads to the unwanted trivial solution.
From the variational conditions ∂J/∂B = 0 and ∂J/∂ω = 0, the authors obtained

ω =
r

1 + 3

4
² A2, B = 0. (13)

Although the estimated value of ω is reasonable, the result B = 0 leads to the trivial solution u1

= 0 that restricts considerably the practical utility of the approach because the approximate solution
uapp(t) = u0(t) is rather poor.

In order to improve the results, the authors proposed the correction

u1 = B1

·
cos (ωt) − cos (3ωt)

5

¸
+ B3

·
cos (3ωt)

5
− cos (5ωt)

7

¸
(14)

and from the variational conditions ∂J/∂B1 = 0, ∂J/∂B3 = 0, and ∂J/∂ω = 0, they obtained the
frequency

ω =
√

31

124

qp
510237ρ2 + 1416576ρ + 984064 − 357ρ − 496, (15)
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where I have introduced the relevant parameter of the model ρ = ²A2. They did not show the
coefficients and I obtained

B1 = A
£
357ρ − 496

¡
ω2 − 1

¢¤
96ω2

, B3 = 49A
£
3ρ − 4

¡
ω2 − 1

¢¤
96ω2

. (16)

Note that u1(t) does not satisfy one of the required boundary conditions

u1(0) = − A
¡
68ω2 − 49ρ − 68

¢
16ω2

(17)

and, consequently, uapp(t) = u0(t) + u1(t) exhibits the wrong amplitude uapp(0) = A + u1(0). It,
therefore, seems that by means of the variational approach the authors obtained a frequency for the
amplitude A and an approximate trajectory uapp(t) with a different amplitude.

Akbarzade and Langari5 applied the method to other nonlinear oscillators that I briefly discuss
below.

As a first example, the authors chose

u00 + u3 = 0, u(0) = A, u0(0) = 0. (18)

In this case, they expanded the solution to

u00 + ω2u + p
¡
u3 − ω2u

¢ = 0 (19)

in a Taylor series about p = 0 and chose u0(t) = Acos (ωt) that satisfies both boundary conditions.
As a first-order trial function, they proposed

u1(t) = B

·
cos(ωt) − 1

5
cos(3ωt)

¸
(20)

that satisfies one of the boundary conditions u0
1(0) = 0 but not the other one u1(0) = 4B/5. Therefore,

uapp(t) = u0(t) + u1(t) does not satisfy uapp(0) = A except for the trivial case B = 0 which is exactly
the result of their variational method.5

The second example

u00 + u + u1/3 = 0, u(0) = A, u0(0) = 0 (21)

is interesting because u1/3 exhibits a branch point at u = 0. The authors did not explicitly indicate
that they chose the real branch and they should have written this term, for example, as u|u|− 2/3 or
sgn(u)|u|1/3 to avoid confusion. In this case, they resorted to the perturbation equation

u00 + ω2u + p
£
u1/3 + ¡

1 − ω2
¢

u
¤ = 0 (22)

and expanded u1/3
0 in a Fourier series in order to calculate the variational integral. This expansion

is equivalent to choosing the real branch as discussed above. Again they proposed the trial function
(20) that does not satisfy one of the boundary conditions at t = 0 and again they obtained the trivial
result B = 0.

The third example

u00 + u3 + u1/3 = 0, u(0) = A, u0(0) = 0 (23)

was converted into the perturbation equation

u00 + ω2u + p
¡
u1/3 + u3 − ω2u

¢ = 0. (24)

The authors chose u0 and u1 as in the preceding example and, of course, they obtained the same
trivial correction of first order. Thus, in all the three examples the authors’ result was the rather poor
harmonic approximation uapp(t) = u0(t).

III. CONCLUSIONS

Although the combination of the homotopy perturbation method and the variational principle
proposed by Akbarzade and Langari5 led to reasonable approximate frequencies, one cannot take the
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approach seriously because of its inconsistencies. First, the first-order corrections to the solutions
do not satisfy one of the boundary conditions proposed by the authors and, second, in most of the
cases the resulting corrections are trivial (that is to say, they vanish identically). In the case where
this correction does not vanish, the approximate solution exhibits an amplitude that is different from
the one appearing in the expression for the frequency.

The conclusions of the present paper are in line with those of Sanchez6 who showed that the
approach proposed by He1 yielded an acceptable frequency for all amplitudes but the trajectory was
quite poor for a sufficiently strong nonlinear oscillation.
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