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Scanning Tunneling Microscopy (STM).

Table S1. STM imaging conditions.

1a 0.30 0.20 4.039 1024x1024
1c 0.70 0.50 12.12 1024x1024
Auzs(SR)1s on Au(111)
1d 0.70 0.50 12.12 1024x1024
in Air
2a 0.60 0.70 12.12 1024x1024
S3 0.60 0.70 12.12 1024x1024
2b-c 1.00 0.10 12.12 1024x1024
Auzs5(SR)1s on Au(111)
2d-f 1.00 0.10 12.12 1024x1024
in mesitylene
4a-b 1.00 0.10 12.12 1024x1024
Au(111) in air Sla 0.50 0.50 6.059 1024x1024
Au(111) in mesitylene S1b 0.30 0.20 12.12 1024x1024
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Figure S1. STM images of Au(111) before immersion in AuNC dispersions. Images were acquired in (a) in air and (b)
mesitylene. The lower panels show the cross sections corresponding to the solid lines on each image. Dotted lines are
included to highlight that the distance between Au steps agree with the one between monoatomic layers of Au(111) -i. e.
0.24 nm. For both images, the height-colour palette is the one shown in image (a) with a z value of 0.8 nm for (a) and 1.2
nm for (b).

Experimental determination of Au island coverage (0a,)

The Au island coverage was determined as the area covered by the Au islands. For the analysis, we only take into account
images where Au islands are on the top large terraces and far apart to the step edges. The “flooding” tool in WSxM software3
was employed. As shown Figure S3, the height-threshold was adjusted in order to only account the Au islands and remove
the rest of the surface (blue background in figure S3b). Then, the tool automatically calculates the area of the remaining
islands relative to the total area of the image, which is indeed the coverage of Au islands (Bau).
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Figure S2. Determination of the area covered by Au islands. The “flooding” tool included in the WSxM software was

employed. (a) Original image. (b) Flooded image. For the height-colour palette in (a) the z value is 0.6 nm.

Experimental determination of the thiolate reduction charge

The thiolate reduction charge, grs, was determined according to

Asr Vau

U™ % Vg A 1

where Asr is the area of the thiolate electroreduction peak (shadowed area in Figure S3a), Aau is the peak area of the
electroreduction of Au oxide layer (shadowed area in Figure S3b), vsg and vu, are the scan rates at which the CVs were
recorded and, B is a proportional constant that accounts for the charge provided for the oxidation of 1 cm? of Au(111)
surface i.e. B= 444uC cm2.4

In order to determine the areas Ars and Aau the following protocol was applied. First, the electroreduction of thiolate-Au
bond was performed. The potential was scanned in the cathodic direction at 0.1 V s™' between -0.2 to -1.3 V to then back in
the anodic direction to -0.2 V at the same scan rate. The resulting cyclic voltammogram (CV) is shown in Figure S3a (blue
curve). During the cathodic scan, a sharp peak is observed at -0.97 + 0.02 V as a result of the electroreduction of thiolate-
Au bonds accordingly to RS-Au + e- — RS + Au® (RS: thiol molecule).> Ars is then determined by integration as shown
shadowed blue area in Figure S3a.

Immediately after the electroreduction of the thiols, the potential was cycled between to -1.35V and 0.6 V at 0.1 V s7', until
no signal associated with Au-thiol reduction was observed (ca. 20 cycles) and the Au voltammogram remained unchanged.
The voltammogram of bare Au is shown in Figure S2b. During the anodic scan a monolayer of Au oxide is generated, giving
the peaks at 0.05 and 0.35V. In the reverse scan, the whole layer is reduced in a single peak at ca. 0.05 V. Therefore, Aau is
obtained by integration of the reduction peak, as shown yellow-colored area in Figure S3b.
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Figure S3. Thiolate surface coverage obtained by cyclic voltammetry. Voltammograms of Au(111) after immersion in 2 uM
DCM dispersion of Auzs(SR)1s. CVs were recorded in NaOH 0.1 M at 0.1 V s™'. Shadowed areas correspond to the integrated
area employed in equation S1.
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Derivation of the expression for the expected Au island coverage Oau;g.ng fOr the different decomposition

mechanisms of the AuNC’ capping layer

By decomposition of a single AuNC, an amount of nrs hexanothiolates and nay of Au atoms (that forms the Au islands
observed by STM) are adsorbed on the substrate. As discussed in the main manuscript, due to the stoichiometry of the
AuUNC, nrs is equal to 18, independently of the decomposition mechanism. On the contrary, nau does depend on the degree
of decomposition of the capping layer (RS-Au-(RS)-Au-RS), as shown in table S2.

The RS and Au island coverages can be expressed through the AuNC surface density, naunc as:

BRrs= NauNC NRs [S2]

B AUz = NAUNC NAu [S3]

grs can be obtained from electrochemistry data allowing the calculation of the RS coverage, 6rs, by means of the Au(111)
unit cell area, Aaua11) and the elemental charge, e

q
GRS=%AAU(111) [S4]

The Ors data allows to deduce the surface density of AUNC from equation S2, naunc = Brs/18 . Substituting this expression
into equation S3, the Au island coverage can finally be estimated:

Brs Na
OAuigiana = 18 - [S5]

Hence, the expected Au island coverage 6,,,, , can be obtained by using equation S5 where nau values depend on the AUNC

island

decomposition mechanism. Table S2 collects the different 8, , values according the decomposition mechanism.

Table S2. Data resulting from different decomposition degree of a single AuNC.

Au(111)

1 Auy3(RS-AU-(RS)-AU-RS);, ——  6(RS-AU-(RS)-AU-RS) 117+ 13 Alpgaryy 18 13 0.18
Au(111)

2 AU13(RS'AU'(RS)'AU'RS)12 — 18(RS)Au(111)+ 25 AuAu(‘I‘H) 18 25 0.35
Au(111)

3 AU13(RS'AU-(RS)-AU-RS)12 e 9(RS_AU_RS)Au(111)+ 16 AuAu(‘I‘I‘I) 18 16 0.22

Estimation of the diffusion coefficient of mobile species

Figure S4 a-b shows that the boundary size (d) of the two c(4x2) domains I and II increases with time (t). If the domain
boundaries move by incorporation of mobile species, the surface diffusion coefficient (D) can be estimated using the Einstein
relationship:

D= — [S6]

The d values were obtained by analysis of the height profiles (Figures S4a-c). By using the multiple profile tool provided by

WSxM software, the height profiles were simultaneously obtained for both images along the black and blue lines shown in

images (a) and (b) respectively. The height profiles show two regions: one corresponding to the region between I and 1II

domains and the other one to the domain II. The length of each region was determined from the four height profiles for the
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two consecutive images, as shown Figure S4c. Thus, d was determined accordingly to d - being i= a or b (see
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figure S4c). Finally, by using the equation S6 the D values was obtained for each region, which gives an average D of
(8+3)x10"7 ecm?3s".
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Figure S4. Estimation of the diffusion coefficient of mobile species by STM images taken in mesitylene. (a-b) Two consecutive
STM images upon AuNC decomposition showing that the two c(4x2) domains (I and II) grow over a time period of 350 s.
(c) Height profile along the lines 2 in images (a) and (b). The length of each region was determined by direct measuring of
the distance (yit , being iza or b and t.0 or 350).
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