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Abstract

We start the paper with a brief presentation of the main characteristics of
graphene, and of the Dirac theory of massless fermions in 2+1 dimensions
obtained as the associated low-momentum effective theory, in the absence
of external fields. We then summarize the main steps needed to obtain the
Hall conductivity in the effective theory at finite temperature and density, with
emphasis on its dependence on the phase of the Dirac determinant selected
during the evaluation of the effective action. Finally, we discuss the behavior,
under gauge transformations, of the contribution due to the lowest Landau level,
and interpret gauge transformations as rotations of the corresponding spinors
around the magnetic field.

PACS numbers: 11.10.Wx, 02.30.Sa, 73.43.—f

1. Introduction

Graphene is a bidimensional array of carbon atoms, packed in a honeycomb crystal structure.
Actually, each layer of a graphene sample can be viewed either as an individual plane extracted
from graphite or as an array of unrolled carbon nanotubes. Quite unexpectedly, in 2004, stable
monolayer samples of such material were obtained [1] and, in 2005, the Hall conductivity
was measured in such samples, independently, by two groups [2]. More recently, a different
behavior of the Hall conductivity was reported [3] for bilayer samples. The main difference
between the behavior of the Hall conductivity of mono- and bi-layer samples is in the height
of the jump around zero carrier density (or, equivalently, chemical potential).

From a theoretical point of view, the most remarkable feature of graphene is that, in a
small momentum approximation, the charge carriers or quasi-particles behave as two ‘flavors’
(to account for the spin of the elementary constituents) of massless relativistic Dirac particles
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in the two non-equivalent representations of the Clifford algebra (corresponding to the two
non-equivalent vertices in the first Brillouin zone), with an effective ‘speed of light” about two
orders of magnitude smaller than c [4].

In [5], we showed that a field theory calculation at finite temperature and density, based
upon ¢-function regularization of the Dirac determinant leads, in the zero-temperature limit,
to a sequence of plateaux in the Hall conductivity consistent with the measured ones, each
time the chemical potential goes through a nonzero Landau level. Moreover, it was shown in
[6] that two of the three possible combinations of phases of the Dirac determinant in both non-
equivalent Clifford representations predict a behavior around zero chemical potential consistent
with the ones measured in mono- and bi-layer graphene. For a complete presentation of other
approaches to the study of graphene see, for instance, [7], and references therein.

This paper presents, in section 2, a brief introduction to the structure of graphene, and
to the derivation of the continuous Dirac effective theory, in the absence of external fields.
Section 3 contains a review of our previous results on the subject, with emphasis on the
role of the phase of the determinant in giving rise to different behaviors around zero chemical
potential. In section 4, entirely new results are presented. In that section, we allow for complex
chemical potentials, and concentrate on the contribution due to the lowest Landau level, in
order to study the invariance of the effective action under large gauge transformations. By
relating gauge transformations to rotations in the plane, we analyze the effect of a 27 rotation
for each of the three possible combinations of phases in both representations, and identify, in
the zero-temperature limit, the resulting geometrical or Berry’s phases. Our conclusions are
presented in section 5.

2. Structure of graphene: effective continuous model

In this section, we sketch the main steps leading to the effective Dirac model for graphene, in
the absence of external fields. For more detailed presentations see, for instance, [4].

The structure of the direct lattice for graphene is shown in figure 1. The direct lattice
is a superposition of two triangular lattices, A and B. The generators of lattice A are
a; = ﬁa(%, #), and a, = ﬁa(%, */75), where a is the lattice spacing. The vectors

s; = a0, —1),s, = a(‘/g, 1) and s3 = a(#, 1) connect each site in the lattice A to its

nearest-neighbor sites in the lattice B. The tight binding Hamiltonian can then be written as

3
Hy=—t Y Y la(®b(r+s) +bl(r+s)a(r)],
reA, i=1
where ¢ is the uniform hopping constant.

In momentum space, with {‘;gg} =y, e {a(r)

. (r)}, it reads

Hy =) _(@K)a' (k)b(k) + & (K)b' (k)a (k)
Kk
with &(k) = —¢ Z?zl ek After defining two-component spinors as ¥ (k) = (a(k),
b&)HT, (k) = (af (k), bT(k)), one obtains

(0 oK
HO_(@*(k) 0)'

Hj vanishes at the six corners of the first Brillouin zone. Among these, only two are
inequivalent, and can be chosen as

4
k=K, =+——,0]), O(Ky) =0.
* <3x/§a ) 8
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Figure 1. Direct lattice for graphene.

When H is linearized around these two points, k = K. + p, one obtains

0 px$ipy)

px £ipy 0 M

Hy—x,+p=c¢ (

This last expression shows that each Fermi point gives rise to an effective Dirac theory,
with an effective ‘velocity of light’ ¢ = 3%, in one of the two inequivalent representations
of the gamma matrices. Thus, the total Hamiltonian can be taken as the direct sum of both
(equivalently, as the Dirac Hamiltonian in the reducible 4 x 4 representation of the Clifford
algebra). Moreover, an overall factor of two (two fermion species or ‘flavors’) must be

included to take the spin of the original particles into account.

3. The Hall conductivity from the interacting quantum field theory at finite
temperature and density

As shown in our previous work on the subject [5, 6], the Hall conductivity can be determined
by first evaluating the partition function (equivalently, the effective action) for massless Dirac
fermions at finite temperature and density, in two spacial dimensions, in the presence of an
external magnetic field perpendicular to the plane, and then performing a boost to a reference
frame with orthogonal electric and magnetic fields. In this section, we sketch our main results
in those references, with emphasis on the role played by the phase of the Dirac determinant,
which appears when treating the infinite tower of states associated with the lowest Landau
level. We first consider a single flavor, and one of the two non-equivalent representations of
the Clifford algebra.

In order to consider the effects due to finite temperature and density, we study the theory
in Euclidean three-dimensional space, with a compact Euclidean ‘time’ 0 < xo < 8, where
B = kB#T (here, kp is the Boltzmann constant and T is the temperature). We introduce the
(real) chemical potential and the magnetic field through a minimal coupling of the theory to
an electromagnetic potential A, = (—i%, 0, Bxl). Natural units (¢ = & = 1) will be used,
unless otherwise stated.

In this scenario, the Euclidean effective action is given by log Z = logdet(ig — e4A) ap,
where the subindex A P indicates that antiperiodic boundary conditions must be imposed in

3
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the x direction, in order to ensure Fermi statistics. Now, this is a formal expression, which
we will define through a zeta-function regularization [8], i.e.,

- _ d (ig —eM)ap\  d w\ 5
Seff = log Z = —EJK_OC <S» T) = __Js—0§ (—) , (2)

ds o

where w represents the eigenvalues of the Dirac operator acting on antiperiodic, square-
integrable functions, and « is a parameter introduced to render the zeta function dimensionless
(as expected on physical grounds, our final predictions will be «-independent).

So, in order to evaluate the partition function, we first determine the eigenfunctions, and
the corresponding eigenvalues, of the Dirac operator. We propose

et ek (g (xy) 7T
v (x,x,x):—( ’ M=Q2l+1)—.
R0, A A2 2B \ Xk (x1) ! B
Note that, in the last expression, A;,/ = —o0, ..., 00 are the Matsubara frequencies

adequate to the required antiperiodic conditions, while the continuous index k represents an
infinite degeneracy in the x; direction.

The resulting spectrum has two pieces, an asymmetric piece, associated with the lowest
Landau level of the Hamiltonian:

w =i, with X,=(21+1)%+m and  I=—o00,...,00,

with corresponding eigenfunctions

eBYi o~ L (-4
et = (%) ). 3)

and a symmetric piece

a)l,,l=:|:,/)~»12+2neB with n=1,...,00 [ =—-00,...,00,

corresponding to eigenfunctions with both components being different from zero. In all cases,
the degeneracy per unit area is given by the well-known Landau factor, A} = %.

The asymmetric part of the spectrum is quite particular. In the first place, as seen from (3),
the corresponding eigenfunction is an eigenfunction of the Pauli matrix o3, with eigenvalue
+1. The eigenfunction with the opposite ‘chirality’ was eliminated by the square integrability
condition in x;. Moreover, in the other non-equivalent representation, this part of the spectrum
appears with the opposite sign. Such a transformation is equivalent to 4 — —pu. This is
nothing but charge conjugation (which, for real p, is also equivalent to a parity transformation
[9]). As we will discuss in what follows, this part of the spectrum is the one which requires
the consideration of a phase of the determinant when evaluating the effective action.

Before going to such evaluation, it is interesting to note the invariance of the whole
spectrum under 4 — p + 25T This invariance is a natural one, since such transformations
preserve antiperiodicity of the eigenfunctions and, thus, the Dirac statistics. They are nothing
but the so-called large gauge transformations. The invariance of the effective action under
such transformations is also required for topological reasons. We will discuss this point in
more detail in section 4.

As is clear from (2), in evaluating the effective action, one must perform the analytic
extension of the contributions to the zeta function coming from both pieces of the spectrum,

S LA
§1(S,M)—ALIZZOO|:(21+1)O£IB+1a:| ,



J. Phys. A: Math. Theor. 41 (2008) 164035 C G Beneventano and E M Santangelo

and
| 2neB 2]
6(s, 1, eB) = (1+ (=1)")A, 2_:1 [ ';e ((2z+1)—ﬁ+1ﬁ>]
| =—00

The analytic extension of {, (s, i, e B) is quite standard, and it relies mainly on performing
a Mellin transform and making use of the inversion properties of the Jacobi theta functions. A
detailed presentation can be found in [5]. The final result for the contribution to the effective
action coming from this piece is (always considering only one representation of the gamma
matrices and one fermion species):

1 o0
St = ALBv2eBik <—§) + ALY log[(1+e VBB (] 4 o= (VaneBroby], )
n=1

The other non-equivalent representation of the Clifford algebra gives rise to an identical
contribution, since this part of the spectrum is the same in both irreducible representations.

As said before, the extension of ¢ (s, i, e B) requires a careful consideration of the phase
of the determinant. In fact, ¢; can be written as

s [0 D] () -] o

and the definition of the overall minus sign in the second sum depends on the selection of the
cut in the complex plane of eigenvalues. As discussed in detail in [6], the usual prescription
is to choose the cut in such a way that one does not go through vanishing arguments when
continuously transforming eigenvalues with positive real part into eigenvalues with negative
real part [10]. This prescription then gives rise to what will be called in the following the
standard phase of the determinant (characterized from now on by x = —1). One could certainly
choose the opposite prescription, which we will call the nonstandard phase (x = +1). Once
one of those phases is selected, the contribution of ¢; to the effective action can be evaluated
by making use of the well-known properties of the Hurwitz zeta function to obtain

- rn (D] 2]

When this last contribution is added to that in (4), one gets for the effective action
Serr(k) = { log [2 cosh (“’f )] +e 28 4 p2eBey (——)

+ Z log [(1 + e—(«/ZneB—/t)ﬂ)(] + e_(m+/¢)ﬂ)] }

n=1

From this last expression, the finite-temperature charge density can be obtained as
Jo(k) = ﬂ a 4 log Z. In the zero-temperature (8 — 00), and recovering physical units,
it reduces to

14k 2
n+=>~)ce B
j°ec’hBn < p? < 2eBc*h(n +1)) = % sign(u),

where n = [#Bzhc], and [x] is the integer part of x.
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Figure 2. Hall conductivity for different selections of the phase of the determinant. Left to right:
K =1,K =2, K = 0. In all cases, the horizontal axis represents vc = sgn(u)uz/Z eBhc? and
the vertical one, oyyh /4 e?.

In order to obtain the Hall conductivity, one must perform a boost to a reference frame with
crossed electric and magnetic fields. The final contribution to the Hall conductivity from each

fermion species and one irreducible representation is given by [6] oy, = _(H?)ez sign().
Now, the phases of the determinant in both irreducible representations can be selected
with the same or opposite criteria. When this is taken into account, and an overall factor of 2 is
included to take both fermion species into account, one obtains for the total zero-temperature
Hall conductivity
—4(n + %) e?
h
where K = 0 corresponds to selecting the standard phase of the determinant in both irreducible
representations, K = 1 corresponds to choosing opposite criteria for the phases and K = 2,
to choosing both phases in the nonstandard way. The dependence of the Hall conductivity
on the classical filling factor (v¢) is presented in figure 2 for the three values of K. From this
figure, it is clear that the behavior of monolayer graphene, as presented in [2], corresponds
to K = 1, i.e., to choosing opposite phases of the determinant in both representations (or,
equivalently, ignoring the phase in both representations, as done in [11]). In fact, in this case
the (rescaled) Hall conductivity shows a jump of height 1 for vc = 0, and further jumps
of the same magnitude for vc = £1,£2,.... In turn, the behavior of bilayer graphene, as
reported in [3] is exactly reproduced by K = 2 (nonstandard selection of the phase in both
representations).

Oxy = sign(u),

4. Invariance under large gauge transformations: interpretation in terms of rotations

To analyze the physical meaning of the invariance of the effective action under large gauge
transformations in this context, we go back to the zeta function associated with the asymmetric
part of the spectrum, for two fermion species and one representation, this time allowing for
an imaginary part in the chemical potential, i = u + iy, while always keeping p # 0. In this
case, one must be careful when splitting the infinite sum as in (5) (detail of the calculations
will appear in [12]). In fact, such splitting must be different for different y-ranges, to make
sure that all the eigenvalues in each infinite sum have a real part with the same sign, which is

crucial in defining the phase. For example, for —% < % < % one has
1 y8 1 d > . _
Sl—z <= <= )= —-2A,— 20 +1 +ip — 1™
eﬁ( S <o < 2) LdSJX:O ;[( )7 /B +ipn —y]
o0
+ Ze*‘w [@1+ Dr/p+i(u+iy)e™]”
1=0
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Now, the values of 0 such that the second term on the RHS does vanish are those ones for
which, simultaneously, (2] + 1)7/8 + psinf — y cos6 = 0 = pcosé + y sinf. As before,
we consider here two different definitions of the phase of the determinant, which correspond
to the standard definition for the phase k = —1, and to the nonstandard one k = +1. With
each one of these prescriptions, the contribution of the asymmetric spectrum to the effective
action is given by

Iy 1 (k +1)B .
L (_L_YP _ 1) _ wr P
Seff< 5 < o < 2) —ZAL{ > sgnpu(p +1y)

+log (e ( £ (uetiy) (1+sgnp) +e2 L (u+iy)(1— Sgnu))} 7)

Things are entirely different for % = :t%. In this case, one mode in the infinite sum
defining the zeta function has a vanishing real part. A careful treatment shows that, at

such points, S/ ¢ 1s discontinuous. For instance, Seff( +%) coincides with lim,s -
27

B _ — _ 1y

of (7). An equally carefully treatment of the case 5~ = —3 shows that Seff( = —5) =

S;ff(g—ﬂ = %) This analysis can be extended to other ranges of variation of ;’ﬂ , to obtain, with
k= —ﬂoo 00 "

1 1 2%
fef(e3) <3 (og) a5 i (=)

+log (¢ H0HO =N ssam) | o Eauricy =30~ sgnm)} ®

This expression shows that the contribution to the effective action of the nonsymmetric
part of the spectrum, in this representation of the gamma matrices, is invariant under large
gauge transformations, no matter which phase of the determinant is selected. As already
said, such transformations must constitute an invariance. In fact, an increase of iy in the
chemical potential corresponds to the multiplication of the eigenfunctions (3) with a phase,
ie., Yr(x) — ei’”‘(’lﬂk,l(x). So, an increase iy = 2“3” is a pure gauge transformation which,
moreover, preserves the antiperiodicity in xg.

Due to the fact that these eigenfunctions are eigenfunctions of o3 such that o3y,—,(x) =
Yu=o(x), one can equivalently write gauge transformations in the form vy ;(x) —
el 2r Vi, l(x) This last expression shows that, as xp grows from 0 to 3, spinors are rotated by
2y B, since Z is the generator of rotations in the plane x;x,. In particular, y = == corresponds
to a 4w rotatlon around the magnetic field. Note that not only the partition function, but
also the Abelian—Chern-Simons term (and, thus, the effective action) is invariant under large
gauge transformations. On the other hand, y = % corresponds to a 2w -rotation. At finite
temperature, such transformation changes the statistics to a bosonic one. For x = +1, it
also gives rise to an overall phase of 7 per unit degeneracy in the partition function. Such
a phase is the contribution which survives in the zero-temperature limit. The three possible
combinations of phases of the determinant then give a total phase per unit degeneracy in the
partition function of m (K = 1, which reproduces the behavior of the Hall conductivity for
monolayer graphene), or O (both for K = 0 and K = 2, this last reproducing the behavior of
the Hall conductivity for bilayer graphene). At this point, it is interesting to note that, in order
to have a zero-temperature partition function invariant under rotations of 2w for monolayer
graphene, the reduced flux through a unit cell of area 2 must be given by % =QA;, =N,
with N a positive integer. This is precisely the condition for physical states to transform as
unidimensional ray representations of the magnetic translation group [9].
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5. Conclusions

The first conclusion, as already stated in [6], is that two of the three possible combinations of
phases give behaviors of the Hall conductivity which coincide with those measured in mono-
and bilayer graphene. In the case of bilayer graphene [3], the (rescaled) Hall conductivity
presents a jump of height 2 for ve = 0, and further jumps of height 1. The main point here
concerns the positions of these subsequent jumps. As a matter of fact, according to figure 1(b)
in [3], these subsequent jumps appear for ve = %1, £2, ..., which is exactly the behavior
predicted, in our calculation, for K = +2. However, the same reference interprets the Hall
behavior of bilayer graphene through a theoretical prediction first made in [13] which, as
discussed in [14], predicts a plateaux of larger width. Our calculation, instead, completely
coincides with the measured behavior of the plateaux, both in height and width.

An entirely new conclusion is that, in each representation, the effective action per unit
degeneracy is invariant under large gauge transformations, with any of the two possible
selections of phase. As a result, the invariance persists no matter which of the three possible
combinations of phases is selected. Moreover, each of the two selections of phase in each
representation corresponds to a different geometric phase under the rotation of spinors along
a closed path around the magnetic field (« = —1: no geometric phase; k = +1: geometric
phase of 7). So, different values of K correspond to different total geometric phases per unit
degeneracy, to be compared with the Berry phases studied, for instance, in [14]. Finally, by
taking y8 = %, we note that, for % = 1, these three values of K also correspond to the three
non-equivalent unitary representations of the generator of the cyclic group C3, which is the
relevant symmetry in the case of free graphene.

To the best of our knowledge, the relation between the phase of the fermionic determinant
and Berry’s phase had not been noticed before. This point, as well as the connection with the
magnetic translation group will be studied in more detail in [12].
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