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Abstract

The neutrino mean free path in neutron matter under a strong magnetic field is evaluated for

the inelastic scattering reaction and studied as a function of the neutron matter density in the

range 0.05 ≤ ρ ≤ 0.4 fm−3 for several temperatures up to 30 MeV and magnetic field strengths

B=0 G, 1018 G and 2.5× 1018 G. Polarized neutron matter is described within the non–relativistic

Brueckner–Hartree–Fock (BHF) approach using the Argonne V18 nucleon-nucleon potential sup-

plemented with the Urbana IX three-nucleon force. Explicit expressions of the cross section per

unit volume for the scattering of a neutrino with a spin up or spin down neutron are derived from

the Fermi Golden rule. Our results show that the mean free path depends strongly on the angle of

the incoming neutrino, leading to an asymmetry in this quantity. This asymmetry depends on the

magnetic field intensity and on the density, but it is rather independent of the temperature. For a

density of 0.16 fm−3 at a temperature T= 30MeV, the asymmetry in the mean free path is found

to be of ∼ 15% for B=1018G and ∼ 38% for B=2.5× 1018G.

PACS numbers: 26.60.-c, 26.60.Kp, 25.30.Pt

1

http://arxiv.org/abs/1809.00688v1


I. INTRODUCTION

Neutrinos play a crucial role in the physics of supernova explosions [1–3], during the

early evolution of compact stellar remnants [4, 5], in neutron star cooling [6, 7], and in

neutron star mergers [8–10]. A large number of neutrinos are produced by electron capture

processes during the gravitational collapse of the core of a massive star. Most of the initial

gravitational binding energy is stored and released by the neutrinos. In the early stages

following the formation of a neutron star the neutrino mean free path λ decreases and,

above a critical value of the density, becomes smaller than the stellar radius. Under these

conditions neutrinos are trapped in the star. Neutrino trapping has a strong influence on the

overall stiffness of the equation of state (EoS) of dense matter [11, 12], being the physical

conditions of hot and lepton-rich neutron stars substantially different from those of the cold

and deleptonized ones. The cooling of a newly born hot neutron star is driven first by the

neutrino emission from the interior. There are several neutrino emission processes that con-

tribute to the cooling of neutron stars. These include among others, the direct and modified

URCA processes, bremsstrahlung or Cooper pair formation, which operates only when the

temperature of the star drops below the critical temperature for neutron superfluidity or

proton superconductivity. Neutrino cross sections and emissivity are fundamental inputs

for supernova simulations and cooling calculations. These quantities can be substantially

affected by the presence of strong magnetic fields in the neutron stars. In the case of the

so-called magnetars, the magnetic field intensity can reach values up to 1014− 1015 G at the

star surface and it can grow by several orders of magnitude in its dense interior [13]. The

emission of neutrinos, for instance, is expected to be asymmetric (i.e., to depend on the

direction of the neutrino) under the presence of a strong magnetic field.

The asymmetrical emission of neutrinos has been suggested as a possible mechanism to

explain the so-called “pulsar kick problem”: the observation that pulsars do not move with

the velocity of its progenitor star, but rather with a substantially greater speed. Although an

asymmetry as small as ∼ 1% would be enough to explain the pulsar movement, this mecha-

nism has been questioned as the (unique) source for the “pulsar kick” (see for instance [14]).

Other possible explanatory mechanisms include: an asymmetry in the gravitational collapse

of the progenitor, acceleration due to the pulsar electromagnetic radiation or the evolution

of binary system which may produce rapidly moving pulsars. The asymmetrical emission
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of neutrinos can have different origins. Neutrino oscillation can be altered by the magnetic

field, resulting in an anisotropy in the momentum of the outgoing neutrinos [15]. Parity

violating can also induce an asymmetry on the neutrino emission when multiple–scattering

of neutrinos in slightly polarized neutrons is taking into account [16, 17]. Here we are par-

ticularly interested in this last mechanism, which on practice results from the addition of a

modified differential cross section plus the cumulative effect of multiple–scattering. In this

case, two ingredients are important: the differential cross section and the neutrino mean free

path. Note that in the absence of a magnetic field the non–relativistic elastic differential

cross section of neutrinos with neutron matter can be written as,

dσ

dΩ
=
G2

FE
2
ν

4π2
(C2

A(3− cos θ) + C2
V (1 + cos θ)) , (1)

where GF is the Fermi coupling constant and θ is the scattering angle. Even though the

differential cross section is not uniform, in the absence of a preference spatial axis, the

average emission of neutrinos from the whole neutron star would be isotropic. However, the

presence of an uniform magnetic field modifies this expression and produces an asymmetry

in the neutrino emission.

The second ingredient, the neutrino mean free path in dense matter (defined as the in-

verse of the total neutrino cross section per unit volume) has been studied in the absence of

a magnetic field by many authors using various approximation schemes and various models

of the trapping environment (see e.g. Refs [18–31] and references therein). The behavior of

neutrinos in dense matter under the presence of strong magnetic fields has been also con-

sidered in the literature [14–16, 32–39]. However, the asymmetry on the neutrino emission,

due to the breaking of the isotropy by the field, has not been discussed much.

The scope of the present work is to analyze the effect of a strong magnetic field on the

mean free path of neutrinos in hot neutron matter focussing, in particular, on the asymmetry

on the neutrino emission induced by the presence of the field. In neutron matter the two

dominant mechanisms contributing to the neutrino mean free path are the scattering of the

neutrino with a neutron and the absorption of the neutrino by the neutron producing a

proton and an electron in the final state. In this work, however, we will restrict ourselves

to the first one of these mechanisms. The interested reader is referred e.g., to [23] for a

complete description of all possible reactions involving neutrinos.

In particular, we derive explicit expressions of the neutrino cross section per unit volume
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for the scattering of a neutrino with a spin up or spin down neutron. The description

of polarized neutron matter is made within the non–relativistic Brueckner–Hartree–Fock

(BHF) approach using the Argonne V18 [40] nucleon-nucleon potential supplemented with

the Urbana IX [41] three-nucleon force.

The paper is organized as follows. In Section II, we discuss the inelastic scattering

neutrino cross section with polarized neutrons. Starting from the Fermi Golden rule, we

develop expressions for the total neutrino cross section, taking the non–relativistic limit to

be consistent with our EoS–model. In Section III, we discuss some results, where we start

with the properties of polarized neutron matter, we also discuss some general properties of

the neutrino mean free path and then we show the asymmetry in this quantity. Finally, in

Section IV a summary, the main conclusions and future perspectives are given.
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II. THE NEUTRINO CROSS SECTION

In this section we derive the expression for the neutrino total cross section per unit

volume in hot neutron matter under the presence of a strong constant magnetic field. As it

has already been said in the introduction, in this work we restrict ourselves to the neutrino

scattering process,

ν + n→ ν ′ + n′ , (2)

denoting ν and n (ν ′ and n′) the incoming (outgoing) neutrino and neutron, respectively.

We note here that in this work neutrinos are considered massless. Fig. 1 shows the lowest

order Feynman diagram contributing to this reaction. Using the Fermi Golden Rule (see

e.g. [42]), we can write down the contribution of this reaction to the total cross section per

unit volume simply as:

σ(pν)

V
=

∫

d~pν′

(2π)3

∫

d~pn
(2π)3

∫

d~pn′

(2π)3
(2π)4δ(4)(pν + pn − pν′ − pn′)

×fn(~pn, T )(1− fn′(~pn′, T ))
|Mν′n′,νn|2

24EνEν′EnEn′

, (3)

where pi = (Ei, ~pi) is the four-momentum of particle i, Mν′n′,νn is the so-called Møller

invariant transition matrix, which we discuss below, and fi(~pi, T ) is the particle distribution

function, which in thermal equilibrium is given by the Fermi–Dirac one,

fi(~pi, T ) =
1

1 + exp[(Ei(~pi, T )− µi(T ))/T ]
, (4)

being Ei the single-particle energy of neutron i, µi its chemical potential and T the temper-

ature of the system. The single-particle energy Ei and the chemical potential µi should be

obtained from a particular model of neutron matter. In this work, as it has been already

said, to describe the bulk and single-particle properties of neutron matter under the presence

of a strong magnetic field we use the BHF approximation of the Brueckner–Bethe–Goldstone

(BBG) non-relativistic many-body theory of nuclear matter. A detail discussion of the BHF

approach can be found in [43].

Let us now focuss on the evaluation of the matrix Mν′n′,νn. Here we show the main

steps on the derivation, and we refer the interested reader to appendix A for specific details.

Our starting point is the following Lagrangian density written in terms of a current-current

interaction as:

L =
1√
2
GF

(

ψ̄ν′γ
µ1

2
(1− γ5)ψν

)(

ψ̄n′γµ (CV − CAγ5)ψn

)

. (5)
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Here GF ≃ 1.436× 10−49 erg cm−3 is the Fermi weak coupling constant and the quantities

CV = −1/2 and CA = −1.23/2 are the vector and axial–vector couplings, respectively. The

matrix Mν′n′,νn can be written from this Lagrangian density as:

Mν′n′,νn =
1√
2
GF

(

uν′γ
µ1

2
(1− γ5) uν

)(

un′γµ (CV − CAγ5) un

)

. (6)

It is convenient to express the square of this matrix as the contraction of a leptonic (lµα)

and an hadronic (Hµα) two-rank tensor,

|Mν′n′,νn|2 =
1

2
G2

F l
µαHµα , (7)

with

lµα =
(

uνγ
µ1

2
(1− γ5)uν′

)(

uν′γ
α1

2
(1− γ5)uν

)

, (8)

and

Hµα =
(

un (CV + CAγ5) γµun′

)(

un′γα (CV − CAγ5)un

)

. (9)

Note that in Eq. (9) the summation over the spin quantum number is implicit. If neutron

matter is not polarized then |Mν′n′,νn|2 (and consequently σ(pν)/V ) can be simply obtained

from Eqs. (8) and (9). However, the presence of a magnetic field induces a (partial) spin

polarization of the system and, therefore, in this case this summation should be split between

neutrons with spin up and down. To take this into account, we employ the spin projection

operator, Λs = 1
2

(

1 + γ5 /ws

)

, with the four-vector ws = (0, 0, 0, s), where s = +1 (−1)

projects into the spin up (down) configuration. Using this operator in Eq. (9), we have,

Hs
µα =

(

un
1

2

(

1 + γ5 /ws

)

(CV + CAγ5) γµun′

)(

un′γα (CV − CAγ5)
1

2

(

1 + γ5 /ws

)

un

)

. (10)

Note that the action of the operator Λs, generates the tensors H−
µα for neutrons with spin

down and H+
µα for neutrons with spin up. The total hadronic tensor can then be written as:

Hµα =
(1−A)

2
H−

µα +
(1 +A)

2
H+

µα , (11)

where the tensors H−
µα and H+

µα are weighted according to the degree of polarization of the

system given by the spin asymmetry defined as,

A =
ρ+ − ρ−
ρ+ + ρ−

, (12)

with ρ+ (ρ−) being the density of neutrons with spin up (down). Note that the value A = 0

corresponds to unpolarized neutron matter, whereas A = +1 or A = −1 means that the
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system is in a completely polarized state with all the spins up or down, respectively. Partially

polarized states correspond to values of A between −1 and +1.

Contracting now the hadronic tensor of Eq. (11) with the leptonic one, we obtain,

|Mν′n′,νn|2 = |M−
ν′n′,νn|2 + |M+

ν′n′,νn|2 , (13)

where

|M+
ν′n′,νn|2 = 16G2

F

1 +A
2

(

C2
V

(

(pν′ · pn′) (pν · pn) + (pν′ · pn) (pν · pn′)− (pν′ · pν) (m∗
+)

2

−m∗
+ (pνz (pν′ · (pn′ − pn))− pν′z (pν · (pn′ − pn)))

)

+C2
A

(

(pν′ · pn′) (pν · pn) + (pν′ · pn) (pν · pn′) + (pν′ · pν) (m∗
+)

2

−m∗
+ (pνz (pν′ · (pn′ + pn))− pν′z (pν · (pn′ + pn)))

)

−2m∗
+CVCA ((pn′ · pν′) pνz + (pn · pν) pν′z)

)

(14)

and

|M−
ν′n′,νn|2 = 16G2

F

1−A
2

(

C2
V

(

(pν′ · pn′) (pν · pn) + (pν′ · pn) (pν · pn′)− (pν′ · pν) (m∗
−)

2

+ m∗
− (pνz (pν′ · (pn′ − pn))− pν′z (pν · (pn′ − pn)))

)

+ C2
A

(

(pν′ · pn′) (pν · pn) + (pν′ · pn) (pν · pn′) + (pν′ · pν) (m∗
−)

2

+ m∗
− (pνz (pν′ · (pn′ + pn))− pν′z (pν · (pn′ + pn)))

)

+ 2m∗
−CVCA ((pn′ · pν′) pνz + (pn′ · pν) pν′z)

)

, (15)

being m∗
+ and m∗

− the effective mass of neutrons with spin up and down, respectively (see

Eq. (23)).

These expressions are fully relativistic. However, we are using a non-relativistic many-

body approach to describe the single-particle and bulk properties of neutron matter, there-

fore, to be consistent we should take the non–relativistic limit of these expressions. Choosing

the z–axis along the direction of the magnetic field, this limit can be obtained by using the

following relations:

(pn · pn′) ∼= (m∗
±)

2

(pn · pν) ∼= m∗
±Eν

(pν′ · pn′) ∼= m∗
±Eν′

7



(pν · pν′) = EνEν′ (1− cos θνν′)

pνz = Eν cos θν

pν′z = Eν′ cos θν′ , (16)

where θν (θν′) is the angle between the incoming (outgoing) neutrino with the magnetic field

and θνν′ is the angle between the direction of the incoming and the outgoing neutrino. We

note that, in the above relations, m∗
+ is used when evaluating the non–relativistic limit of

Eq. (14), and m∗
− when taking that of Eq. (15). We note also that the neutron momenta are

neglected when evaluating the matrices M±
ν′n′,νn. The geometry of the scattering process is

shown in Fig. 2 . The non–relativistic limits of Eqs. (14) and (15) then read,

|M+
ν′n′,νn|2 = 16G2

F

(1 +A)

2
(m∗

+)
2EνEν′

(

(

C2
V + 3C2

A

)

+
(

C2
V − C2

A

)

cos θνν′

+ 2CA

(

(CA + CV ) cos θν + (CV − CA) cos θν′
)

)

(17)

and

|M−
ν′n′,νn|2 = 16G2

F

(1−A)

2
(m∗

−)
2EνEν′

(

(

C2
V + 3C2

A

)

+
(

C2
V − C2

A

)

cos θν,ν′

− 2CA

(

(CA + CV ) cos θν + (CV − CA) cos θν′
)

)

. (18)

Note that by construction, these expressions do not depend on the momentum of the incom-

ing and outgoing neutron, since as mentioned before they were neglected in their derivation.

Similar expressions can be found in other works (see, e.g., Refs. [34, 36]).

Finally, the total cross section per unit volume is given by the sum of two contributions:

σ(pν)

V
=
σ+(pν)

V
+
σ−(pν)

V
, (19)

where each one of them, σ±(pν)/V , is simply obtained by replacing Eqs. (17) and (18), into

Eq. (3) reading,

σ±(pν)

V
= G2

F

(1±A)

2

∫

d~pν′

(2π)3

(

(

C2
V + 3C2

A

)

+
(

C2
V − C2

A

)

cos θνν′

± 2CA

(

(CA + CV ) cos θν + (CV − CA) cos θν′
))

S0
±(q0, ~q, T ) . (20)

Here we have used the delta function δ(3)(~pν+~pn−~pν′ −~pn′) to integrate over the momentum

~pn′ of the outgoing neutron. S0
±(q0, ~q, T ) is the structure function describing the response of
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neutron matter to the excitations induced by neutrinos which reads:

S0
±(q0, ~q, T ) =

1

(2π)2

∫

d~pnf
±
n (~pn, T )(1− f±

n′(~pn + ~q, T ))δ(q0 + E±
n (~pn, T )− E±

n′(~pn + ~q, T )) ,

(21)

being q0 = Eν − Eν′ and ~q = ~pν − ~pν′. Note that, for clarity, in the above expression we

have explicitly indicated the spin projection of the neutron in the distribution functions and

the single–particle energies. An analytical expression of S0
±(q0, ~q, T ) can be obtained if the

momentum dependence of the neutron single-particle energies is quadratic. Although this is

not the case of the BHF approach, when calculating the structure function we approximate

the neutron single-particle energy E±(~p, T ) by the quadratic function,

E±(~p, T ) ≈ |~p|2
2m∗

±

+ U±(~p = ~0, T ) , (22)

where U±(~p = ~0, T ) is the BHF single-particle potential, which represents the average po-

tential “felt” by a neutron with spin projection s = ±1 in the nuclear medium (see e.g.

Eq. (8) in [43]), evaluated at zero momentum and

m∗
±

m
=

|~p|
m

(

dE±(~p, T )

dp

)−1
∣

∣

∣

|~p|=pF±

, (23)

is the effective mass of neutrons with spin up or down, being m the neutron bare mass and

pF±
is the Fermi momentum of a neutron with spin projection ±. Assuming this quadratic

dependence of the neutron single-particle energies, the analytic expression of the structure

function reads (see e.g. Refs. [27, 29, 31]):

S0
±(q0, ~q, T ) =

1

π

1

1− e−q0/T

(m∗
±)

2T

4πq
ln

(

1 + e(A±+q0/2)/T

1 + e(A±−q0/2)/T

)

, (24)

where A± = µ± −m∗
±q

2
0/2q

2 − q2/8m∗
±.

Before we discuss our numerical results for the neutrino mean free path λ, it is worth to

make some general considerations on Eq. (20). Let us consider first the non–polarized case

(A = 0). Without polarization we have S0
− = S0

+ = S0, since in this case the single-particle

energy of a neutron is independent of its spin orientation. From Eq. (20), is then easy to

obtain,

σ(pν)

V

∣

∣

∣

A=0
= G2

F

∫

d~pν′

(2π)3

(

C2
V (1 + cos θνν′) + C2

A(3− cos θνν′)
)

S0(q0, ~q, T ) (25)

which is the expression frequently found in the literature. Comparing this expression with

Eq. (20) we see that the new terms due to the neutron polarization are the ones proportional
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to cos θν and cos θν′ . We note that since the integration is done over ~pν′ , the contribution

to the cross section from the term proportional to cos θν′ is almost negligible. Even though

is not zero, since S0
± itself depends implicitly on cos θν′ through the transfer momentum ~q

which involves the angle θνν′ , whose cosine can be easily written as (see Fig. 2),

cos θνν′ = sin θν sin θν′ cosφν′ + cos θν cos θν′ . (26)

A final obvious comment, is that the cross section depends on the energy and momentum of

the incoming neutrino. Note, in particular, that if the momentum of the incoming neutrino

is perpendicular to the magnetic field then cos θν = 0 and one expects no appreciable

differences with respect to the unpolarized case.

III. RESULTS AND DISCUSSION

In the following we present results for the mean free path of neutrinos in homogeneous hot

neutron matter under the presence of strong magnetic fields. Results are shown for densities

in the range 0.05 ≤ ρ ≤ 0.4 fm−3 corresponding approximately to the outer core region a

neutron star, several temperatures up to T=30 MeV, and three values of the magnetic field

intensity B=0, 1018 and 2.5 × 1018 G. As we have already mentioned, our description of

the bulk and single-particle properties of hot and magnetized neutron matter is based on

the non-relativistic BHF approach developed in [43] using, in particular, the Argonne V18

nucleon-nucleon potential [40] supplemented with the Urbana IX three-nucleon force [41].

Before discussing our results for the neutrino mean free path, we analyze first the spin

asymmetry A of the system, the effective masses of neutrons with spin up and down, and the

structure function S0
±(q0, ~q, T ) predicted by our BHF model for different temperatures and

magnetic field intensities. As it was mentioned in the previous section, the spin asymmetry

A characterizes the degree of polarization of the system. The physical state is obtained

by minimizing the Helmhotz free energy density of the system with respect to A for fixed

values of the density, the temperature and the magnetic field. We note that this minimization

implies that in the physical state the chemical potential of neutrons with spin up and spin

down is the same, i.e., there is only one chemical potential which is associated to the

conservation of total baryonic number. We note also that the degree of polarization of the

physical state of the system is the result of the competition between the strong interaction
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that, together with the temperature, favor the non-polarized state as the physical one, and

the magnetic field that tries to align all the spins antiparallel to it. In Fig. 3 we show the

spin asymmetry corresponding to the physical state of the system as a function of density for

several temperatures and two values of the magnetic field strength. Although it is not shown

in the figure, in the absence of a magnetic field the physical state of the system corresponds

to the non-polarized case (A = 0) for all densities and temperatures. For low densities and

temperatures, one expects that the system would be completely polarized (A = −1) up to a

given density, above which it becomes partially polarized with a predominance of spin-down

states (−1 < A < 0). Within our range of temperatures, A grows monotonously and the

system would reach the non-polarized state (A = 0) asymptotically at high densities. A

comparison of the results for B=1018 G and B=2.5× 1018 G (see panel (a)) shows that the

density at which the system changes from completely to partially polarized increases with

B as one naively would guess. As it is seen in the panel (b) of the figure, the increase of

temperature makes the system to be less polarized as one intuitively expects since it favors

the disorder of the spins.

We examine in the following the neutron effective mass, which is a representative single-

particle property. Although in the BHF approach the effective mass has a momentum

dependence, in this work and according to the definition given in Eq. (23), we analyze it

at the value of the Fermi momentum pF±
, of a neutron with spin up or down projection.

The density dependence of the effective mass of neutrons with spin up (m∗
+) and spin down

(m∗
−) is shown in Fig. 4, for a temperature T=15 MeV and two values of the magnetic

field strength, B=0 G and B=2.5× 1018 G. As it is expected, in the absence of a magnetic

field we have m∗
+ = m∗

−. Note that the magnetic field induces a splitting between m∗
+

and m∗
− with m∗

+ < m∗
− over all the density range. This splitting is a direct consequence

of the spin polarization dependence of the neutron single-particle potential originated by

the presence of the field. The magnetic field polarizes partially the system with a spin

asymmetry −1 < A < 0 making the single-particle potential for neutrons with spin down

(the most abundant component) less attractive that the one for neutrons with spin up. As

shown in [44] (see, in particular, Eqs. (23) and (24) of this reference), this is due to: (i) the

change in the number of pairs which a neutron with momentum k and spin projection s can

form with the other neutrons of the system as neutron matter is polarized, and (ii) to the

spin dependence of the neutron-neutron G-matrix in the spin polarized medium. Indeed, as
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the spin asymmetry decreases (becomes more negative) the single-particle potential of a spin

down neutron is built from a larger number of down-down pairs that form a spin triplet state

S = 1 and, due to the Pauli principle, can only interact through odd angular momentum

partial waves. Conversely, the potential of the less abundant component is built from a

relatively larger number of up-down pairs which can interact both in the spin 0 and spin

1 channels. Thus, the potential of the less abundant component receives also contributions

from some important attractive channels as, e.g., the 1S0. Finally, we would like to point

out that the reason why m∗
+ < m∗

− can be traced back to the general issue that in a two

component fermionic system the most abundant component is less correlated than the less

abundant one (see e.g. [45]). In our case neutrons with spin down are more abundant than

neutrons with spin up and, therefore, are expected to be less correlated. Being less correlated

their effective mass should be closer to the value of the bare mass and, consequently, larger

than that of neutrons with spin up, as it is in fact observed.

Let us now give some insight into the effect of the structure function S0
±(q0, ~q, T ), defined

in Eq. (21), on the neutrino mean free path. In Fig. 5 we show S0
±(q0, ~q, T ) as a function of

q0 for a density of the system ρ = 0.16 fm−3. The momentum transfer is fixed to the value

~q = ~pν/2 where the magnitude of the momentum of the incoming neutrino ~pν has been taken

according to the prescription |~pν | = 3T , being T the temperature of the system. Results in

the absence of a magnetic field for temperatures T=3 and T=15 MeV are shown in panel

(a) whereas in panel (b) the structure function is shown for T=15 MeV and magnetic fields

B=0 G (which will serve as a reference) and B=2.5 × 1018 G. As it is seem in panel (a)

an increase of the temperature leads to a much broader structure function with a larger

area under it. The reason is simply due to the fact that the phase space of the integral

in Eq. (21) increases with temperature. Consequently, an increase of the temperature will

give rise to a larger cross section and, therefore, to a smaller neutrino mean free path when

integrating Eq. (20), as we will see later. Besides the dependence of the structure function

on q0, ~q and T , from its definition (see Eq. (21)), it is clear that it depends also on the spin

projection of the neutrons. This dependence leads to a splitting between S0
+(q0, ~q, T ) and

S0
−(q0, ~q, T ) with S0

+(q0, ~q, T ) < S0
−(q0, ~q, T ), as it is observed in the panel (b) of the figure.

The origin of this splitting can be easily understood by looking at the analytic expression of

S0
±(q0, ~q, T ), given in Eq. (24), which shows that S0

±(q0, ~q, T ) depends quadratically on the

effective mass m∗
±, but also in an implicit way though the logarithm. It can be easily shown

12



that the explicit quadratic dependence is the dominant one and, in good approximation,

one can simply assume S0
±(q0, ~q, T ) ∼ (m∗

±)
2F (q0, ~q, T ) with F (q0, ~q, T ) encoding all the

other dependencies. It is clear, therefore, that for B 6= 0 one has S0
+(q0, ~q, T ) < S0

−(q0, ~q, T )

since, as we saw before, the presence of a magnetic field induces a splitting between m∗
+ and

m∗
− with m∗

+ < m∗
−. In addition, when the magnetic field strength is increased, the spin

asymmetry A becomes more negative (see Fig. 3) and consequently, the factors (1+A) and

(1 − A), appearing in the expression for the spin up and down contributions to the total

cross section (see Eq. (20)), decrease and increase, respectively. Therefore, an increase of

the magnetic field strength will lead to a decrease of σ+ and to an increase of σ− which

dominates over the former giving rise, as we will show later, to a net increase (decrease) of

the total cross section (neutrino mean free path).

We will focus now our discussion on the behavior of the neutrino mean free path λ. Before

starting our analysis, however, we will make a general remark. Note that in the absence of

a magnetic field the total cross section (see Eq. (25)) depends only on the energy (or the

magnitude of the momentum) of the incoming neutrino but not on its direction. The reason

is simply that one can always take the ẑ-axis along the direction of the outgoing neutrino to

perform the integral and, therefore, the angle θνν′ between the direction of both neutrinos

is integrated out. This is not the case when the magnetic field is different from zero. Its

presence establishes a preferred direction in the space and, consequently, in this case the

total cross section (see Eqs. (19) and (20)) depends both on the energy of the incoming

neutrino, and on the angle θν between its momentum ~pν and the direction of the magnetic

field. It is interesting to note, however, that if ~pν is perpendicular (i.e., θν = π/2) to the

magnetic field then the neutrino mean free path is expected to be quite insensitive to the

magnetic field. This is shown in Fig. 6, where λ is depicted as function of the density for

T= 3 MeV, θν = π/2 and the magnetic fields B=0 G and B=2.5× 1018 G. As it is seem in

the figure, appreciable differences are noticed only at densities below ∼ 0.15 fm−3. We note

that for smaller magnetic field strengths no difference is observed with the B=0 G case. The

reason for this low magnetic field dependence when θν = π/2, is that the term proportional

to cos θν′ in Eq. (20) would cancel out except for the smooth implicit θν′-dependence of the

structure function through the angle θνν′ (see Eq. (26)) which, however, is negligible for

θν = π/2. The only dependence on the magnetic field that remains is, therefore, that of

the structure function itself which is mostly appreciable in the low/medium density region

13



where the spin asymmetry is A larger in absolute value (see Fig. 3).

We discuss now the temperature dependence of the neutrino mean free path. In Fig. 7,

we show the density dependence of λ for a magnetic field strength B=1018 G, θν = π/2,

and the temperatures T=3, 5, 15 and 30 MeV. The momentum of the incoming neutrino

is taken |~pν | = 3T in panel (a) and |~pν | = 15 MeV in panel (b). Note that, for a fixed

temperature, the larger the value of |~pν|, the smaller the neutrino mean free path. This

is simply due to the fact that the response of the system to the excitations induced by

neutrinos, described by the structure function, is larger for larger values of the neutrino

momentum. Consequently, the total cross section is larger and the neutrino mean free path

smaller. As it is seen in both panels, λ varies dramatically with temperature decreasing

up to fours orders of magnitude (see panel (a)) for increasing values of the temperature.

This can be easily understand from our previous analysis of the temperature dependence of

the structure function S0
±(q0, ~q, T ). As we just saw, a larger temperature implies a larger

phase space of the integral in Eq. (21), and, therefore, a larger (smaller) total cross section

(neutrino mean free path). Taking into account that the typical radius of a neutron star is

of the order of 10-12 km, from these results one can easily conclude that a neutrino would

unlikely interact with matter at low temperatures. In a somehow arbitrary way, we can say

that from temperatures starting at T=10 MeV, one has to care of the neutrino scattering.

Moreover, for T=30 MeV, multiple–scattering should be considered.

We will finish this section by examining the dependence of the neutrino mean free path

on the angle θν . The partial contributions λ− (panel (a)) and λ+ (panel (b)) to the total

neutrino mean free path, due respectively to the scattering of the neutrino with a spin down

or a spin up neutron and defined as λ± ≡ (σ±/V )
−1, are shown in Fig. 8, as a function of the

density for T=15 MeV, B=0 G and 2.5× 1018 G and the angles θν = 0, π/2 and π. We note

first that both contributions vary by more than two orders of magnitude with the angle θν .

This huge variation cannot be understood by considering only the explicit angular factors

in Eq. (20), but it results from the combined effect of these factors and the implicit angular

dependence of the structure function. Note that in polarized neutron matter, neutrons with

spin down (up) are almost transparent to the neutrinos if the incoming angle of the latter

is θν = 0 (π). Note also that λ− (λ+) is shorter for θν = π (0).

Finally, we show in Fig. 9, the total mean free path for two magnetic field intensities, two

temperatures and three angles. It is worth to mention, that the total mean free path can
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TABLE I: Mean free path asymmetry χλ, as a function of the density at T=15MeV, for two values

of the magnetic field intensity. These results are rather independent of the temperature.

ρ [fm−3] χλ(B = 1018G) χλ(B = 2.5× 1018G)

0.050 0.40 1.17

0.100 0.23 0.60

0.150 0.16 0.40

0.200 0.12 0.29

0.250 0.09 0.23

0.400 0.05 0.14

be obtained from λ− and λ+ as (see Eq. (19)),

λ(pν) =
λ+(pν)λ−(pν)

λ+(pν) + λ−(pν)
. (27)

It is clear from our previous analysis that the asymmetry in the mean free path comes

from the spin asymmetry factor A and the spin dependence of the structure functions S0
±.

Neutrinos are more transparent to polarized neutron matter when moving in a direction

parallel to the magnetic field (θν = 0). The situation is the opposite for neutrinos that

move in an anti-parallel direction (θν = π). In order to get a better understanding on this

asymmetry in the mean free path, we define a “mean free path asymmetry”, as follows,

χλ =
λ(θν = 0)− λ(θν = π)

λ(θν = π/2)
. (28)

Note that, λ(θν = π/2) can be considered on practice the average value between the

two extreme ones. In Table I, we show some representative values for this ratio. Even

though the asymmetry is rather small for B= 1018 G, as mentioned in the introduction, a

small asymmetry in the emission of neutrinos would have a significant physical impact in a

compact object. The asymmetry is more important for B= 2.5 × 1018 G. In all cases, the

asymmetry is relevant for low to medium densities. This is so, because of the dependence

of the spin asymmetry parameter A and the effective masses on the density (see Figs. 3

and 4). As the density increases, the action of the nuclear strong interaction among the

neutrons overcomes the coupling of the neutrons with the magnetic field. Although this is a

general behavior for all EoS–models, we should mention that the use of the Skyrme–model
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would lead to a bigger asymmetry for the mean free path. In this sense, our results could

be interpreted as a lower limit for the discussed asymmetry.

As a final comment, we would like to mention that in a potential stellar evolution code,

neutrinos would interact with neutrons either with spin up or spin down. Therefore, the

partial mean free path shown in Fig. 8, should be employ in the calculation. We refer to a

semi–phenological model where one keeps track of an individual neutrino, using mean free

path and differential cross sections evaluated with quantum mechanics. Assuming that the

source of neutrinos is isotropic, the average result of many emitted neutrinos, should be

consistent with the values for the total mean free path.

IV. SUMMARY, CONCLUSIONS AND FUTURE PERSPECTIVES

In this work we have evaluated the neutrino mean free path in neutron matter under

the presence of a strong magnetic field. The description of polarized neutron matter has

been done within the non–relativistic Brueckner–Hartree–Fock (BHF) approach using the

Argonne V18 nucleon-nucleon potential supplemented with the Urbana IX three-nucleon

force. We have considered only the neutrino scattering process in the calculation. Starting

from the Fermi Golden rule we have derived explicit expressions of the neutrino cross section

per unit volume for the scattering of a neutrino with a spin up or spin down neutron.

These expressions have been obtained in the non–relativistic limit to be consistent with our

description of polarized neutron matter. We have shown that in the presence of a magnetic

field the neutrino mean free path depends on the angle between the momentum ~pν of the

incoming neutrino and the magnetic field, leading to an asymmetry in this quantity.

In previous works by other authors, the asymmetry in the neutrino emission refers to

the one originated from the differential cross section. This asymmetry and the one we

have considered here are different and should be considered simultaneously to account for

the actual asymmetric neutrino emission. In principle, all differential cross sections are

asymmetric. However, in the absence of a preference spacial axis, the average emission from

the compact object is isotropic. We have shown that this situation is altered by the presence

of a magnetic field. One should be aware that the mean free path is the relevant variable in

this problem: for low temperatures, the mean free path can be much larger than the size of

the compact object itself. In this case, the asymmetry in the differential cross section would
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not be relevant, as it would be unlikely to have a collision. The total cross section (which

is the inverse of the mean free path), erase the angular information of the differential cross

section. That is, the asymmetry in the mean free path has a different origin than the one

from the differential cross section. While the last one gives us information on the way in

which the weak interaction scatters the neutrinos, the mean free path tells us about how

often a neutrino interacts with a neutron.

In this analysis the temperature is the key variable. In the early stages of the cooling

process of a neutron star, the temperature is high enough to ensure several collisions of the

neutrinos with the neutrons before the neutrino leaves the star. It would be interesting

to analyze how the asymmetry in the mean free path affects the cooling processes. This

analysis is, however, beyond the scope of the present work since among other things one

should also consider the absorbtion cross section, where the neutrino is absorbed by the

neutron, having a proton and an electron as the final state. The inclusion of this process is

not straightforward as protons and electrons shows Landau levels in a magnetic field. We

are presently working to include this mechanism.

As a final comment, we believe that the asymmetric emission of neutrinos from a magnetar

has still several unexplored issues which can be relevant for the problem of the pulsar kick.

In this work we have explored just one of them, namely the asymmetry in the mean free

path. Apart from the absorption cross section just mentioned, another interesting point is

the effect of the strong interaction over the structure function. To the best of our knowledge,

this has been done only up the ring–approximation level. Our aim for the near future is to

include the absorption cross section in conjunction with the asymmetry in the differential

cross section to get a better understanding of the asymmetric emission of neutrinos from a

magnetar.
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Appendix A: Evaluation of |Mν′n′,νn|2

In this Appendix we show some details on the evaluation of the Mν′n′,νn–matrix. We

recall it expression from Eq. (6),

Mν′n′,νn =
1√
2
GF

(

uν′γ
µ1

2
(1− γ5) uν

)(

un′γµ (CV − CAγ5)un

)

. (A1)

In the calculation of the neutrino cross section, we need to evaluate,

|Mν′n′,νn|2 =
1

2
G2

F l
µαHµα, (A2)

where lµα and Hµα are the leptonic and hadronic traces, respectively. Now we analyze each

trace separately.

1. Leptonic trace

The leptonic trace is:

lµα = (uν′γ
µ1

2
(1− γ5) uν)

†(uν′γ
α1

2
(1− γ5) uν). (A3)

Using standard properties of the gamma matrices, the adjoint factor of this trace can be

expressed as,

1

2
(uν′γ

µ (1− γ5)uν)
† =

1

2
u†ν (γ

µ (1− γ5))
† u†ν′ =

1

2
uνγ

µ (1− γ5) uν′, (A4)

in this way, we have,

lµα =
1

4
uνγ

µ (1− γ5)uν′uν′γ
α (1− γ5) uν. (A5)

By using the completeness relation u(p, s)u(p, s) = /p+m, and neglecting the neutrino mass,

we can write,

lµα =
1

4
tr(γµ (1− γ5) /pν′γ

α (1− γ5) /pν) =
1

2
tr(γµ/pν′γ

α
/pν + γ5γ

µ
/pν′γ

α
/pν). (A6)

After some algebra, we found,

lµα = 2(pµν′p
α
ν + pµνp

α
ν′ − gµα (pν · pν′)− iǫµαγλpν′γpνλ). (A7)
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2. Hadronic trace

We follow similar steps as in the case of the leptonic trace, but the evaluation is more

complex as we have to distinguish two terms, according to the spin projection of the neutron.

The required hadronic trace, is then,

Hs
µα = (un′γµ (CV − CAγ5) Λsun)

† (un′γα (CV − CAγ5) Λsun) , (A8)

where, as stated in the main text, we have introduced the spin projection operator over the

initial neutron as, Λs =
1
2

(

1 + γ5 /ws

)

, where ws = (0, 0, 0, s) with s = +1 (−1) for spin up

(down). We re-write the adjoint factor of the hadronic trace as,

(un′γµ (CV − CAγ5) Λsun)
† =

1

2
unγ

0
(

1 + γ5 /ws

)†
(γµ (CV − CAγ5))

† γ0un′, (A9)

by making the substitution,

γ0
(

1 + γ5 /ws

)†
(γµ (CV − CAγ5))

† γ0 =
(

1 + γ5 /ws

)

(CV + CAγ5) γµ , (A10)

we have,

Hs
µα =

1

4
un

(

1 + γ5 /ws

)

(CV + CAγ5) γµun′un′γα (CV − CAγ5)
(

1 + γ5 /ws

)

un

=
1

4
tr(

(

1 + γ5 /ws

)

(CV + CAγ5) γµ(/pn′
+mN )γα (CV − CAγ5)

×
(

1 + γ5 /ws

)

(/pn +mN)). (A11)

For convenience, we split this trace into three contributions: one proportional to C2
V , the

other one to C2
A and the last one to CVCA. After some algebra we get,

Hs, V
µα = C2

V

(

(

pn′µpnα + pn′αpnµ − gµα(pn′ · pn) +m2
Ngµα

) (

1− wβwβ

)

+ 2imN ǫµαγλp
γ
n′w

λ

+ 2imNǫµαγλw
γpλn + 2wαpn′µ(w · pn) + 2wµpn′α(w · pn)− 2gµα(pn′ · w)(w · pn)

)

,

Hs,A
µα = −C2

A

(

−
(

pn′µpnα + pn′αpnµ − gµα (pn′ · pn)− gµαm
2
N

) (

1− wβwβ

)

+ 2imN ǫµαγλw
γpλn

+ 2imNǫµαγλw
γpλn′ − 2wαpn′µ (w · pn) + 2gµα (w · pn′) (w · pn)− 2wµpn′α (w · pn)

)

,

Hs, V A
µα = CVCA

(

−4mN (pn′µwα + pn′αwµ − gµα (pn′ · w))− 4iǫµαγλp
γ
n′p

λ
n − 3iǫµαγλp

γ
n′p

λ
nw

βwβ

+ 4iǫµγλρwαw
γpλn′pρn − 4iǫαγλρwµw

γpλn′pρn + 4iǫµαγλ (pn′ · w)wγpλn

)

, (A12)

where for simplicity we have omitted the spin index in all w. Obviously we have,

Hs
µα = Hs, V

µα +Hs,A
µα +Hs, V A

µα . (A13)
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It is convenient to simplify these expressions by neglecting the neutron momenta, for both

the incoming and the outgoing neutron. In this case, we have, (pn′ · w) ∼= 0 and (w · pn) ∼= 0,

and Eqs. (A12), reduced to,

Hs, V
µα = C2

V

(

(pn′µpnα + pn′αpnµ − gµα(pn′ · pn) +m2
Ngµα)(1− wβwβ) + 2imNǫµαλγw

λ(pγn − pγn′)
)

,

Hs,A
µα = C2

A

(

(pn′µpnα + pn′αpnµ − gµα (pn′ · pn)− gµαm
2
N )(1− wβwβ)− 2imNǫµαλγw

λ(pγn + pγn′)
)

,

Hs, V A
µα = −4mNCVCA(pn′µwα + pn′αwµ). (A14)

Finally, we now build up the spin up and down components, that is H+
µα and H−

µα, as,

H+
µα =

(

C2
V

(

2
(

pn′µpnα + pn′αpnµ − gµα(pn′ · pn) +m2
Ngµα

)

+ 2imNǫµαλz
(

pλn′ − pλn
))

+ C2
A

(

2
(

pn′µpnα + pn′αpnµ − gµα(pn′ · pn)−m2
Ngµα

)

+ 2imN ǫµαγz (p
γ
n′ + pγn)

)

− 4CVCAmN(pn′µgαz + gµzpn′α)
)

(A15)

and

H−
µα =

(

C2
V

(

2
(

pn′µpnα + pn′αpnµ − gµα(pn′ · pn) +m2
Ngµα

)

− 2imNǫµαλz
(

pλn′ − pλn
))

+ C2
A

(

2
(

pn′µpnα + pn′αpnµ − gµα(pn′ · pn)−m2
Ngµα

)

− 2imN ǫµαγz (p
γ
n′ + pγn)

)

+ 4CVCAmN (pn′µgαz + gµzpn′α)
)

. (A16)

Note that we have used the index z for the third spatial component of the four vectors.

3. Evaluation of |Mν′n′,νn|2

From Eq. (A2), we contract the leptonic and hadronic traces to build up |Mν′n′,νn|2, which
is also divided into a spin up and a spin down contribution. In the following expressions,

we have added the spin asymmetry factor A (see Eq. (12)).

∣

∣

∣
M+

ν′n′,νn

∣

∣

∣

2

= 8G2
F

1 +A
2

(

pµν′p
α
ν + pµνp

α
ν′ − gµα (pν′ · pν)− iǫµαγλpν′γpνλ

)

×
(

C2
V

((

pn′µpnα + pn′αpnµ − gµα(pn′ · pn) + (m∗
+)

2gµα
)

+ im∗
+ǫµαρz (p

ρ
n′ − pρn)

)

+ C2
A

((

pn′µpnα + pn′αpnµ − gµα(pn′ · pn)− (m∗
+)

2gµα
)

+ im∗
+ǫµαρz (p

ρ
n′ + pρn)

)

− 2CVCAm
∗
+ (pn′µgαz + gµzpn′α)

)

, (A17)

∣

∣

∣
M−

ν′n′,νn

∣

∣

∣

2

= 8G2
F

1−A
2

(

pµν′p
α
ν + pµνp

α
ν′ − gµα (pν′ · pν)− iǫµαγλpν′γpνλ

)
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×
(

C2
V

((

pn′µpnα + pn′αpnµ − gµα(pn′ · pn) + (m∗
−)

2gµα
)

− im∗
−ǫµαρz (p

ρ
n′ − pρn)

)

+ C2
A

((

pn′µpnα + pn′αpnµ − gµα(pn′ · pn)− (m∗
−)

2gµα
)

− im∗
−ǫµαρz (p

ρ
n′ + pρn)

)

+ 2CVCAm
∗
− (pn′µgαz + gµzpn′α)

)

, (A18)

where we have replaced the bare mass mN , by the effective mass m∗
+ (m∗

−) for neutrons with

spin up (down). Finally, by using ǫξφγνǫλργν = −2
(

δξλδ
φ
ρ − δξρδ

φ
λ

)

, we obtain the Eqs. (14)

and (15).

21



Acknowledgements

This work was partially supported by the CONICET, Argentina, under contract

PIP00273, and by “PHAROS: The multi-messenger physics and astrophysics of neutron

stars”, COST Action CA16214.

[1] H. A. Bethe, Rev. Mod. Phys. 62 (1990) 801.

[2] Th. Janka and E. Müller, Astron. Astrophs. 306 (1996) 167.

[3] A. Burrows, Nature (London) 403 (2000) 727.

[4] A. Burrows and J. M. Lattimer, Astrophys. J. Suppl. 307 (1986) 178.

[5] H.-Th. Janka and E. Müller, Astrophys. J. Suppl. 448 (1995) L109.

[6] Y. A. Shibanov and D. G. Yakovlev, Astron. Astrophys. 309 (1996) 171.

[7] D.G. Yakovlev and C.J. Pethick, Annu. Rev. Astron. Astrophys. 42 (2004) 169.

[8] A. Perego, S. Rosswog, R. Cabezón, O. Korobkin, R. Kaeppeli, A. Arcones, and M. Lieben-

doerfer, Mon. Not. Roy. Astro. Soc. 443 (2014) 3134.

[9] D. Martin, A. Perego, A. Arcones, F.-K. Thielemann, O. Korobkin, and S. Rosswog, Astro-

phys. J 813 (2015) 2.

[10] M. Frensel, M.-R. Wu, C. Volpe, and A. Perego, Phys. Rev. D 95 (2017) 023011

[11] I. Bombaci, Astron. Astrophys. 305 (1996) 871.

[12] M. Prakash, I. Bombaci, M. Praksh, P. J. Ellis, J. M. Lattimer, and R. Knorren, Phys. Rep.

280 (1997) 1.

[13] R. C. Duncan and C. Thompson, Astrophys. J. 392 (1992) L9.

[14] I. Sagert and J. Schaffner-Bielich, Astron. Astrophys. 489 (2008) 281.
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FIG. 1: The lowest order Feynman diagram for the scattering reaction ν + n → ν ′ + n′. The

quantities pi and q denote, respectively, the four–momentum of the involved particles and the

corresponding four–momentum transfer by the interaction.
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FIG. 2: Geometry of the scattering process. The magnetic field defines the z–axis. The incoming

neutrino, ν, has polar angle θν and without loss of generality we take its azimuthal angle φν equal

to zero. For the outgoing neutrino ν ′, we have a polar angle θν′ and an azimuthal angle φν′ . The

angle between ν and ν ′ is θνν′ defined through Eq. (26). Note that we have neglected the neutron

n, momenta.
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FIG. 3: Density dependence of the spin asymmetry A for: a) different values of the magnetic field

strength and b) different values of the temperature.
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FIG. 4: Density dependence of the spin up and spin down effective masses at T=15 MeV for B=0

G and B=2.5 × 1018 G.
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FIG. 5: Energy dependence of the structure function S0
±(q0, q, T ) for ρ = 0.16 fm−3. Results for

B=0 G with T=3 MeV and 15 MeV are shown in panel (a), whereas those for T=15 MeV and

B=0 G and B=2.5× 1018 G are presented in panel (b). In both panels the momentum transfer is

fixed to the value ~q = ~pν/2 with |~pν | = 3T .
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FIG. 6: Neutrino mean free path as a function of the density at T=3 MeV for B=0 G and

B=2.5 × 1018G. The angle between the incoming neutrino and the magnetic field is taken at

θν = π/2. For the momentum of the incoming neutrino we employ |~pν | = 3T .
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FIG. 7: Neutrino mean free path as a function of the density at B=1018 G and θν = π/2 for several

values of the temperature. For the momentum of the incoming neutrino we take |~pν | = 3T in panel

(a) and |~pν | = 15 MeV in panel (b).
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FIG. 8: Neutron spin down (λ−) and spin up (λ+) partial contribution to the mean free path

for T=15 MeV, B=1018G and B=2.5 × 1018 G and different values of θν . The momentum of the

incoming neutrino is |~pν | = 3T .
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FIG. 9: Dependence of the neutrino mean free path with the angle between the incoming neutrino

and the magnetic field, θν, for two values of the temperature and two values of the magnetic field

intensity. The momentum of the incoming neutrino is |~pν | = 3T .
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