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a b s t r a c t

Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observa-

tory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the

particular context of data reduction. We advance a procedure to this effect and show that

these types of signals can be approximated with high quality using significantly fewer ele-

mentary components than those required within the standard orthogonal basis framework.

Furthermore, a local measure sparsity is shown to render meaningful information about the

variation of a signal along time, by generating a set of local sparsity values which is much

smaller than the dimension of the signal. This point is further illustrated by recourse to a

more complex signal, generated by Milde Science Communication to divulge Gravitational

Sound in the form of a ring tone.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In 1905 Henri Poincaré first suggested that accelerated masses in a relativistic field should produce gravitational waves [1].

The idea was magisterially pursued by Einstein via his celebrated theory of general relativity. In 1918 he published his famous

quadrupole formula for gravitational radiation [2]. A century later, the LIGO Scientific Collaboration and Virgo Collaboration

published a paper about the gravitational radiation they had detected on September 2015 [3]. Ever since scientists believe to

have entered in a new era of astronomy, whereby the universe will be studied by ‘its sound’ [4–8]. Gravitational Sound (GS)

signals will then be here scrutinized with advanced techniques.

In the signal processing field, the problem of finding a sparse approximation for a signal consists in expressing the signal as a

superposition of as few elementary components as possible, without significantly affecting the quality of the reconstruction. In

signal processing applications the approximation is carried out on a signal partition, i.e., by dividing the signal into small pieces

and constructing the approximation for each of those pieces of data. Traditional techniques would carry out the task using an

orthogonal basis. However, enormous improvements in sparsity can be achieved using an adequate over-complete ‘dictionary’

and an appropriate mathematics method. For the most part, these methods are based on minimization of the l1-norm [9] or are

greedy pursuit strategies [10–18], the latter being much more effective in practice.

Sparse signal representation of sound signals is a valuable tool for a number of auditory tasks [19–21]. Vibration signal

processing also benefits by sparsity constraints [22,23]. Moreover, the emerging theory of compressive sensing [24–26] has

enhanced the concept of sparsity by asserting that the number of measurements needed for accurate representation of a signal

informational content decreases if the sparsity of the representation improves. Hence, when some GS tones made with the
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observed Gravitation Wave (GW) were released, we felt motivated to produce a sparse approximation of those clips.

We simply analyze the GS tones from a processing viewpoint, regardless on how and why they have been generated.

We consider a) a short tone made with the chirp gw151226 that has been detected, b) the theoretical simulated GS,

iota_20_10000_4_4_90_h, and c) the Black_Hole_Billiards ring tone, which is a more complex signal produced by superposi-

tion with an ad hoc independent percussive sound. The ensuing results are certainly interesting. If, in the future, GS signals are

to be generated at large scale (as astronomical images have been produced [27,28]), it is important to have tools for all kinds of

processing of those signals.

The central goal of this Communication is to present evidences of the significant gain in sparsity achieved if a GS signal is approxi-

mated with high quality outside the orthogonal basis framework. For demonstration purposes we have made available the MATLAB

routines for implementation of the method.

1.1. Preliminary definitions and notation

The traditional frequency decomposition of a signal given by N sample points, f (i), i = 1,… ,N, involves the Fourier expan-

sion

f (i) = 1√
N

M∑
n=1

c(n)e𝚤
2𝜋(i−1)(n−1)

M , i = 1,… ,N.

The values |c(n)|, n = 1,… ,M = N are called the discrete Fourier spectrum of the signal, and can be evaluated in a very effective

manner via the Fast Fourier Transform (FFT). For M > N even if the coefficients in the above expansion can still be calculated via

FFT, by zero padding, these are not longer unique. Finding a sparse solution is the goal of sparse approximation techniques.

The problem of the sparse approximation of a signal, outside the orthogonal basis setting, consists in using elements of a

redundant set, called a dictionary, for constructing an approximation involving a number of elementary components which is

significantly smaller than the signal dimension. For signals whose structure varies with time, sparsity performs better when the

approximation is carried out on a signal partition. In order to give precise definitions we introduce at this point the notational

usual conventions: ℝ and ℂ represent the sets of real and complex numbers, respectively. Boldface fonts are used to indicate

Euclidean vectors and standard mathematical fonts to indicate components, e.g., 𝐝 ∈ ℂN is a vector of N-components d (i) ∈
ℂ, i = 1,… ,N. The operation ⟨·, ·⟩ indicates the Euclidean inner product and ‖ · ‖ the induced norm, i.e. ‖𝐝‖2 = ⟨𝐝,𝐝⟩, with the

usual inner product definition: For 𝐝 ∈ ℂN and 𝐟 ∈ ℂN

⟨𝐟 , 𝐝⟩ = N∑
i=1

f (i) d∗(i) ,

where d∗(i) stands for the complex conjugate of d(i).
A partition of a signal 𝐟 ∈ ℝN is represented as a set of disjoint pieces, 𝐟q ∈ ℝNb , q = 1,… ,Q , henceforth to be called ‘blocks’,

which, without loss of generality, are assumed to be all of the same size and such that QNb = N. Denoting by Ĵ the concatenation

operator, the signal 𝐟 ∈ ℝN is ‘assembled’ from the blocks as 𝐟 = Ĵ
Q

q=1𝐟q. The concatenation operation Ĵ is defined as follows:

given 𝐟1 ∈ ℝNb and 𝐟2 ∈ ℝNb , the vector 𝐟 = 𝐟1 Ĵ 𝐟2 is a vector in ℝ2Nb having components f (i) = f1(i) for i = 1,… ,Nb, and f (i) =
f2(i − Nb) for i = Nb + 1,… , 2Nb. Thus, 𝐟 = Ĵ

Q

q=1
𝐟q is a vector in ℝQNb having components f (i) = fq(i − (q − 1)Nb), i = (q − 1)Nb +

1,… , qNb, q = 1,… ,Q . Consequently ⟨𝐟 , 𝐟⟩ = ‖𝐟‖2 =
∑Q

q=1

‖‖‖𝐟q
‖‖‖2

.

A dictionary for ℝNb is an over-complete set of (normalized to unity) elements = {𝐝n ∈ ℝNb ; ‖𝐝n‖ = 1}M
n=1

,which are called

atoms.

2. Sparse signal approximation

Given a signal partition 𝐟q ∈ ℝNb , q = 1,… ,Q and a dictionary , the kq-term approximation for each block is given by an

atomic decomposition of the form

𝐟kq

q =
kq∑

n=1

ckq (n)𝐝𝓁q
n
, q = 1,… ,Q. (1)

The approximation to the whole signal is then obtained simply by joining the approximation for the blocks as 𝐟K = Ĵ
Q

q=1𝐟
kq

q ,

where K =
∑Q

q=1
kq.

2.1. The method

The problem of finding the minimum number of K terms such that ‖𝐟 − 𝐟K‖ < 𝜌, for a given tolerance parameter 𝜌, is an NP-

hard problem [12]. In practical applications, one looks for tractable sparse solutions. For this purpose we consider the Optimized
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Hierarchical Block Wise (OHBW) version [29] of the Optimized Orthogonal Matching Pursuit (OOMP) [13] approach. This entails

that, in addition to selecting the dictionary atoms for the approximation of each block, the blocks are ranked for their sequential

stepwise approximation. As a consequence, the approach is optimized in the sense of minimizing, at each iteration step, the

norm of the total residual error ‖𝐟 − 𝐟K‖ [29]. As will be illustrated in Sec. 2.3, when approximating a signal with pronounced

amplitude variations the sparsity result achieved by this strategy is remarkable superior to that arising when the approximation

of each block is completed at once, i.e., when the ranking of blocks is omitted. The OHBW-OOMP method is implemented using
the steps indicated below.

OHBW-OOMP Algorithm

1) For q = 1,… ,Q initialize the algorithm by setting: 𝐫0
q
= 𝐟q, 𝐟0

q
= 0, Γq = ∅ kq = 0, and selecting the ‘potential’ first atom

for the atomic decomposition of every block q as the one corresponding to the indexes 𝓁q

1
such that

𝓁q

1
= arg max

n=1,…,M

||||⟨𝐝n, 𝐫
kq

q ⟩||||
2

, q = 1,… ,Q. (2)

Assign 𝐰q

1
= 𝐛q

1
= 𝐝𝓁q

1
.

2) Use the OHBW criterion for selecting the block to upgrade the atomic decomposition by adding one atom

q⋆ = arg max
q=1,…,Q

|⟨𝐰q

kq+1
, 𝐟q⟩|2‖‖‖‖𝐰q

kq+1

‖‖‖‖
2

. (3)

If kq⋆ > 0 upgrade vectors {𝐛
k

q⋆ ,q⋆

n }
k

q⋆

n=1
for block q⋆ as

𝐛
k

q⋆+1,q⋆

n = 𝐛
k

q⋆ ,q
⋆

n − 𝐛
k

q⋆+1,q⋆

k
q⋆+1

⟨𝐝q⋆

𝓁k
q⋆

+1
,𝐛

k
q⋆+1,q⋆

n ⟩, n = 1,… , kq⋆,

𝐛
k

q⋆+1,q⋆

k
q⋆+1

=
𝐰q⋆

k
q⋆+1‖‖‖‖𝐰q⋆

k
q⋆+1

‖‖‖‖
2
.

(4)

3) Calculate

𝐫
k

q⋆+1

q⋆
= 𝐫

k
q⋆

q − ⟨𝐰q⋆

k
q⋆+1

, 𝐟q⋆⟩ 𝐰q⋆

k
q⋆+1‖‖‖‖𝐰q⋆

k
q⋆+1

‖‖‖‖
2
,

𝐟
k

q⋆+1

q⋆
= 𝐟

k
q⋆+1

q⋆
+ ⟨𝐰q⋆

k
q⋆+1

, 𝐟q⋆⟩ 𝐰q⋆

k
q⋆+1‖‖‖‖𝐰q⋆

k
q⋆+1

‖‖‖‖
2
. (5)

Upgrade the set Γq⋆ ← Γq⋆ ∪ 𝓁k
q⋆+1 and increase kq⋆ ← kq⋆ + 1.

4) Select a new potential atom for the atomic decomposition of block q⋆, using the OOMP criterion, i.e., choose 𝓁q⋆

k
q⋆+1

such

that

𝓁q⋆

k
q⋆+1

= arg max
n=1,…,M
n∉Γ

q⋆

|⟨𝐝n, 𝐫
k

q⋆

q⋆
⟩|2

1 −
∑k

q⋆

i=1
|⟨𝐝n, �̃�

q⋆

i
⟩|2 , with �̃�q⋆

i
=

𝐰q⋆

i‖‖‖𝐰q⋆

i

‖‖‖ , (6)

5) Compute the corresponding new vector 𝐰q⋆

k
q⋆+1

as

𝐰q⋆

k
q⋆+1

= 𝐝q⋆

𝓁k
q⋆

+1
−

k
q⋆∑

n=1

𝐰q⋆

n‖𝐰q⋆

n ‖2
⟨𝐰q⋆

n ,𝐝q⋆

𝓁k
q⋆
⟩. (7)

including, for numerical accuracy, the re-orthogonalizing step:

𝐰q⋆

k
q⋆+1

← 𝐰q⋆

k
q⋆+1

−
k

q⋆∑
n=1

𝐰q⋆

n‖𝐰q⋆

n ‖2
⟨𝐰q⋆

n , 𝐰q⋆

k
q⋆+1

⟩. (8)



309L. Rebollo-Neira and A. Plastino / Journal of Sound and Vibration 417 (2018) 306–314
6) Check if, for a given K and 𝜌 either the condition
∑Q

q=1
kq = K + 1 or ‖𝐟 − 𝐟K‖ < 𝜌 has been met. If that is the case, for

q = 1,… ,Q compute the coefficients ckq (n) = ⟨𝐛kq

n , 𝐟q⟩, n = 1,… , kq. Otherwise repeat steps 2) - 5).

Remark 1. For all the values of q, the OOMP criterion (6) in the algorithm above ensures that, fixing the set of previously selected

atoms, the atom corresponding to the indexes given by (6) minimizes the local residual norm ‖𝐟q − 𝐟kq

q ‖ [13]. That is why in one

of the earliest references [30] is called Orthogonal Least Square. In our context the term OOMP also refers to the particular

implementation. Moreover, the OHBW-OOMP criterion (3) for choosing the block to upgrade the approximation, ensures the

minimization of the total residual norm [29]. Let us recall that the OOMP approach optimizes the Orthogonal Matching Pursuit

(OMP) one [11]. The latter is also an optimization of the plain Matching Pursuit (MP) method [10] (see the discussion in Ref.

[13]).

2.2. The dictionary

The degree of success in achieving high sparsity using a dictionary approach depends on both, the suitability of the mathe-

matical method for finding a tractable sparse solution and the dictionary itself. As in the case of melodic music [29,31], we found

the trigonometric dictionary T , which is the union of the dictionaries C and S given below, to be an appropriate dictionary

for approximating these GS signals.


x
C
=
{

wc(n) cos
𝜋(2i − 1)(n − 1)

2M
, i = 1,… ,Nb

}M

n=1


x
S
=
{

ws(n) sin
𝜋(2i − 1)(n)

2M
, i = 1,… ,Nb

}M

n=1

.

In the above sets wc(n) and ws(n), n = 1,… ,M are normalization factors.

Since a GS tone is characterized by ending in a sharp rise, we have found that a sparse model benefits by the inclusion

of a dictionary constructed by translation of the prototype atoms, 𝐩1,𝐩2 and 𝐩3 in Fig. 1. This type of dictionary is inspired

by a general result holding for continuous spline spaces. Namely, that spline spaces on a compact interval can be spanned by

dictionaries of B-splines of broader support than the corresponding B-spline basis functions [32,33]. Thus, the prototypes in

Fig. 1 are generated using linear B-spline functions of different support. For m = 1, 2, 3, they are defined as follows:

pm(x) =

⎧⎪⎪⎨⎪⎪⎩

x

m
if 0 ≤ x < m

2 − x

m
if m ≤ x < 2m

0 otherwise.

(9)

The corresponding dictionaries P1
, P2

and P3
are created by discretization of the variable x in (9) and sequential translation

of one sampling point, i.e.,

Pn
= {bipm(j − i)|Nb; j = 1,… ,Nb}M

i=1
, m = 1, 2, 3

where the notation pm(j − i)|Nb indicates the restriction to be an array of size Nb. The numbers bi, i = 1,… ,M are normalization

factors.

The dictionary P consisting of atoms of different support is built by merging P1
, P2

and P3
as P = P1

∪P2
∪P3

.

The whole mixed dictionary is then M = T ∪P , with T = C ∪S. Interestingly enough, the dictionary M happens to be
Fig. 1. Prototype atoms 𝐩1,𝐩2 and 𝐩3, which generate the dictionaries P1, P2 and P3 by sequential translations of one point.
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a sub-dictionary of a larger dictionary proposed in Ref. [34] for producing sparse representations of astronomical images. The

difference being that, in this case, sparsity does not improve in a significant way by further enlarging the dictionary.

From a computational viewpoint the particularity of the sub-dictionaries C and S is that the inner product with all its

elements can be evaluated via FFT. This possibility reduces the complexity of the numerical calculations when the partition unit

Nb is large [29,31]. Also, the inner products with the atoms of the dictionaries P2
and P3 can be effectively implemented, all

at once, via a convolution operation.

Note: The MATLAB routine implementing the OHBW-OOMP approach, dedicated to the dictionary introduced in this section,

has been made available on [35].

2.3. The processing

We process now the three signals we are considering here:

a) The audio representation of the detected gw151226 chirp [36].

b) The tone of the theoretical gravitational wave iota_20_10000_4_4_90_h [37].

c) The Black_Hole_Billiards ring tone [36].

The quality of an approximation is measured by the Signal to Noise Ratio (SNR) which is defined as

SNR = 10 log10
‖𝐟‖2‖𝐟 − 𝐟K‖2

= 10 log10

∑Nb,Q

i=1
q=1

|fq(i)|2
∑Nb,Q

i=1
q=1

|fq(i) − f
kq

q (i)|2 . (10)

The sparsity of the whole representation is measured by the Sparsity Ratio (SR) defined as SR = N

K
, where K is the total number

of coefficients in the signal representation defined above.

2.3.1. Audio representation of the chirp gw151226

This clip, made with the detected short chirp gw151226, is plotted in the graph (a) of Fig. 2. It consists of N = 65536 samples.

Graph (b) is its classic spectrogram.

When a trigonometric orthogonal basis for approximating this signal is used, the best sparsity result is achieved with the

Discrete Cosine Transform (DCT). Hence, we first approximate the clip, up to SNR = 50 dB, by nonlinear thresholding of the

DCT coefficients. As in the case of the dictionary approach, the approximation with DCT is carried out following two different

strategies. One of the strategies is identical to the OOMP one, but involves a straightforward implementation due to the orthog-

onality property of DCT. For each block, only the kq DCT coefficients of largest magnitude are kept. Each kq value is determined

by requesting an approximation of each block up to SNR = 50 dB. We term this strategy the nonlinear DCT (NL-DCT) approxi-

mation. The other strategy selects the DCT components in a OHBW manner to construct an approximation, up to SNR = 50 dB,

as described in Sec. 2.1. The implementation is much simpler though, due to the orthogonality of DCT. We refer to this method

as OHBW-NL-DCT. The results of the achieved SR, for both DCT-based strategies are given in the second and third columns of

Table 1 for different values of Nb. The forth and fifth columns of the table show the SR values for the OOMP and OHBW-OOMP

approaches, respectively, using the dictionary M given in Sec. 2.2. As can be observed in Table 1, the highest SR is obtained for

Nb = 2048 with the dictionaryM and applying the OHBW-OOMP method. However, while with the dictionary the SR decreases

for Nb = 4096, the DCT results improve. Since the DCT does not generate memory problems when increasing the value of Nb, we

have augmented this value until the maximum possible number was reached i.e. Nb = N = 65536. The conclusion of the study
Fig. 2. (a) represents the clip gw151226. The central dark line is the residual error of the approximation, up to SNR = 50 dB. (b) is the classic spectrogram of the clip in (a).
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Table 1

Comparison of the SRs produced by the DCT and dictionary approaches vs the length of the

partition unit Nb .

Nb NL-DCT OHBW-NL-DCT OOMP OHBW-OOMP

256 6.46 8.26 50.83 66.80

512 7.39 10.08 74.10 122.04

1024 9.02 11.96 126.51 206.08

2048 11.76 15.44 207.40 260.06

4096 12.51 18.93 107.01 253.03
is that for Nb = N = 65536 the DCT secures its best performance. Nevertheless the best DCT result is still very poor (SR = 28.7)

in comparison to the results obtained with both methods using the dictionary M . Notice that for Nb = 2048 the dictionary

approximation renders SR = 260.06 with the OHBW-OOMP method and SR = 207.40 with the OOMP one. Both values represent

an enormous improvement of sparsity in relation to the best DCT result.

2.3.2. Theoretical gravitational wave sound

This is the iota_20_10000_4_4_90_h gravitational wave, which belongs to the family of Extreme Mass Ratio Inspirals [38–43]

available on [37]. It consists of N = 458752 data points plotted in graph (a) of Fig. 3. The SRs obtained in the same way as for the

previous clip are shown in Table 2.

Also in this case the best sparsity result with the dictionary approach occurs for Nb = 2048. By increasing the value of Nb the

best DCT results (SR= 5.1) is obtained with Nb = 16384 and is less than half of the value of the best SR produced by the dictionary

approach (SR = 11.92). Since the amplitude of the signal does not vary much along time, the SR obtained by approximating each

block at once, with OOMP, does not significantly differ from the values obtained applying the OHBW-OOMP method. The same

feature is observed by comparing the NL-DCT and OHBW-NL-DCT results.

2.3.3. The Black_Hole_Billiards ring tone

In order to stress the relevance of the technique for representing features of more complex signals by means of a very reduced

set of points, we consider here the Black_Hole_Billiards ring tone available on [36]. This clip was created by Milde Science

Communication by superimposing a sound of percussive nature (the billiards sound) to a GW chirp. It consists of N = 262144

samples plotted in graph (a) of Fig. 4. Graph (b) is its classic spectrogram.

For this signal the approximation is carried out up to SNR = 40 dB. The central dark line in graph (a) of Fig. 4 represents the

difference between the signal and its approximation. The sparsity result are given in Table 3, from where it appears that the
Fig. 3. (a) represents the iota_20_10000_4_4_90_h tone. The central dark line is the residual error of the approximation, up to SNR = 50 dB. (b) is the classic spectrogram

of the clip in (a).

Table 2

Comparison of the SRs produced by the DCT and dictionary approaches, vs the length of the

partition unit Nb , for the iota_20_10000_4_4_90_h clip.

Nb NL-DCT OHWB-NL-DCT OOMP OHBW-OOMP

256 2.77 2.81 7.40 7.57

512 3.22 3.25 9.00 9.14

1024 3.60 3.61 10.47 10.70

2048 3.96 3.98 11.59 11.92

4096 4.39 4.39 11.45 11.73
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Fig. 4. (a) represents the Black_Hole_Billiards clip. Credit: Milde Science Communication. The central dark line is the residual of the approximation, up to SNR = 40 dB. (b)

is the spectrogram of the clip in (a).

Table 3

Comparison of the SRs produced by the DCT and dictionary approaches, vs the length of the

partition unit Nb , for the Black_Hole_Billiards clip.

Nb NL-DCT OHWB-NL-DCT OOMP OHBW-OOMP

256 3.07 5.67 6.75 12.92

512 3.34 6.12 6.80 13.82

1024 3.55 6.30 6.84 13.24

2048 3.62 6.31 6.78 12.81

4096 3.83 6.08 7.09 12.20
best dictionary result occurs for Nb = 512 with the OHWB-OOMP method, and the best DCT results occurs for Nb = 2048 with

the OHWB-NL-DCT approach. As in the previous cases, the NL-DCT result improves by increasing the value of Nb. The best result

(SR = 4.2) takes place for Nb = 16384, but is still smaller than the SR yielded by OHWB-NL-DCT (SR = 6.31). Notice that the latter

is not too far from the best result yielded by OOMP using the dictionary (SR = 7.09) but less than half of the value obtained using

the dictionary and the OHWB-OOMP approach (SR = 13.82). This outcomes highlights the importance of adopting the OHBW

strategy for constructing the signal approximation when, as in this example, the signal amplitude varies significantly along the

domain of definition.

2.4. The role of local sparsity

The SR is a global measure of sparsity indicating the number of elementary components contained in the whole signal. An

interesting description of the signal variation is rendered by a local measure of sparsity. For this we consider the local sparsity

ratio sr(q) = Nb

kq
, q = 1,… ,Q where, as defined above, kq is the number of coefficients in the decomposition of the q-block and

Nb the size of the block.

For illustration’s convenience the darker lines in both graphs of Fig. 5 depict the inverse of this local measure by joining

the values 1∕sr(q), q = 1,… ,Q . Each of these values is located in the horizontal axis at the center of the corresponding block
Fig. 5. The dark line in (a) joins the inverse local sparsity values for the clip gw151226. (b) has the same description but for the iota_20_10000_4_4_90_h clip tone.
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Fig. 6. The darker line in (a) joins the inverse local sparsity ratio values for the Black_Hole_Billiards ring tone. The darker lines in (b) discriminate the inverse local sparsity

ratio produced with atoms in the dictionary P (from bottom to top the first line) and in the dictionary T (next line).
and provides much information about the signal. Certainly, simply from the observation of the darker line graph (a) of Fig. 5

(joining 32 points of inverse local sparsity ratio for Nb = 2048) one can realize that the number of internal components in the

clip gw151226 is roughly constant along the audible part of the signal, with a relatively higher value only at the very end of this

part. In the case of the iota_20_10000_4_4_90_h clip (graph (b) in the same figure) the line joining the 224 points of the inverse

local sparsity ratio, for Nb = 2048, indicates a clear drop of sparsity towards the end of the signal, where the rapid rise of the

tone does occur (c.f. spectrogram in Fig. 3 (b)).

Since the Black_Hole_Billiards ring tone is a more complex signal, due to the superposition of the artificial sound, the infor-

mation given by the local sparsity ratio is richer than in the previous cases. Notice for instance that the darker line in graph (a)

of Fig. 6 clearly indicates the offsets in the percussive part of the clip which has been superimposed to the GS chirp. Moreover

this line, joining 512 points of inverse local sparsity ratio (for Nb = 512) also roughly follows the signal variation envelop. Graph

(b) discriminates the local sparsity corresponding to atoms in the trigonometric component of the dictionary, and those in the

dictionary P . The first line (from bottom to top) represents the inverse local sparsity values corresponding to atoms in P and

the next line to atoms in T . In this clip 20% of atoms are from dictionary P and, as indicated in the graph (b) of Fig. 6, a signif-

icant contribution of those atoms takes place within the blocks where the rapid rise of the GS tone takes place (c.f. spectrogram

in Fig. 4 (b)). Equivalently, for the clip in Fig. 3 17.9% of the atoms belongs to the dictionary P . For the clip of Fig. 2, however,

only 2.7% of the atoms comes from the to dictionary P . This is due to the fact that, unlike the signals in Figs. 3 and 4, the clip in

Fig. 2 does not exhibit a major leap in its spectrogram.

3. Conclusions

We have here advanced an effective technique for the numerical representation of Gravitational Sound clips produced by the

Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT). The tech-

nique is inscribed within the particular context of sparse representation and data reduction. We laid out a procedure to this

effect and were able to show that these types of signals can be approximated with high quality using significantly fewer ele-

mentary components than those required within the standard orthogonal basis framework. A local measure of sparsity has been

shown to produce meaningful information about the signal internal variations along time. This information is contained in a set

of points which is much smaller than the length of the signal.
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