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Abstract

Apple snails (Pomacea Perry, 1810) are successful invaders, causing ecological perturbations, 

economic losses and medical issues. A peculiar trait of this snail is high biological potential, 

related to the absence of predators of their eggs. Eggs show protease inhibitor (PI) activity, 

originally ascribed to PcOvo perivitellin in Pomacea canaliculata (Lamarck, 1822) but absent in 

PmPV1, the orthologoue of PcOvo, in Pomacea maculata Perry, 1810 eggs. As egg fluid 

diminishes rat growth rate, an anti-digestive effect, similar to plant defenses against herbivory, 

was hypothesized. However, PI activity has not been characterized in apple snail eggs. Here we 

identify and partially characterize P. canaliculata egg PI, and improve our knowledge of the 

quaternary structure and evolution of PcOvo. Through N-terminal, transcriptomic/proteomic 

sequencing and biochemical validation, we identified a Kunitz-type and a Kazal-type inhibitor 

which, though at low concentration in the egg, exhibit strong PI activity against trypsin, 

chymotrypsin, elastase and subtilisin. Additionally, we report three new subunits for the non-

digestible storage protein PcOvo. They are likely products of ancient gene duplication, as their 

sequences exhibit moderate similarity (30%). To our knowledge, this is the first report of Kazal-

type inhibition among invertebrate eggs. Inhibiting varied proteases, PI seems an efficient 

adaptive trait that limits predator´s capacity to digest egg nutrients.

Keywords: protease inhibitor; invasive species; snail; Pomacea; predation defenses; egg defenses
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Introduction

The apple snail Pomacea canaliculata (Lamarck, 1822) is an invasive species. Among 

the multiple characteristics that make this snail an effective invader stands its high biological 

potential, as the females have high fecundity and the eggs have a high hatching success (Tamburi 

and Martín 2011; Gilioli et al. 2017). These eggs are laid outside the water and, despite being red 

and conspicuous, they have almost no predators, probably due to a set of defenses including 

toxins, non-nutritive and antidigestive molecules (Dreon et al. 2013; Pasquevich et al. 2017). 

This latter mechanism of accumulating proteins that impair digestion is of interest since, 

although widely studied in plant leaves and seeds, it has seldom been identified in animals. For 

instance, a number of seeds defend embryos against herbivory with antidigestive proteins 

(protease inhibitors or PIs) often in combination with antinutritive proteins (resistant to digestive 

proteases). The combined action of these proteins limits predator´s capacity to digest nutrients, 

lowering the nutritional value of seeds (Felton 2005). In animals, PIs have been reported in many 

eggs of both vertebrates and invertebrates (Yamashita and Konagaya 1996; Saxena and Tayyab 

1997; Han et al. 2008). However, their role in eggs, unlike those in seeds, has been largely 

interpreted either as regulators of endogenous protease activity, or as a defense against microbial 

and pathogen proteinases (Benkendorff et al. 2001; Nagle et al. 2001; Wesierska et al. 2005; Han 

et al. 2008; Hathaway et al. 2010). In fact, their role as a chemical defense against predation in 

animals has only been reported in the foam nests that surround the eggs of the túngara frog 

Engystomops pustulosus (Lynch, 1970) (Fleming et al. 2009) and in the perivitelline fluid of the 

eggs of Pomacea canaliculata (Dreon et al. 2010; Dreon et al. 2013).
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We focus our study in P. canaliculata eggs, which display a warning coloration 

(aposematic), and have only very few reported predators (Yusa 2001; Stevens 2015). It is known 

that defenses tend to be integrated by multiple noxious substances that aim at different predator 

targets (Ruxton et al. 2004). Indeed, P. canaliculata egg defenses combine antinutritive, 

antidigestive and neurotoxic proteins, named perivitellins (Dreon et al. 2010; Dreon et al. 2013; 

Dreon et al. 2014), some affecting rat intestinal morphology and absorptive surface that lead to a 

decreased growth rate (Dreon et al. 2014). The combination of these varied defenses is similar to 

plant antipredator strategies and, associated with the aposematic display, would explain the near 

absence of predators (Hayes et al. 2015). 

Among P. canaliculata egg defensive perivitellins stands PcOvo, a non-digestible 

oligomeric storage protein largely accumulated in the egg (Dreon et al. 2013). In the early 

1970´s, PcOvo (named ovorubin at that time) was reported to inhibit trypsin and the microbial 

proteases takadiastase, pronase and subtilisin (Norden 1972). It was assumed by this author 

that PcOvo prevented microbial growth acting as an immune molecule. However, the aposematic 

coloration called for a different interpretation: that PI could also be a defense against predation. 

Following this hypothesis, later experiments by Dreon et al (2010) reported that PcOvo did not 

prevent bacterial growth and that feeding either egg perivitelline fluid or PcOvo to rats 

diminished their growth rate; thus, the trypsin inhibition activity was linked to a plant-like 

antidigestive defense. Studies on plant seeds showed that effective antidigestive proteins should 

be active in a wide pH range and also inhibit a variety of enzymes (Terada et al. 1994). PcOvo is 

indeed stable in a wide range of pH values, although specific inhibitory activity has not been 

evaluated yet. Recently, PI activity was found in the eggs of a related species, P. maculata, but 

was not ascribed to PmPV1 (Pasquevich et al. 2017), the orthologue of PcOvo. In addition, the 
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sequences of three PcOvo subunits were reported but no protease inhibitor domain was found 

(Sun et al. 2012). 

Here we show that there are three additional subunits in the PcOvo oligomer, and that these 

polypeptides display interesting evolutionary relationships among them and with the 

carotenoprotein PmPV1. We found neither antiprotease motifs nor antiprotease activity in 

PcOvo. Instead, we found that antiprotease activity is confined to an up to now unexplored egg 

protein fraction, PV3. The present study reports two PIs belonging to the Kunitz (PcKu) and 

Kazal families (PcKa) which are active against diverse serine proteases (trypsin, chymotrypsin, 

elastase and subtilisin). We report the first Kazal-type PI among invertebrate eggs.

Methods

Ethics Statement

All studies performed with animals were carried out in accordance with the Guide for the Care 

and Use of Laboratory Animals (Council 2011) and were approved by the ‘‘Comite´ 

Institucional de Cuidado y Uso de Animales de Experimentación (CICUAL)’’ of the School of 

Medicine, UNLP (Permit No. P01-01-2016).

Protein purification

Eggs were collected from a Pomacea canaliculata colony reared in the laboratory at 25 °C, 

12:12 h L:D photoperiod, and fed with roman lettuce ad libitum. Egg proteins were purified from 

freshly-laid egg clutches (not older than 24 h) by ultracentrifugation, ion exchange and size 

exclusion chromatography as previously described (Dreon et al. 2013). A workflow diagram is 
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presented in figure 1. Protein concentration was measured by the method of Lowry (Lowry et al. 

1951). Native and SDS-PAGE for samples and molecular weight standards (GE Healthcare, 

Uppsala, Sweden) were performed in a Mini-Protean III System (Bio Rad, Hercules, CA) 

following manufacturer’s instructions.

PIs were partially purified from PV3, a heterogeneous fraction obtained by density gradient 

ultracentrifugation (Garín et al. 1996). Several protein fractions were obtained by ion exchange 

chromatography using a Mono Q column (GE Healthcare) equilibrated with 20 mM Tris/HCl 

buffer pH 8.5 and using 1 M NaCl as eluting buffer (Dreon et al. 2003). These fractions were 

tested for PI capacity and positive ones were further analyzed by SDS-PAGE, blotted onto 

PVDF membranes and submitted for Edman N-terminal sequencing (see below).

PcOvo diversity among clutches

Individual egg masses were collected from different females. PcOvo (5 µg) samples (purified as 

stated above) were denatured in SDS-PAGE sample buffer and subjected to electrophoresis using 

15 % polyacrylamide in 0.375 M BisTris gels. The gels were run in 0.05 M MOPS, 0.05 M Tris, 

0.001 M EDTA, 0.1 % (p/v) at 100 v, and stained with rapid Coomassie Brilliant Blue stain 

(Echan and Speicher 2002). Two PcOvo samples were further subjected to two-dimensional 

electrophoresis 2DE, following a method previously described (Pasquevich et al. 2014). In short, 

the first dimension was carried out with immobilized pH gradient (IPG)-isoelectric focusing 

(IEF) in an Ettan IPGphor III (GE Healthcare) using 7 cm linear pH 3–10 Immobiline dry strips 

(GE Healthcare) loaded with 25µg of purified protein.  For the second dimension, the IPG strips 

were sealed on the top of 1.5 mm thick 12% polyacrylamide gels and run at 30 mA. Gels were 

stained with a colloidal suspension of Coomassie Brilliant Blue R-250 (Sigma-Aldrich). 
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Perivitellin N-Terminal sequencing

Purified PcOvo subunits and HPLC fractions of PV3 were sequenced by Edman degradation at 

the Laboratorio Nacional de Investigación y Servicios en Péptidos y Proteínas (LANAIS-PRO, 

Universidad de Buenos Aires—CONICET). The system used was an Applied Biosystems 477a 

Protein/Peptide Sequencer interfaced with an HPLC 120 for one-line phenylthiohydantoin amino 

acid analysis. Sequences were deposited in GenBank (accession No: Pca61989_c2_g1).

Sequence analysis

BLASTp searches in NCBI’s non-redundant database were applied to identify the Kunitz-type 

inhibitor (PcKu), and manual searches in P. canaliculata published egg proteome (Sun et al. 

2012) were performed to identify the Kazal-type inhibitor (PcKa). Reciprocal best-hit BLAST 

was employed to find orthologues between the six PcOvo subunits and P. maculata egg protein 

subunits (Ip et al. 2018). Sequence alignments were performed using MAFFT (Katoh et al. 2017) 

with default settings. To determine the divergence of the several pairs of orthologues in the two 

species of snails, PmPV1 and PcOvo subunits sequences were subjected to phylogenetic 

analysis using the Maximum Likelihood model and 1000 of bootstrap replicates were applied to 

construct the tree with the Jones-Taylor-Thornton (JTT) model in MEGA6 (Tamura et al. 2013). 

Default settings were applied for other options.

3D Homology models of PcKu and PcKa were constructed using Phyre2 under the intensive 

option setting (Kelley et al. 2015). N-Glycosylation sites were predicted with Net-Glyc 1.0 

(Blom et al. 2004). Secondary structure was predicted using the JPred 4 (Drozdetskiy et al. 2015) 

server using default parameters. 
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Inhibition of protease activity

To assay protease inhibition capacity, the enzymes were preincubated with the protein samples 

(in 0.02 M Tris/HCl buffer pH 7.0) for 5 min at 20 °C and prior to measuring activity with 

specific chromogenic substrates; negative controls enzymes were incubated with 0.02 M 

Tris/HCl buffer pH 7.0. Trypsin from bovine pancreas (Sigma-Adrich, #T9935) was assayed 

with 0.025 mM N-benzoyl-L-arginine ethyl ester (BAEE) in 0.067 M phosphate buffer pH 7.6 at 

37 °C, in an enzyme:sample ratio 4 µg:15 µg, measuring absorbance at 253 nm (Schwert and 

Takenaka 1955). Subtilisin from B. licheniformis (Sigma-Aldrich #P5380) was also assayed 

with  0.025 mM BAEE in 0.067 M phosphate buffer, pH 7.6 at 50 °C in an enzyme:sample ratio 

12 µg:15 µg (Schwert and Takenaka 1955). α-Chymotrypsin from bovine pancreas (Sigma-

Aldrich #C3142) was assayed with 1.18 mM N-benzoyl-L-tyrosine ethyl ester (BTEE) in 0.08 M 

Tris/HCl buffer pH 7.8, 2 M CaCl2 at 25 °C in an enzyme:sample ratio 3.5 µg:15 µg, measuring 

absorbance at 256 nm (Wirnt and Bergmeyer 1974). Elastase from porcine pancreas (Sigma-

Aldrich #E1250) inhibition was determined with 4.4 mM N-succinyl-Ala-Ala-Ala p-nitroanilide 

in 0.1 M Tris/HCl buffer pH 8.0 at 25 °C in an enzyme:sample ratio 1.2 µg:15 µg, measuring 

absorbance at 410 nm (Bieth et al. 1974). Enzymes and substrates were from Sigma Aldrich, all 

measurements were performed in triplicate using an Agilent G1103A spectrophotometer (Agilent 

Technologies), differences between control and inhibited were tested by unpaired Student’s t-

test, using Prism v6.01.

Results
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Three new PcOvo subunits but no PI sequences

Apart from the three PcOvo subunits already reported (Sun et al 2012), three additional 

polypeptides were identified by mass spectrometry and transcriptomic analysis as part of the 

oligomeric particle PcOvo (Fig. 2). These proteins, correspond to the previously reported but not 

identified sequences PcOvo-4 (AFQ23945.1, perivitellin protein SSH95), PcOvo-5 

(AFQ23937.1, perivitellin protein SSH2) and PcOvo-6 (No Pca61989_c2_g1 Ip et al. 2018) and 

consist of 184, 203, 181 aminoacid residues, respectively. The three new polypeptides share only 

between 21% to 34% sequence identity with the previously reported subunits (PcOvo-1, PcOvo-

2 and PcOvo-3) (Fig. 2), though the previously identified sequence motif (GXSWPR) is 

conserved, as well as the N-glycosylation site (NXS/T). Similarly, secondary structure prediction 

showed the six subunits share a mixed helix/strand fold, with a conserved pattern. 

Interestingly, searches in NCBI non-redundant database showed that each of the six subunits has 

relatively high sequence similarity (81-94%) to transcripts of P. maculata; that correspond to the 

six subunits of PmPV1, the major perivitellin of P. maculata (Fig. 3) (Mu et al. 2017b; 

Pasquevich et al. 2017).

Alignments and phylogenetic analysis showed that PcOvo-6 is more closely related to previously 

reported OVO3, while the other two (PcOvo-4 and PcOvo-5) form an independent group 

(Supplementary Fig. S1). This large number of moderately similar sequences assembled into one 

oligomeric protein is intriguing. One possible explanation would be that the subunits were all 

structurally and functionally equivalent, which led us to evaluate if there was subunit 

heterogeneity/variability among individuals. An electrophoretic analysis, using of PcOvo 

purified from four egg masses coming from different females, revealed important differences in 

the number, relative proportion and size of the subunits among individuals (Fig. 4A arrows). 
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These individual differences are further analyzed by 2DE gels of those PcOvo samples showing 

most differences in SDS PAGE. A marked difference in their isoelectric point profiles was 

observed (Fig. 4B, arrows), indicating variations in the glycosylation pattern of the subunits, as 

previously reported (Ituarte et al. 2010). 

Remarkably, bioinformatic analyses showed none of the 6 PcOvo subunits contain protease 

inhibitor motifs. In view of this, we screened the all fractions of the egg for PI activity (Fig. 2).

Protease inhibitors are present in PV3 fraction

First, we checked PI activity in the three major egg protein fractions: PV1 (which contains the 

PcOvo perivitellin); PV2 and PV3 (Fig. 1). Trypsin inhibition was detected only in fraction 

PV3, a heterogeneous protein fraction previously reported but not characterized (Garín et al. 

1996) (Fig. 5A). This fraction also inhibited the serine proteases -chymotrypsin, elastase and 

subtilisin (Fig. 5B). 

Chromatography followed by electrophoresis of PV3 fraction indicated that it is composed 

mainly of 3 polypeptides. N-terminal sequencing allowed us to identify two protease inhibitors - 

a Kunitz-type (AFQ23943.1) and a Kazal-type inhibitor (SSH 140 in Sun et al. 2012).

The Kunitz-type inhibitor (PcKu) is 207 residues long, including a signal peptide of the first 21 

residues, and three Kunitz motifs arranged in tandem (Fig. 6 A, B). Each domain shows the 

Kunitz-type serine protease inhibitor superfamily signature (Fx2GGCx6Fx5C), and the six-

cysteine pattern. The active sites in two of the domains have Lys and Arg residues, indicating 

affinity to trypsin; the central domain, however, has a Gln residue, indicating it would be 

inactive. Multiple sequence alignment with other members of the Kunitz family showed that the 
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three domains have highly conserved sequences which allowed building a 3D model of the 

inhibitor (Fig. 6C, D). 

The Kazal-type inhibitor is a 63 residues polypeptide, PcKa. This polypeptide has a single Kazal 

motif with the six Cys residues signature (C-X6-C-X7-C-X10-C-X8-C-X7-C) and bears a Leu 

residue at the P1 position (Fig. 7A, B). According to literature, Kazal PIs with Leu at P1 position 

inhibit chymotrypsin, pancreatic elastase and subtilisin (Rimphanitchayakit and Tassanakajon 

2010); our enzyme inhibition tests confirmed all three inhibitory activities in PcKa. The Kazal 

has moderate to high sequence similarity with those of other animals (Fig. 7D) and a 

phylogenetic analysis showed high sequence similarity with its ortholog of P. maculata.

Discussion

Our understanding of the structure and role of egg chemical defenses against predation 

lags far behind that of defenses against pathogens. In gastropod eggs there are many reports 

showing the presence of defensive molecules, mostly with a role in immune protection 

(Benkendorff et al. 2001; Hathaway et al. 2010). Knowledge on Pomacea canaliculata 

perivitellins provides insights into putative roles for protein inhibitors and antinutritive proteins 

as defenses against predation. In the present study we further characterized the structure of the 

major antinutritive protein of the eggs, sequenced and evaluated the activity of a Kunitz-type PI 

and provide the first report of a Kazal-type PI in invertebrate eggs.

PcOvo subunits and potential functions in eggs
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Although PcOvo is a physiologically, ecologically, evolutionarily (Heras et al. 2007; 

Dreon et al. 2008; Dreon et al. 2010; Hayes et al. 2015), and even commercially (Wu and Yang 

2008) interesting protein, many aspects of its structure and putative functions remain to be 

clarified.

The moderate sequence similarity among the 6 PcOvo subunits (around 30%) found in 

this study indicates that gene expansion occurred early in the evolution of the species. The fact 

that all the paralogs retained a similar function after the expansion is not new (Zhang 2003), and 

may be related to the very high rate of PcOvo synthesis during the reproductive season, as this 

perivitellin is the most highly expressed transcript of the albumen gland capsule gland complex 

(Cadierno et al. 2018). The moderate to high divergence among paralogues may be explained 

through the high structural stability reported for this protein, as it is known that kinetically stable 

proteins may tolerate several substitutions without general functional loss (Bloom et al. 2006). 

Indeed, secondary structure prediction shows that the paralogues have conserved helix/strand 

patterns, indicating that the substitutions did not alter the basic fold of the subunits. Kinetic 

stability and the non-digestible properties were experimentally demonstrated in the PcOvo 

orthologue PmPV1, the major perivitellin of Pomacea maculata Perry, 1810, which, when orally 

administered, was able to pass unaltered through the digestive tract of mice (Pasquevich et al. 

2017). On the contrary, these egg storage proteins provide a rich source of amino acids for the 

developing embryo (Heras et al. 1998; Koch et al. 2009).

We searched Ampubase (Ip et al. 2018) and observed that the newly found PcOvo 

subunits PcOvo-4 and PcOvo-6 have high similarity orthologues in P. maculata. Sequence 

similarity between these subunits and their orthologs (>90%) (Mu et al. 2017b; Pasquevich et al. 

2017) suggests all these subunits were present already in the common ancestors of these two 
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species of Pomacea. As a whole these results further support the hypothesis that gene duplication 

occurred long before speciation and also suggest short speciation times in the genus (Sun et al. 

2012; Pasquevich et al. 2017). 

The intraspecific variability observed in the composition of PcOvo subunits could be associated 

to the dual function of the protein both as a nitrogen source for the developing embryo (Heras et 

al. 1998; Koch et al. 2009) and as an antinutritive (non-digestible) protein for protection against 

predators (Dreon et al. 2010; Pasquevich et al. 2017). Evidently, these roles of PcOvo do not 

pose a major constraint to maintain a particular amino acid sequence, nor to conserve a strict 

stoichiometric relationship among subunits, as was observed. However, the exact adaptive 

significance of this variability is still unclear. 

Protease inhibitors of P. canaliculata eggs are small proteins

As mentioned, PIs are involved in essential biological roles including defense (Saxena and 

Tayyab 1997). Early reports in P. canaliculata showed that protease inhibition activity was 

associated to the large and abundant storage protein PcOvo (Norden 1972; Dreon et al. 2010). In 

the present study neither protease inhibitor activity nor inhibitor sequences were detected in 

PcOvo. This discrepancy prompted us to search for antiprotease activity in other egg proteins 

and found them to be in a low MW fraction of the egg fluid. The methodology employed 

indicates that PV3 fraction holds P. canaliculata egg antiprotease activity, associated to two 

small serine-protease inhibitors at low concentration. One was the previously reported Kunitz-

type inhibitor (PcKu) and the other, PcKa, is a single domain Kazal-type polypeptide. 

The Kunitz inhibitor possesses three inhibitory domains, although bioinformatic analysis of the 

P1 active residues suggest that only two of them would be active, while the other is inactivated 
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by a substitution in one of the residues of the active site (Guo et al. 2004; Ranasinghe and 

McManus 2013). Multi-domain Kunitz inhibitors are present in many invertebrates and often 

inhibit more than one protease (Rimphanitchayakit and Tassanakajon 2010); in the case of PcKu 

the presence of lysine and arginine residues in the active site, indicates that both active domains 

would inhibit trypsin. We wondered if the amount of this inhibitor would account for the activity 

of eggs against the digestive proteases of a potential predator. Assuming an egg clutch has ~300 

eggs (Estebenet and Martín 2002), and that a single egg weights ~20 mg (Dreon et al. 2004), 

there would be an estimate of 200 µg of PV3 proteins (Heras et al. 1998) in an egg clutch. As 

only 15 µg PV3 was used in the inhibition assays (Fig. 5), the amount of PI of an egg clutch 

should be sufficient to account for their strong activity against digestive proteases. 

The anti-subtilisin activity previously reported was rather puzzling, since Kunitz type inhibitors 

do not act on this enzyme. This was clarified by the discovery of a Kazal-type inhibitor, PcKa. a 

family of inhibitors known to inhibit subtilisin. This is, to our knowledge, the first report of a 

Kazal inhibitor in invertebrate eggs. The combined activity of these two inhibitors explained the 

inhibition of subtilisin activity, as well as the early reports of pronase and takadiastase 

inhibition (Norden 1972). The Kazal polypeptide contains a single inhibitory domain, which is 

uncommon in invertebrates where multidomain Kazal inhibitors seem to be characteristic 

(Rimphanitchayakit and Tassanakajon 2010). In some cases invertebrates synthesize a multi-

domain polypeptide which is posttranslationally processed to render single-domain Kazal 

inhibitor (Rimphanitchayakit and Tassanakajon 2010); this would not be the case with apple 

snail PcKa since the mRNA already shows a single domain. The size of both PI lies within the 

size range reported for PIs (Ryan 1989; Walsh and Twitchell 1991; Gatehouse et al. 1998). 

Unlike the ubiquitous Kunitz family, the Kazal family (MEROPS I1A. 

Page 14 of 36

https://mc06.manuscriptcentral.com/cjz-pubs

Canadian Journal of Zoology



Draft

15

http://merops.sanger.ac.uk/cgi-bin/famsum?family=i1) is mostly represented in metazoans with a 

few exceptions.

These two inhibitors display an amino acid composition enriched in cysteine residues, a common 

feature shared by all members of these PI families. These cysteines form several disulfide bonds 

that confer stability to heat, pH changes, and proteolysis (Alves García et al. 2004; Teles et al. 

2005). This enhanced stability was reported to allow several PIs of plants to withstand the 

digestive system of predators and, in fact, plant PIs are commonly described as defense-related 

strategies against herbivory (Joanitti et al. 2006). This seems be the case of apple snail egg 

inhibitors.

In vertebrates, Kunitz inhibitors play a major role in inflammatory processes while in 

invertebrates they are involved in a range of diverse functional roles (Ranasinghe and McManus 

2013). We interpret the presence of these inhibitors as part of the egg defenses conferring 

predator resistance. PIs might be involved in decreasing growth rate and the intestinal morpho-

physiological alterations observed in model predators fed with P. canaliculata perivitelline fluid 

(Dreon et al. 2014). However, another role regulating endogenous proteolytic activities cannot be 

discarded. These inhibitors are conserved in other members of the genus like the sympatric 

species P. maculata (Mu et al. 2017a).

As a whole, these results further extend the number of apple snail egg perivitellins involved in 

defenses: 1.- PcOvo provides warning coloration (aposematic); 2.- The massive accumulation of 

PcOvo and PcPV2 (together >70% of total egg protein) provide non-digestible, antinutritive 

properties; 3.- The much less represented PcKu and PcKa provide with antiprotease activity 

against a wide range of digestive enzymes. Moreover, P. canaliculata eggs are further protected 
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by a neurotoxin, and a lectin-like activity affecting intestinal morpho-physiology, generating a 

cocktail of defenses that, to the best of our knowledge, is unique in nature.

Conclusion

Pomacea canaliculata eggs have acquired perivitellins that may lower the nutritional value of 

proteins and render egg less appealing to potential predators. In this study we provide evidence 

that this system includes low amounts of Kazal and Kunitz-type PIs that can act against a wide 

range of proteases. When eggs are ingested, these inhibitors would increase the half-life of the 

toxin PcPV2 and other egg defensive proteins within the digestive tract, further decreasing the 

nutritional value of non-digestible proteins like PcOvo. This system seems evolutionary 

conserved in other members of the genus. These defenses combined are an efficient adaptive trait 

that limits predator´s capacity to digest egg nutrients. The success of this strategy, may be related 

to the invasiveness of these species.
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Figure captions

Figure 1. Workflow diagram of the experiments.

Figure 2. Sequences of PcOvo subunits. Multiple sequence alignment of PcOvo subunits, 

showing conserved residues, N-glycosylation sites and secondary structure prediction. 

Ovorubin-1, Ovorubin-2 and Ovorubin-3 reported in Sun et al. (2012); PcOvo-4 

(AFQ23945.1), PcOvo-5 (AFQ23937.1) and PcOvo-6 (Pca61989_c2_g1) this study. 

Figure 3. Phylogenetic tree of PcOvo subunits and their orthologs. The tree was constructed 

using the Maximum Likelihood method based on the JTT matrix-based model. The percentage of 

trees in which the associated taxa are clustered together is shown next to the branches. Branch 

lengths are measured as the number of substitutions per site. The prefixes Pc and Pm indicate 

Pomacea canaliculata (Lamarck 1822) and Pomacea maculata Perry, 1810, respectively. 

Ovorubin-1 (AFQ23940), Ovorubin-2 (AFQ23938.1) and Ovorubin-3 (AFQ23939.1) reported 

in Sun et al. (2012), PcOvo-4 (AFQ23945.1), PcOvo-5 (AFQ23937.1) and PcOvo-6 

(Pca61989_c2_g1) this study.

Figure 4. Differences among egg clutches in the relative proportions of PcOvo subunits. A: 

SDS-PAGE of PcOvo purified from four different egg masses (1-4); B: 2DE gel of egg masses 2 

and 3. Arrows indicate major differences between samples.

Figure 5. Protease inhibition activity of major egg protein fractions of P. canaliculata eggs. 

A, Capacity to inhibit trypsin of the egg fractions. B, Capacity to inhibit proteases of the PV3 

fraction. Control: the corresponding enzyme with buffer instead of PV3. Asterisks indicate 

Student’s t-test p<0.001.

Figure 6. Kunitz-type inhibitor from the apple snail eggs. A, Complete sequence of PcKu. 

Signal peptide is in italics, the three Kunitz-type domains are in bold. B, Sequence diagram 

showing the three Kunitz-type domains in tandem. C, Homology model. D, Multiple sequence 
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alignment of the PcKu domain with other domains of the family, showing conserved sequence 

features; inhibitory active residue indicated as P1.

Figure 7. Kazal-type inhibitor of apple snail egg. A, Complete sequence of PcKa. Signal 

peptide is in italics, N-terminal sequence is underlined, the Kazal-type domain is in bold. B, 

Sequence diagram showing the putative disulfide bonds. C, Homology model. D, Multiple 

sequence alignment of the PcKa domain with other domains of the family, showing conserved 

sequence features; inhibitory active residue indicated as P1.
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Figure 1. Workflow diagram of the experiments. 
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Figure 2. Sequences of PcOvo subunits. Multiple sequence alignment of PcOvo subunits, showing conserved 
residues, N-glycosylation sites and secondary structure prediction. ovorubin-1, ovorubin-2 and ovorubin-3 

reported in Sun et al. (2012); PcOvo-4 (AFQ23945.1), PcOvo-5 (AFQ23937.1) and PcOvo-6 
(Pca61989_c2_g1) this study. 
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Figure 3. Phylogenetic tree of PcOvo subunits and their orthologs. The tree was constructed using the 
Maximum Likelihood method based on the JTT matrix-based model. The percentage of trees in which the 

associated taxa are clustered together is shown next to the branches. Branch lengths are measured as the 
number of substitutions per site. The prefixes Pc and Pm indicates Pomacea. canaliculata (Lamarck 1822) 

and Pomacea. mMaculata Perry, 1810, respectively. Ovorubin-1 (AFQ23940), Ovorubin-2 (AFQ23938.1) and 
Ovorubin-3 (AFQ23939.1) reported in Sun et al. (2012), PcOvo-4 (AFQ23945.1), PcOvo-5 (AFQ23937.1) 

and PcOvo-6 (Pca61989_c2_g1) this study. 
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Figure 4. Differences among egg clutches in the relative proportions of PcOvo subunits. A: SDS-PAGE of 
PcPV1 PcOvo purified from four different egg masses (1-4); B: 2DE gel of egg masses 2 and 3. Arrows 

indicate major differences between samples. 
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Figure 5. Protease inhibition activity of major egg protein fractions of P. canaliculata eggs. A, Fractions 
obtained after ultracentrifugation. B, Capacity to inhibit trypsin of the egg fractions in A. CB, Capacity to 
inhibit proteases of the PcPV3 fraction. Control: the corresponding enzyme with buffer instead of PcPV3. 

Asterisks indicate Student’s t-test p<0.001. 

209x297mm (300 x 300 DPI) 

Page 34 of 36

https://mc06.manuscriptcentral.com/cjz-pubs

Canadian Journal of Zoology



Draft

 

Figure 6. Kunitz- type inhibitor from the apple snail eggs. A, Complete sequence of PcKu. Signal peptide is in 
italics, the three Kunitz-type domains are in bold. B, Sequence diagram showing the three Kunitz-typeU 

domains in tandem and putative disulphide bridges. C, Homology model. D, Multiple sequence alignment of 
the PcKuU domains with other domains of the family, showing conserved sequence features; inhibitory 

active residue indicated as P1. 
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Figure 7. Kazal Kazal-type inhibitor of apple snail egg. A, Complete sequence of PcKunitzPcKa. Signal 
peptide is in italics, N-terminal sequence is underlined, the three KunitzKa-type domains is in bold. B, 

Sequence diagram showing the three KU domains in tandem and putative disulphide disulfide bridgesbonds. 
C, Homology model. D, Multiple sequence alignment of the PcKU PcKa domainns with other domains of the 

family, showing conserved sequence features; inhibitory active residue indicated as P1. 
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