
 

Of Local Operations and Physical Wires

Dario Egloff,1,* Juan M. Matera,2 Thomas Theurer,1 and Martin B. Plenio1
1Institute of Theoretical Physics and IQST, Universität Ulm, Albert-Einstein-Allee 11,

D-89069 Ulm, Germany
2IFLP-CONICET, Departamento de Física, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata, C.C. 67, La Plata 1900, Argentina

(Received 20 February 2018; revised manuscript received 25 April 2018; published 6 July 2018)

In this work (multipartite) entanglement, discord, and coherence are unified as different aspects of a
single underlying resource theory defined through simple and operationally meaningful elemental
operations. This is achieved by revisiting the resource theory defining entanglement, local operations,
and classical communication (LOCC), placing the focus on the underlying quantum nature of the
communication channels. Taking the natural elemental operations in the resulting generalization of LOCC
yields a resource theory that singles out coherence in the wire connecting the spatially separated systems as
an operationally useful resource. The approach naturally allows us to consider a reduced setting as well,
namely, the one with only the wire connected to a single quantum system, which leads to discordlike
resources. The general form of free operations in this latter setting is derived and presented as a closed form.
We discuss in what sense the present approach defines a resource theory of quantum discord and in which
situations such an interpretation is sound—and why in general discord is not a resource. This unified and
operationally meaningful approach makes transparent many features of entanglement that in LOCC might
seem surprising, such as the possibility to use a particle to entangle two parties, without it ever being
entangled with either of them, or that there exist different forms of multipartite entanglement.
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I. INTRODUCTION

One of the oldest questions in the field of quantum
mechanics is how quantum states differ from classical
states. While certainly it is hard to compare frameworks
that are so fundamentally different in nature, the main
qualitative difference on a formal level is that quantum
mechanics deals with probability amplitudes instead of
probabilities. As a consequence, one of the main predic-
tions of quantum mechanics is that physical systems can
exhibit coherent superpositions of those states associated to
sharply defined values of the observables [1], which can,
for instance, be observed in interference experiments. It is
mainly this difference that prevents quantum theory from
being explicable by a deterministic hidden variable model
with variables that are local [2–6] or noncontextual [7–9].
The question then becomes how one can understand this
difference in detail and, furthermore, how one can quantify

it. This is relevant in its own right and also to give solid
foundations to the debates about how quantum mechanical
observed coherences in biological systems [10] are, or to
objectively compare different platforms for quantum com-
puters by measuring how much more resources they
provide than their classical counterparts.
A particularly transparent approach is given by the

theory of local operations and classical communication
(LOCC) (see Refs. [11,12] for reviews), which incorporates
the idea of the impossibility of creating nonlocal super-
positions (entanglement) if one has two distant parties that
can only communicate classically, akin to Bell’s argument
for the nonclassicality of quantum physics [3] (see Sec. III).
However, entanglement is not the only nonclassical

feature of quantum mechanics. There are other forms of
superposition that can also give advantages over classical
states. An instance in which this becomes apparent is the
protocol of deterministic quantum computing with one
qubit (DQC1) that can outperform any known classical
algorithm, even if no bipartite entanglement is present
[13–17]. It was argued that a property denoted as discord
[18–21] would be the resource responsible for this opera-
tional advantage. While discord is an interesting measure, it
is hard to argue that it is a resource of nonclassicality, since
it can be created already by mixing discord-free states (in
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fact, product states) and mixing states amounts to forgetting
information—a task that is easily accomplished classically
[18]. Some advances in understanding the resources in
DQC1 have recently been made using a different form of
nonclassicality, called coherence, which is exhibited by
superpositions of states in a fixed orthonormal basis, whose
elements and their statistical mixtures are the incoherent
states [22–25]. Based on this theory, complementing
recently studied connections between entanglement and
coherence [26–39], it was shown that the precision of the
DQC1 protocol is a function of the coherence of the qubit
one uses as a control and that any state with some property
called basis-dependent discord [39–43] is a resource in this
setting [42,43].
The standard (basis-independent) discord is recovered

when basis-dependent discord is minimized over different
bases [43]. Ironically, in the theories used in these papers,
which explore more generic nonclassical resources than
entanglement, coherent states and entangled states are
interconvertible resources and optimal instances of basis-
dependent discord. Even more generally, there is an
operation that maps any superposition of a given set of
linearly independent states (not necessarily orthogonal) to
entangled states and nonsuperposition states to separable
states [44–46]. This means that, while entanglement does
not seem to be the most generic nonclassical resource, as it
does not easily encompass all forms of superposition that
seem useful for quantum tasks, the resources that enable to
produce entanglement might well be. Seemingly, the ability
to do something truly quantum entails the possibility to
produce entanglement. It is this “universal character” [47]
of entanglement that motivates the present paper.

II. OUTLINE AND SUMMARY OF THE
MAIN RESULTS

The aim of this paper is to unify different types of
nonclassicality: entanglement, discord, basis-dependent
discord, and coherence.
The starting point is the resource theory with the clearest

operational interpretation so far, namely, that arising from
the constraint to LOCC [48]. In that framework, one has
two distant parties (Alice and Bob) that can implement
arbitrary local operations, but can only communicate
classically. In LOCC, this classical communication is
treated only abstractly, even though clearly it happens
through a physical system, which we call the wire. In the
resource theory that we introduce, local operations and
physical wires (LOP), the wire is explicitly included in the
description (see Fig. 1). That is, we treat the wire needed for
classical communication as a quantum system. To get back
the same effective free operations as in LOCC, we need to
define free operations on the wire that correspond to
classical communication. We define them as encoding
some classical data into a fixed basis, relabeling the basis
states, forwarding a part of the system to Alice or Bob, and

iterations of these (see Fig. 2). This framework is presented
in Sec. III A. What we gain is a clear interpretation of what
is classical from the point of view of the wire. Indeed, we
can look at the wire connected to only one system,
recovering a setting in which basis-dependent discord
becomes the resource. We also look at the effective theory
considering the wire alone, which defines an operationally
motivated theory of coherence. Results for these two last
cases are discussed in the remainder of Sec. III.
As is usually the case in resource theories, free states are

those that can be prepared by free operations; in the setting
with one wire connected with one quantum system (say,
Alice), the free states are classical-quantum [meaningP

mpmjmihmjW ⊗ σmQ, where the indices just denote the
wire (W), respectively, and the quantum system of Alice (Q)
[26,42] ]. In this setting, all nonfree states can be used as
resources to promote an operation that had a clear classical
interpretation on the subsystem of the wire, to an arbitrary
quantum operation. That is, having a sufficiently large
number of subsystems that are not classical-quantum, one
can do any quantum operation on an additional subsystem
only using free operations. The nonfree operations are thus
made possible by consuming nonfree states, that is, mapping
them to free states. This result follows from Theorem 5,
where the usefulness of maximally coherent states is shown,
together with the result that one can distillate maximally
coherent states from any other states that are not free, as
discussed inAppendixE.More details on this can be found in
the last two paragraphs of Sec. III B.
In Sec. III B we also present the (technical, but useful)

result that there is an explicitly finite representation of the
free operations (Proposition 3 and Fig. 3). This allows us to
prove an alternative interpretation of the free operations
(Proposition 4), which clarifies the connection with other
approaches to coherence theory [22–24,39–41,49–51] and
basis-dependent quantum discord [39–43] (Proposition 6);
see Fig. 4 and Appendix B. The main result here is that the
theory is very similar—though not equivalent—to the more
abstract theories of coherence or basis-dependent discord,
defined in Refs. [23,39,43].
In similar settings, the usual argument to call one basis of

the wire “incoherent” (or—sloppily—“classical”) is that

FIG. 1. Wires for classical communication are quantum
systems.
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one assumes some dephasing, imposed by the natural
evolution of the system. While this interpretation is still
meaningful in our setting, it is not necessary. It can make
perfect sense to have a more subjective choice of the
incoherent basis. For instance, the incoherent basis could
just be the one in which Alice chooses to encode her
information, or it could also happen that there is a natural
dephasing to an unknown basis. In these latter cases, it can
seem natural to optimize over the possible incoherent bases,
giving a natural interpretation of discord (also see
Refs. [39–43]). This is discussed in detail in Sec. III C.
Entanglement theory is discussed in Sec. IV. By con-

struction, LOP entails LOCC; and they are equivalent, if one
only considers the effective theory of LOP on the different
parties without wire (Remark 9). Even more, coherence on
thewire in the bipartite LOP setting is exactly as useful as the
correspondentmaximally correlated state for bipartite LOCC
(see Theorem 7 for the usefulness of the resources for
operations and its Corollary 8 for state transformations).
One might expect this from a similar relationship between
different forms of quantum cryptography (see, e.g.,
Refs. [52,53]). This setting thus explains the recently studied
relation between these different resources [26–43] as the
interplay of different facets of the same resource theory.
As noted in the abstract, it is possible to entangle two

distant parties Alice and Bob, by sending one quantum
particle from Alice to Bob that is never entangled with
Alice or Bob [54]. Since in our setting sending a particle
can be described explicitly, we can analyze the resources
involved. This is also done in Sec. IV. As the argument is
straightforward, we reiterate it here. Since entanglement is
a resource in LOP, and forwarding a particle from the wire
to Bob is a free operation, there necessarily needs to have
been some resource on the subsystem of Alice and the wire,
i.e., some basis-dependent discord. Note, however, that this
statement needs to be true independently of the basis one
considers incoherent for the wire, which means that the
state necessarily has nonzero quantum discord (we discuss
in Sec. III C how this can be reconciled with the fact that
quantum discord is not a resource).
Finally we look at the multipartite case, where one has

different possible natural generalizations of multipartite
LOCC, depending on how one connects the parties by
wires (see Figs. 5 and 6). Here, we could not prove a
one-to-one correspondence between the values of coher-
ence on the wires in LOP and multipartite entanglement.
However, the coherence cost of producing entangled states
still gives a bound on what state conversions are possible
under LOCC, even in the multipartite case (Theorem 10).
Using this, we showed that, for three parties, two different
wiring schemes reverse the coherence cost of producing the
GHZ and the W state. This suggests that different wiring
schemes might be connected to different classes of entan-
glement (see, e.g., Refs. [55–60]). All proofs are in the
Appendix and linked in to the propositions.

III. LOCAL OPERATIONS
AND PHYSICAL WIRES

A. Setting

As explained in the Introduction, we are aiming at
understanding and quantifying nonclassicality better. The
tool of choice to develop this understanding is resource
theories, since they provide a systematic guide for analyz-
ing situations where one wants to find and/or quantify the
properties that can be useful for some tasks.
Abstractly, and glossing over details, to get a resource

theory, one puts a meaningful, but artificial, restriction on
what operations are allowed (free), within a given frame-
work. The restriction should be chosen such that the
connection to the property one wants to focus on is as clear
as possible (which does not need to coincide with the
distinction between “easy” and “hard”). There may be some
preparations that are free operations and, accordingly, some
states that are free. Since the states that are not free cannot be
prepared by free operations, in some cases, theymight help to
do anoperation that otherwisewould not be free; these are the
resource states. There are more useful states and less useful
states (if from one state one can reach another one with free
operations, the first is more useful, since it can be used for
anything the second can be), imposing a partial order on the
states. A measure for the resource can, therefore, only be
meaningful if it is monotonous under the free operations,
restricting strongly possible candidates.
One of the most successful resource theories in quantum

information, and the starting point of our considerations, is
the theory of LOCC. This theory aims to capture the idea of
Einstein, Podolsky and Rosen (EPR) and Bell that, in
classical physics, it is not possible to reproduce the effect of
having nonlocal superpositions of states [2,3]. LOCC can
be described by its elemental operations, consisting of
arbitrary local quantum operations on one system, post-
selection, and classical broadcasting of the result. Any
LOCC operation is a concatenation of such operations
(potentially depending on the results of the previous ones).
Here, we want to treat the broadcasting as an operation
using a physical wire, instead of how it is usually done as
an implicit exchange of classical information. The broad-
casting is then simply given by forwarding the state of the
wire as an ancilla to the party in question.
In this way, it makes sense to talk about the state of the

communication channel as a quantum state. The standard
LOCC theory is recovered by assuming that the state of the
wire is forced to be incoherent, i.e., ρwires ¼

P
ipðiÞjiihij,

and in a product state with both parties, meaning that the
probability distribution is encoded in the diagonals. Note
that, while the basis one uses to encode a probability
distribution in the wire is in principle arbitrary, one needs to
fix it in advance. To be precise, while it may change in time,
this change must not depend on the measurement outcomes
of the protocol; it must be defined at the beginning of the
protocol. Henceforth, we will call this basis incoherent and
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denote it by Z. With this definition, it also makes sense to
allow some classical processing in the wire as a free
operation on this extended theory, that is, permutations
of these basis states. As an example of why it is important
to fix the basis, and, therefore, which states are incoherent,
in advance, to get a fair description of the role coherence
plays, let us consider the BB84 protocol [61].
The goal of BB84 is to distribute random keys in a safe

way. This is achieved by sending qubits through a quantum
channel where each of them is encoded by Alice in one of
two possible noncommuting bases, depending on the
outcome of a random measurement. On the other side,
Bob measures the qubit in a random basis. After repeating
this many times, Alice and Bob publicly compare the bases
chosen and keep only the data of the measurements that
were done in the same bases. They can then compare a
fraction of the remaining data to be certain (in the
asymptotic limit) that nobody interfered. A naive approach
to describe this protocol is that, as in each round the state of
the qubit sent is diagonal in some basis, then the full
protocol is classical. Why does this algorithm beat classical
key distribution? The crucial departure from classical
physics of this protocol is the random choice of bases,
and the security of the algorithm relies on the fact that the
choice of the basis in which the qubits are diagonal is
unknown to a possible eavesdropper Eve. Therefore, to
analyze the security of this protocol, we need to take the
perspective of Eve. For her, whatever basis she assumes to
be incoherent, there will be some states sent by Alice that
will be coherent, given a long enough sequence. This is the
case, because she does not know the outcomes of Alice’s
measurements that defined the encoding bases. For this
reason, a fair description of what Eve can do needs to
assume that she chooses the basis before knowing the basis
in which Alice encodes the state.
As noted in the Introduction, we only need one quantum

system Q, together with a wire W, to make sense of this
theory. We start by describing this case in some detail,
before coming back to the case with multiple parties Q ¼
⊗i Qi and wires W ¼⊗j Wj. For simplicity, to change the
phases of the basis states is also assumed to be a free
operation—but, as shown below, this does not significantly
alter the theory. We assume that both Q and W are finite-
dimensional systems, but do not keep their dimensions
fixed (see footnote [62] for more details). The free
operations in this case consist of iteratively applying the
following elemental Kraus operations [which should form a
completely positive and trace preserving (CPTP) map on
W ⊗ Q, that is,

P
αK

α†Kα ¼ 1] and postselecting (for a
neater notation, we only write out the spaces on which the
Kraus operations act nontrivially and, on all others, the
identity operation is assumed):
(1) Permutations: Permutations σ of basis states in the

basis Z on the wire W,
P

ijσðiÞihijW .

(2) Phases: Diagonal unitary evolutions in the basis Z
on W,

P
je

iϕðjÞjjihjjW .
(3) Observed quantum operations: Any generalized

measurements on Q, encoding its outcomes as an
incoherent state of an ancillary subsystem Wa of W,
jαiWa

⊗ Fα
Q, for Kraus operators F

α
Q acting on Q.

(4) Classical to quantum forwarding: Transfer a sub-
system Ws of W to a subsystem Qt of Q: 1Qt←Ws

¼P
jjjiQt

hjjWs
¼PjhjjWs

⊗ jjiQt
[62].

For simplicity, here, we assume the incoherent basis Z to
be the same for all times, but one can easily get the more
general setting by replacing the free operations Kα by
½UWðt; t0Þ ⊗ 1Q�Kα, where UWðt; t0Þ defines the (neces-
sarily predefined; see above) change of basis for the time step
t0 → t. Note that this includes replacing the identity by
½UWðt; t0Þ ⊗ 1Q� and that the identity operation itself is not a
free operation any more. Sticking to this rule, the results stay
unchanged, because concatenating free operations on t0, t1
and t1, t2 yields free operations on t0, t2. This is relevant if
onewants to change the basis one calls classical in time, as is
usually the case in settings where discord is thought to be a
meaningful measure.Wewill come back to this in Sec. III C.
Note also that we treat encoding and decoding asym-

metrically. The rationale we employ here is that it is hard to
encode quantum information in a wire, but if coherence is
provided and it is possible to sustain, transport, and control
it, you may very well also be able to use it. That is why we
only allow encoding classical information in the wire, while
any state can be retrieved. We call the set of free operations
in this theory of local operations and physical wires
LOPðW←⇝QÞ ¼ LOP, where here we use the symbols ←
and → for classical encoding, while ⇜ and ⇝ are used for
transferring a quantum system. Items 3 and 4 are depicted
in Fig. 2. We conclude this subsection by defining LOP
with the promised proposition, which states that the phases

(a) (b)

FIG. 2. The picture depicts items 3 and 4 of the elemental
operations defining LOP. Item 3, depicted in panel (a), means that
to do operations on the quantum state, measure what happens,
and use the incoherent basis of the wire to encode the observation
is considered to be a classical operation on the wire and,
therefore, free. Item 4, depicted in panel (b), means that the
wire is effectively treated as a quantum system. This means that it
can interact with the quantum system in a quantum way.
However, if the wire is an extended object, it might be hard to
change its state in a controlled way by this interaction. Therefore
it is considered a free operation to forward the state of a
subsystem of the wire to the quantum side, but not to alter the
state of the wire in a quantum way.
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are not really relevant (remember that all proofs can be
found in the appendix):
Proposition 1. Any operation in LOP can be done with

an arbitrarily high probability of success by a combination
of permutations, observed quantum operations, and
classical to quantum forwarding. □

B. Basis-dependent discord and coherence

In this subsection, we give alternative formulations of the
resource theory of LOP, defined in the last section,
deepening its understanding. These formulations will prove
useful to connect the theory to other approaches to basis-
dependent discord and coherence. These results are sum-
marized in Fig. 4. It is easy to see that the set of free states
that can be prepared (probabilistically or not) by LOP is

given by the so-called incoherent-quantum states, CQðnÞ
Z ¼

fρjρ ¼PmpmjmihmjW ⊗ σmQ; jmi ∈ Zg [26,42]. There-
fore, LOP is a subset of the incoherent-quantum operations
(IQO) that is given by any operations that map incoherent-
quantum states to incoherent-quantum states, even after
postselection [42]. It is not so easy to see how strict the
inclusion is. We will discuss this question later in
Proposition 6, once we have gathered more insight into
the theory.
To get a clearer idea of the operations at hand, we will

need to find a more compact form of the operations
belonging to LOP. To this end and of independent interest,
it is helpful to know bijections that are elements of LOP.
Knowing bijections in a resource theory is useful because
they define equivalence classes on states: All states that can
be reached by bijections can be freely interconverted,
making them equivalent resources (as for any task one
state can be used for, any state that can be mapped into it is
at least as useful). A trivial bijection in LOP is given by any
unitary on Q, which means that any measure of the theory
necessarily has to be invariant under the basis changes ofQ.
The following lemma establishes such a bijection between
the states on the wireW and maximally correlated states on
W ⊗ Q (also see [26,31]):
Lemma 2. The operator B∶W → W ⊗ Q, B ¼P
ijiihijW ⊗ jiiQ defines an injection and defining B½ρ� ¼

ðBρB†Þ, B ∈ LOP. Conversely there exists a map B−1:
W ⊗ Q → W, with B−1∘B ¼ 1W and B−1 ∈ LOP. □

We are now ready to give an equivalent characterization
of the operations in LOP, which has the advantage of being
an explicitly finite concatenation of maps of one fixed form.
On one hand, this might help to find a minimal number of
necessary Kraus operators [63]; on the other, a priori it is
not obvious that such a simplification exists, since for
LOCC, which is a very similar theory, the number of
rounds needed for a transformation is unbounded [64]. The
proposition states that one can write any element of LOP as
a concatenation of N LOP maps (and N is bounded by the
Hilbert space dimension of the wire) that are composed of

Kraus operators K
αj
j having a specific functional form.

Because of the possibility of postselection, one has to
consider different paths given by the outcomes of the
generalized measurements, that is, which Kraus operators
K

αj
j have been measured; after t maps (labeled from 1 to t),

these paths are denoted by α⃗t, and αtþ1 denotes the possible
outcomes of the map labeled by tþ 1. Both the maps and
the length of the protocol may vary depending on the
outcomes of previous measurements, but for any path α⃗, the
total length N ¼ Nðα⃗Þ can be restricted to be less than or
equal to the dimension of the Hilbert space of the wire. This
finiteness of the protocol is proven by showing that one can
find a protocol that bounds the support on the wire of each
branch α⃗N , in each step t, by a monotonically decreasing
sequence of integers rðα⃗t−1Þ. Figure 3 depicts a generic
example for a protocol that acts on an initially three-
dimensional wire and a quantum system.
Proposition 3. Let us denote by Λ1 a selective CPTP

map with outcomes α1 represented by Kraus operators K
α1
1 .

Depending on the obtained outcome α1, we define the next
selective CPTP map Λ2ðα1Þ, with outcomes α2, represented
by Kraus operators Kα2

2 ðα1Þ. In the same way, we define
Λtðα⃗t−1Þ, which depends on the outcomes of all previous
maps through α⃗t−1 ¼ ðα1;…αt−1Þ. For notational conven-
ience, we define α⃗0 ¼ α⃗−1 ¼ 0.

FIG. 3. The figure shows a diagram for a possible protocol
defining a LOP map as described in Proposition 3. In this
example, the input state is three-dimensional on the wire. All the
arrows starting from the same node represent a CPTP map. Each
arrow represents a submap with a given outcome (labeled from 1
on the left to n on the right). The dimension of the maximal
support of the input or output states on the wire is stated on the
left of the diagram. The branches can be grouped into four
different types, where the types differ by how the dimension of
the maximal support of the state on the wire [given without loss of
generality by rðα⃗t−1Þ, after applying tmaps with the outcomes α⃗t]
changes during the protocol. Any possible branch type is depicted
at least once. In this picture, the respective groups of outcomes for
the four branch types are (we only name the outcome vectors up
to the point that the group is defined) fð1Þ; ð2Þg; fð3Þ; ð4Þ; ð5Þg;
fð6; 1Þg; and fð6; 2Þ; ð7Þg. See the Appendix F for more details
on the branch types. The highlighted branch is given by
Λ2ð2Þ∘Λ2

1, that is, the CPTP map Λ2ð2Þ ¼ Λ1
2ð2Þ þ Λ2

2ð2Þ (com-
posed by two submaps), after getting the outcome 2 in the first
map. The length of the protocol N is 2 for these outcomes, while
it is 3 for, e.g., the outcomes (7,2). In principle, the dimension of
the support of the outcome state on the wire after applying a LOP
map is arbitrary (though, for the depicted protocol, it is at most
3 × 3þ 1 × 2þ 7 × 1 ¼ 18).
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Let Λ be a CPTP map acting on W ⊗ Q. Then Λ is a
LOP operation exactly if it can be written as

Λ ¼ ΛNðα⃗N−1Þ∘…∘Λ2ðα1Þ∘Λ1; ð1Þ

with

Kαt
t ðα⃗t−1Þ ¼

Xrðα⃗t−2Þ
i¼1

jσα⃗t∘min½rðα⃗t−1Þ; i�ihijW ⊗ Eαt
t ðα⃗t−1; iÞ;

ð2Þ
where σα⃗t is an injective map to the positive labels of a new
incoherent basis (see footnote [62]); Eαt

t ðα⃗t−1; iÞ is an
arbitrary operator acting on Q, potentially also depending
on previous outcomes and controlled by the populations of
the wire; and 1 ≤ rðα⃗tÞ < rðα⃗t−1Þ for t ≥ 0, with
rð0Þ ¼ dimðWÞ. Therefore, the length of the protocol N,
possibly depending on the outcomes αt that one obtains, is
bounded by N ≤ dimðWÞ. □

The above proposition is useful to connect other theories
that have been discussed in the literature with the one
presented here. From Proposition 3, it follows that destruc-
tive measurements on any subsystem Ws of W are free
(destructive measurements being a set of Kraus operators
mapping to a one-dimensional Hilbert space, which consists
of only one, trivially incoherent, state). This can also bemore
directly seen, as one can forward the subsystemWs from the
wire to the quantum side and perform the measurement
there. Note that one can understand any positive operator
valued measure (POVM) as a destructive measurement,
since one is not interested in the outcome [65]. This can be
stated as “any POVM can be implemented inside LOP.”
Also, note that any strictly incoherent operation (SIO) can be
performed onW. Strictly incoherent operations have Kraus
operators that commute with dephasing, forcing them to
have the form Fα ¼PicαðiÞjσαðiÞihij, for permutations σα
and complex cαðiÞ [24,39]. Even more restrictive, physical
incoherent operations (PIO) are strictly incoherent opera-
tions, where the permutations are fixed for all the Kraus
operators (σα ¼ σ) [40]. Both are obviously special cases of
the form given in Proposition 3. Indeed,
Proposition 4 (SIO, PIO, and LOP). Let Λ be a CPTP

map acting onW ⊗ Q.Λ is a LOP operation exactly if it can
bewritten as a sequence ofmapsΛ ¼ ΛMðα⃗M−1Þ∘…∘Λ1, for
some finite M, where each Λi is
(a) a physical incoherent operation on W or
(b) a destructive measurement in one fully coherent basis

of a subsystem of W or
(c) a controlled unitary [Ucontrol ¼

P
mjmihmjcontrol ⊗

UtargetðmÞ] with control W and target Q or
(d) a generalized measurement of Q, encoding the result

on W (ρ ↦
P

αjαihαjW ⊗ KαρKα†).
One can equivalently replace the item (a) by “a strictly
incoherent operation on W”. □

Noting that items (a), (c), and (d) together form an effective
theory of the strictly incoherent operations by restricting the
theory to the effect on the wire [39], we find that the present
approach (apart from giving a completely different motiva-
tion) only differs by allowingmeasurements. This difference,
however, is crucial; that strictly incoherent operations com-
mute with dephasing means that, apart from being unable to
create coherences, they affect populations only depending on
populations,making them incoherent in a very strict sense. So
strict, in fact, that coherences do not have any effect that can
be measured by free operations. This means that coherences
are useless for any observable task in that resource theory and,
hence, there are no resource states in the theory. In contrast,
one would expect that a meaningful resource helps to over-
come the restriction imposed by the resource theory. In this
case, the questions of how much resources one needs for a
given task make sense. Ideally, but maybe not always
necessarily, onewould find that having enough nonfree states
at hand removes completely any restrictions of the theory.
Exactly this we find in the present approach: If supplemented
by enough coherent ancillary states, LOP can be used to
achieve any desired quantum operation.
Theorem 5 (Resource states). Let Λ be a CPTP map

acting onW1 ⊗ Q, withW1 having dimension d. Let jψi ¼P
d
i¼1ð1=

ffiffiffi
d

p Þjii be a maximally coherent state on W2.
Then, there is an operation Λ0 ∈ LOPðW2 ⊗ W1←

⇝QÞ, with
TrW2

½Λ0½jψihψ jW2
⊗ ρW1;Q�� ¼ Λ½ρW1;Q�. □

We conclude that coherence is a meaningful resource in
LOP. Furthermore, from Lemma 2, it follows that the
resource of coherence

P
d
i¼1ð1=

ffiffiffi
d

p ÞjiiW can be reversibly
converted into entanglement between the wire and the
system Q,

P
d
i¼1ð1=

ffiffiffi
d

p ÞjiiiWQ, which, hence, is an equiv-
alent resource of the theory (also see Refs. [26,43]). Note
that the wire and the quantum systems are not spatially
separated. Therefore, the interpretation of entanglement as
nonclassical correlation over a distance—as it arises nat-
urally in the LOCC setting—is less fruitful. One may then
wonder what entanglement between the wire and the
system Q means and which implications it may have.
As a reminder, let us first look more closely at the
interpretation of entanglement in the case of LOCC. If
the system is in a maximally entangled state, quantum
mechanics predicts strong correlations between different
sets of possible local measurement outcomes. These
correlations can relate in a way that is not possible
classically (in a local hidden-variable theory), due to the
distance of the parties [6]. In LOCC, one assumes to be able
to keep, measure, and manipulate the state locally and
coordinate the manipulations by classical communication
(these are the free operations). Therefore, entanglement
between two distant parties gives an upper bound to the
ability of using and manipulating nonclassical correlations.
On the other hand, for entanglement between a quantum
system and a wire in LOP, we are more restricted in the
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manipulation. Instead, the wire is thought to be an extended
system and is connected to the quantum system over which
one has full quantum control. So that, in this case, the
entanglement gives a bound to the ability to spread and
measure the strong correlations and, by doing so, making
them provably nonclassical. Additionally, one can use any
resource state to coherently control the wire [43] and, for
instance, steer its state [31].
The above properties closely resemble those found for

incoherent-quantum operations (IQO) [42] and, as stated
above, the free operations of this theory contain LOP. But
how strict is this inclusion? In the following proposition,
we show that, in general, incoherent-quantum operations
cannot be performed by LOP operations. However,
Proposition 6 (LOP and IQO). Be Λ an incoherent-

quantum operation on W1 ⊗ Q, which is exactly the case
if it is CPTP and has a Kraus decomposition with Kraus
operators of the form Kα ¼PijfαðiÞihijW1

⊗ EαðiÞ, for
some functions fα acting on the labels of the incoherent
basis and some operators EαðiÞ acting on Q. Let
d ≔ dimðW1Þ. If d ¼ 2, Λ ∈ LOP. For d ≥ 3, LOP ≠
IQO, but there is a stochastic implementation of the
map in LOP with a success rate of at least 1=d; i.e.,
there is an operation Λ0 ∈ LOPðW2 ⊗ W1←

⇝QÞ with
Λ0½j0ih0jW2

⊗ ρ� ¼ j0ih0jW2
⊗ Λ0

0½ρ� þ j1ih1jW2
⊗ Λ1

0½ρ�
with Λ1

0½ρ� ¼ Λ½ρ�=d ∀ ρ. □

This means that, even though the theories LOP and IQO
differ, they are very similar. Equally close are the theories
they induce on the wire (by tracing out Q at the end). We
conclude that the effective theory we obtain by restricting
LOP to the wire—even though being operationally moti-
vated—is, in many aspects, similar to the abstractly
motivated theory of coherence introduced in Ref. [23],
where the free operations are any that can be decomposed
into Kraus operators that cannot create coherence.
Specifically, the free states are the same, the resource
states are the same, and the same amount of resources is
needed to remove all restrictions of the theories; in both
theories, any destructive measurements can be performed;
for qubits, the theories are equivalent; and for higher
dimensions, the theories are stochastically equivalent.
Distillation Furthermore, for a given ϵ, having enough

copies of any state that is not incoherent quantum, LOP
allows us to prepare a maximally coherent state with fidelity
f > 1 − ϵ and probability p > 1 − ϵ (see Appendix E).
Therefore, since maximally coherent states can be used as a
resource to implement any quantum operation (Theorem 5),
all not incoherent-quantum states are resources for non-
classicality of the wire in the present setting. This is true
independently of how one defines nonclassicality, as long as
it does not include full quantum theory.
More specifically, one can make a stochastic model for

the evolution of the wire for any free initial state and under
any free operation. This can be done in a way that the
stochastic model correctly describes the change of the

reduced state of the wire, as long as at the beginning the full
state is incoherent quantum. Crucially, this model does not
need to depend on the populations (in the incoherent basis)
of the wire. However, it may depend on the initial state of
Q, conditioned on the populations of the wire. This is fine,
since Q is not part of the description of the system we are
modeling classically (which is the wire W), but interacts
with it. So, it is in agreement with a classical picture that the
state of Q may change the transition probabilities. That is,
the state of Q, together with its evolution and possible
measurements, defines external parameters of the model.
Note that it is not an issue, that it may not be possible to
describe the evolution ofQ by a classical model. We do not
need to describe the full evolution, we only need the
conditional probabilities pðωjiÞ that, given that the state of
the wire at the beginning was the pure incoherent state jii, a
measurement (scheduled by the predefined protocol) of Q
will yield the outcome ω (which is the only part which—by
encoding—affects the wire). Since the conditional initial
states of Q (conditioned on the populations jii of the wire)
are fixed, these probabilities are fixed as well, and there is no
need to model the full evolution of Q. Explicitly, one just
needs to replace the elemental operations, that is, permu-
tations, tracing out and encoding a classical outcome of a
measurement by their obvious noncontextual (and local)
classical counterparts. For the measurements, this means
encoding the classical probabilities as defined by the Born
rule and the current state of the external quantum system to
measure, conditioned on the previous populations of the
wire: its previous classical states. If the initial state was not
incoherent quantum, by forwarding the state of the wire to
the quantum side and measuring it, coherences of the wire
can affect the measurement probabilities. Then, the simple
model given above is no longer sufficient to describe the
evolution of the populations of the wire throughout the full
protocol. Indeed, the argument above shows that this
difference is maximal, in that having enough copies of
any state that is not incoherent quantum will allow us to do
any operation on the full system, including those that cannot

FIG. 4. Venn diagram for the inclusion relations of LOP with
selected coherence theories (left), theories of basis-dependent
discord (middle), and entanglement theories (right), within
general CPTP operations (see Ref. [25] for additional classes).
See Appendix B for a description of the different classes and their
relations.
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bemodeled by a noncontextual (or local; see the next section
about entanglement) classical model.

C. Quantum discord

Before continuing and applying the tools we have just
developed tomultipartite entanglement, let us stop amoment
and draw the connection to quantum discord [18–21]. In a
sense to bemade precise now, LOP can be seen as a theory of
quantum discord. As the free states of LOP are the incoher-
ent-quantum states defined above, the theory can be seen as
quantifying how much a state differs from an incoherent-
quantum state, that is, by definition, how much basis-
dependent quantum discord it has (called measurement
dependent in Ref. [20]). Take any measure of basis-depen-
dent discord that can, at the same time, be normalized such
that it yields 1 for a singlet state. Assume also that the
measure is upper bounded by the entropy of the local state of
the wire. Then, by minimizing this quantity over all possible
bases, we obtain a measure of discord satisfying the proper-
ties stated in Sec. III. A. 1. of the review [20] (this was noted
before in Refs. [42,43]). While starting from coherence
theory, it seems strange to do this optimization, since one
starts by choosing a natural basis as incoherent, and only then
does the notion of coherence make sense; the present
approach is much nearer to one original setting in which
quantum discord was introduced [18]. Indeed, the theory of
coherence of the wire in the present approach is an effective
theory, and the incoherent basis is arbitrary; it just depends on
what one assumes to be the default basis in which to encode
the information. This allows us to interpret quantum discord
as a natural lower bound that defines the nonclassical
resource one has to assume, at least, independently of the
basis chosen. However, this is not the same as to say that
quantum discord is a resource of nonclassicality. What
happens is that, if one has two quantum states that have
zero discord, there still might be no basis for which both have
zero basis-dependent discord simultaneously and it is, thus,
not surprising that their mixture might not be discord free
(also see the discussion in Ref. [18] and Fig. 2 in Ref. [43]).
This means that, in the present framework, we reproduce

the interpretation of quantum discord as how nonclassical
one has to assume the state of thewireW at least. This bound
is tight when W is seen as a part of the full system W ⊗ Q
(similarly as was the motivation for the introduction of
quantum discord in [18]) and if one considers only one state
ofW at a given time (though one can consider different states
at different times, since, as noted above, one can change the
basis in time). But having more than one possible state (for
instance if one does not consider the evolution of one given
state, but a protocol defined for any input state, such as in
quantum cryptography), it is necessary to fix one basis
(possibly a different one at different times) for all the states
one considers, to have a meaningful quantity.
In summary, discord is not a resource; it is an indicator of

nonclassicality: If a state has nonzero discord, this means

that, for whatever basis of the wire one chooses as
incoherent, the state is a resource for nonclassicality with
the present framework. It is in this sense that the present
approach defines a resource theory of quantum discord,
even though discord is not (and should not be) a monotone
and, thus, a measure of the resource theory.

IV. COHERENCE COST OF ENTANGLEMENT

The aim of this section is to better understand multipartite
entanglement by looking at the coherence needed to generate
it. This is a natural approach, as entanglement is always a result
of coherent interactions that happened in the past. In the case
of bipartite entanglement, the theory in our setting is the one
depicted in Fig. 1, which we denote by LOPðQ1→

⇜W←
⇝Q2Þ,

and consists of two quantum systemsQ1 andQ2 connected by
awireW. The elemental free operations are the free operations
of LOPðW←⇝Q1Þ, together with the ones in LOPðW←⇝Q2Þ,
meaning that any operation is given by the composition of
these operations, possibly with postselection. In general, we
will call LOPðQ1→⇜W1←⇝Q2→⇜W2←⇝…Þ the set of operations
consisting of concatenating operations in the corresponding
sets LOPðWj←

⇝Qjðor jþ1ÞÞ. The notation is explained in
Fig. 5.
The minimal amount of coherence needed to create pure

bipartite entanglement directly follows from Lemma 2 (also
see Ref. [26]). One can produce a pure state on Q1 ⊗ Q2,
which, in its Schmidt decomposition [65], is given by
jψiQ1;Q2 ¼PicijiiiQ1;Q2 from

P
icijiiW onW by applying

Lemma 2 to get jψiQ1;W and then using classical to quantum
forwarding onW ⊗ Q2 to get the wanted state. On the other
hand, one also sees that the production is optimal, since one
needs to have at least that amount of entanglement on the
bipartite cut Q1jW ⊗ Q2 [remember that entanglement and
coherence are equivalent resources for LOPðQ1→

⇜WÞ].
As shown below, the connection between coherence and

entanglement in the bipartite case is even stronger; a
maximally correlated state can be used as a resource for a
LOCC transformation exactly if the equivalent coherent
state can be used as a resource to do the transformation under

FIG. 5. The figure shows a possible wiring for four parties.
The first wire connects the systems Q1 and Q2, and the
second connects Q2, Q3, and Q4, resulting in the theory
LOP½Q1

→
⇜W1

←
⇝Q2

→
⇜W2

←
⇝ðQ3; Q4Þ�. Each party (and also the

wires) might consist of more than one quantum system, and
changing the number of subsystems of each party is a free
operation in LOP.
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LOP. This puts the connection between coherence and
entanglement that has recently attracted a lot of attention
on the level of resources and operations instead of measures
[26–42]. It will be useful to introduce the notation Wj ¼
Wj

1 ⊗ Wj
2… and Qj ¼ Qj

1 ⊗ Qj
2…, with the convention

that the upper index labels the local systems and the lower
their respective subsystems, whose number may vary. The
full systems are referred to by Q ¼⊗j Qj, W ¼⊗j Wj.
Theorem 7. Let ηLOCC ¼Pijri;jjiihjjQ1

1
⊗ jiihjjQ2

1
be a

maximally correlated state (in arbitrary orthonormal local
bases of Q1

1 ⊗ Q2
1) and ηLOP ¼

P
ijri;jjiihjjW be a corre-

sponding state in the incoherent basis Z of W. If Λ is a
CPTP map on Q1 ⊗ Q2, then the following statements are
equivalent:

1: ∃ΛLOCC ∈ LOCCðQ1; Q2Þ∶
ΛLOCC½ηLOCC ⊗ ρQ1

2
;Q2

2
� ¼ Λ½ρQ1

2
;Q2

2
� ∀ ρQ1

2
;Q2

2

2: ∃ΛLOP ∈ LOPðQ1→⇜W←⇝Q2Þ∶
ΛLOP½ηLOP ⊗ ρQ1

2
;Q2

2
� ¼ Λ½ρQ1

2
;Q2

2
� ∀ ρQ1

2
;Q2

2
:

□

We now use the common definition that ρ→
O σ means that

there is a map Λ ∈ O, with Λ½ρ� ¼ σ (for some space of
superoperators O). The following corollary then follows
directly by taking Λ in the theorem to be the preparation of
the state σQ1;Q2 :
Corollary 8. Let ηLOCC ¼Pijri;jjiihjjQ1

1
⊗ jiihjjQ2

1
be

a maximally correlated state (in arbitrary orthonormal local
bases) and ηLOCC ¼Pijri;jjiihjjW be a corresponding state
in the incoherent basis Z of W. Then,

ηLOCC ⊗ ρQ1
2
;Q2

2
!LOCCðQ1;Q2Þ

σQ1;Q2

⇔ ηLOP ⊗ ρQ1
2
;Q2

2
!LOPðQ1
→⇜W←⇝Q2Þ

σQ1;Q2 :
Having shown this very strong connection between

coherence and bipartite entanglement, we move to the
multipartite LOCC case. While, in the bipartite case, it is
quite clear how one needs to explicitly implement the wires
(as there is one clearly simplest way to connect two parties),
in the multipartite case, the situation is more complex. To be
able to do any operation by using enough coherence, each
party needs to be connected to all others (possibly indirectly
over third parties). On the other hand, one also does not need
to have two parties connected in two different ways, and
avoiding double connections simplifies the theories. We use
the shorthand notation LOP½W1←

⇝ðQ1; Q2;…Þ� for the case
of one wire connecting different quantum systems [i.e.,
concatenating operations in the sets LOPðW1←⇝QiÞ�. For
the example of three parties Q ¼ A ⊗ B ⊗ C, we are left
with the 3þ 1 theories of the two types depicted in Fig. 6,
namely, the three ways (A, B, or C) of choosing Q2 in
LOPðQ1→⇜W1←⇝Q2→⇜W2←⇝Q3Þ and LOP½W←⇝ðA; B;CÞ�. In
general, we get that, following the rules explained above, the

possible generalization of N-partite LOCC is exactly given
by the theories

LOP½ðQσð1Þ…Qσðf1ÞÞ→⇜W1←⇝ðQσðf1þ1Þ…Qσðf2ÞÞ
…→⇜WL←⇝ðQσðfLþ1Þ…QσðNÞÞ�;

where σ is a permutation of the indexes denoting the local
quantum systems. Of course, one could also look at the
union of all these theories, which has the advantage of
providing a completely unified view, while having the
disadvantage of being excessively complicated. What all
these theories have in common is that they are generaliza-
tions of multipartite LOCC on the quantum side, that reduce
to it if one starts with an incoherent state on W, which is
made precise in the following remark.
Remark 9. ∀ρW ¼PipijiihijW ,

1: TrW ½Λ∘ðρW ⊗ 1QÞ� ∈ LOCCðQ1;…; QnÞ
∀Λ ∈ LOPðQið1Þ→⇜Wjð1Þ←⇝Qið2Þ→⇜Wjð2Þ←⇝…Þ;

2: Λ ⊗ 1W ∈ LOPðQið1Þ→⇜Wjð1Þ←⇝Qið2Þ→⇜Wjð2Þ←⇝…Þ
∀Λ ∈ LOCCðQ1;…; QnÞ;

with i and j denoting permutations on the index sets.
In the bipartite case, this means that, if the initial state of

the wire is incoherent and the wire is in a product state with
both parties, tracing out the wire at the end reduces the
theory to LOCC. The reason is that the state of the wire can
be copied and stored in a local register on both sides. Every
operation above can then just be obtained by local
operations and broadcasting of classical information, by
updating the two local registers (just do the same permu-
tations and phases on both registers, copy the information
of measurements to both registers, and trace out the
corresponding part of a register on Bob’s side if Alice’s
has been used in a quantum operation). We make this
seemingly obvious statement precise, because intuition
sometimes might be misleading; for instance, it is possible

(a) (b)

FIG. 6. Two wiring schemes that are equivalent in the LOCC
paradigm, but inequivalent according to LOP. For LOCC, i.e., for
incoherent states of the wiring, every operation can be performed
by acting over the extremes of each wire, without a direct
interaction among wires. On the other hand, if wires are quantum,
direct interaction among wires enlarges the set of possible
inequivalent operations. As a result, the initial coherence neces-
sary to prepare a multipartite entangled state depends on the
wiring topology.
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to produce entanglement by sending a quantum particle
back and forth that is never entangled with either of the two
parties [54]. While, in entanglement theory, this is surpris-
ing, since one can entangle two parties without using
entanglement to do so, with the present approach, the same
statement is very intuitive, as entanglement is simply not
the only resource present; coherence and basis-dependent
discord are resources as well. In the present approach,
without having resources, one cannot entangle two parties,
while any amount of basis-dependent discord allows us to
do that (that is because, as noted above, one can distillate
coherence from any resource and the statement then just
follows from Theorem 7). The above remark makes it easy
to prove that the coherence needed to create entanglement
gives a bound on the possible entanglement conversions,
namely,
Theorem 10. Let ρ, σ be states on W. If ∃τW , a state on

W, s.t. τW →
LOPðQið1Þ

→⇜Wjð1Þ…Þ
ρ, but τW ↛

LOPðQið1Þ
→
⇜Wjð1Þ…Þ

σ, then it

follows that ρ ↛
LOCCðQ1;…;QnÞ

σ. □

Note that, for any of these theories (independently of the
wiring), the free states are given by

CQðnÞ
Z⊗ ¼

�
ρjρ ¼

X
m

pmjmihmj ⊗ ρm; jmi

∈ Z⊗; ρm ∈ SEPðnÞ
�
;

with Z⊗ the product basis of the incoherent basis of each
wire, and SEPðnÞ the set of n-partite separable states,

SEPðnÞ ¼
�
ρjρ ¼

X
k

pkρ
ðkÞ
1 ⊗ … ⊗ ρðkÞn

�
:

This implies that, for any of these theories,

RZ⊗;nðρÞ ¼ min
σ∈CQðnÞ

Z⊗

SðρkσÞ; ð3Þ

with SðρkσÞ ≔ Trðρ½logðρÞ − logðσÞ�Þ the relative entropy,
defines an additive geometric monotone (see, e.g.,
Ref. [43]). In general, the evaluation of this quantity is
an nondeterministic polynomial time (NP)-complete prob-
lem [66]. However, because of the monotonicity of the
relative entropy, we notice that

RZ⊗;nðρÞ ≥ max½RZ⊗ðTrQρÞ; RE
nðTrWρÞ� ð4Þ

with RZ⊗ðTrQρÞ the relative entropy of coherence on the
wires, and RE

nðTrWρÞ the relative entropy of entanglement
[48,67,68]. Because of the additivity of the relative entropy,
if either RZ⊗ðTrQρÞ ¼ 0 or RE

nðTrWρÞ ¼ 0, Eq. (4) turns
into an equality, providing a lower bound to the amount of

initial coherence required to prepare an entangled state
among the parties of Q [26,42].
As an example of how this perspective can be applied in

the multipartite case, let us revisit the case of the jWi and of
the jGHZi state [55] (here, only the results are discussed; the
protocols for the conversions can be found in Appendix D).
The relative entropy of entanglement of jGHZni¼

½ðj0i⊗n−j1i⊗nÞ= ffiffiffi
2

p � is 1 [67] and, indeed, one can prepare
the jGHZni state by LOP½W←

⇝ðQ1; Q2;…; QnÞ� from
ðj0i þ j1iÞ= ffiffiffi

2
p

. For jWni ¼ ½ðPn−1
k¼0 j0i⊗kj1ij0i⊗n−k−1Þ=ffiffiffi

n
p �, the relative entropy of entanglement is ðn − 1Þlog2½n=
ðn − 1Þ� > 1 ∀ n > 2 [68]. It is then a simple corollary of

Theorem 10 that jGHZni ↛
LOCCðQ2;…;QnÞjWni.

The second thing to note is that, on any bipartition, the
jGHZni state is LOCC equivalent to jGHZ2i, while the
jW3i state on any bipartition is LOCC equivalent to
1=

ffiffiffi
3

p ðj00i þ ffiffiffi
2

p j11iÞ. Indeed, one can, in all three pos-
sible two-wire settings LOPðQ1→

⇜W1←
⇝Q2→

⇜W2←
⇝Q3),

prepare jW3i from 1=
ffiffiffi
6

p ðj0iþ ffiffiffi
2

p j1iÞW1⊗ðj0iþj1iÞW2 ,
while the bipartite entanglement one can produce on the
bipartition Q1, ðQ2 ⊗ Q3Þ is not enough to prepare
jGHZ3i: As on any bipartition, one needs to prepare a
fully entangled qubit, and this is equivalent to a maximally
coherent qubit; the state with minimal coherence to prepare
jGHZ3i is given by 1=2ðj0i þ j1iÞW1 ⊗ ðj0i þ j1iÞW2,
which is strictly more coherent on W1 than 1=

ffiffiffi
6

p ðj0iþffiffiffi
2

p j1iÞW1 ⊗ ðj0i þ j1iÞW2 . Again, as a corollary of

Theorem 10, we have that jW3i ↛
LOCCðQ1;Q2;Q3ÞjGHZ3i.

This is a strong indication that the resources in the different
types ofwirings correspond todifferent types of entanglement.

V. CONCLUSION

Recently, there has been considerable interest in the
connections among coherence, discord, and entanglement
[26–42]. But the connection was made on the level of
quantifiers and measures. The current paper shows that, by
generalizing the fundamental theory of entanglement—
LOCC, one obtains connections among coherence, discord,
and entanglement that are even deeper, namely, on the level
of the operations themselves. We call this generalized
version of LOCC “local operations and physical wires”
(LOP). In this sense, LOP lies at the root of entanglement,
and it seems natural to assume that it will be useful to assess
the interplay between different resources of quantumness in
complex settings, as is necessary, for instance, if one wants
to quantify the resources needed for quantum algorithms
(see, e.g., Ref. [69]). Moreover, while we exemplified here
that LOP can give a clear explanation of the difference
between somevery basic forms ofmultipartite entanglement
by exemplifying that different forms are optimal in different
settings, it remains an interesting open question whether it
yields such an explicative power also in more general cases
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and how it connects to known structures in entanglement
theory, such as explained in, e.g., Ref. [56–60].
Furthermore, there is an ongoing discussion over what is

the “right” theory of (speakable) coherence [36,
39–41,70,71]. While we do not claim to close this dis-
cussion (nor actually that it can be conclusively closed, as it
always will depend on the setting one is interested in), we
note that the effective resource theory of coherence
emerging from LOP is, to our knowledge, the first that
is built on operationally meaningful elemental operations
while still having coherence as a resource in the sense of the
name, meaning that enough ancillary coherence can com-
pletely lift the restrictions imposed by the resource theory.
In our view, the main contribution of this paper consists

in providing a clear picture of the connection between
different instances of nonclassicality. While this is princi-
pally of interest on a theoretical level, it may also provide
insights that are relevant for the description of experimental
quantum technologies. This becomes evident, for example,
in considering the communication of classical information
via a physical channel. While this transfer is typically
considered on an abstract mathematical level, treated
completely independent of the physical setup, a commu-
nication channel is not an abstract notion, but a physical
quantum system—a wire. Such a wire, ultimately, is
quantum mechanical. The extent to which these quantum
properties survive dictates the wire’s power as a commu-
nication channel and, importantly, its deviation from the
idealized mathematical description of classical communi-
cation. To this end, having a clean way to treat resources in
the wire certainly helps to assess what can and cannot be
achieved with such a wire and if the resources are used in an
optimal way (or to meaningfully quantify the amount of
lost resources in each step of the protocol). It is also worth
noting that many proofs in the appendixes are given by
explicit protocols, which are built by concatenating
elemental operations of the theory and might be used as
a starting point to more realistic implementations. As a
further application, it is straightforward to adapt LOP to
quantify nonclassicality in open quantum systems if the
environment can be probed (see the discussion at the end of
Sec. III B). Finally, in infinite-dimensional systems, it is
often taken as natural to call mixtures of nonorthogonal
pure states classical, e.g., mixtures of coherent states of
light, since they are usually a lot easier to produce and
manipulate (just turn on lasers and use passive linear
optics). For this reason, Gaussian channels have been used
for secret key sharing (see, e.g., Ref. [72]). While the
picture changes (e.g., changing phases should not be free
operations; see, e.g., Ref. [45]), we believe that the present
approach is a good starting point for developing a reason-
able theory of nonclassicality of light.
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APPENDIX A: PROOFS ON THE STRUCTURE
OF LOP

We start with the proof of Lemma 2, introducing a
bijection between the wire and maximally correlated states
on the quantum system with the wire within LOP.
Lemma (2). The operator B: W → W ⊗ Q, B ¼P
ijiihijW ⊗ jiiQ defines an injection and defining

B½ρ� ¼ ðBρB†Þ, B ∈ LOP. Conversely there exists a map
B−1∶W ⊗ Q → W, with B−1∘B ¼ 1W and B−1 ∈ LOP.
Proof.—The operator B ¼PijiihijW ⊗ jiiQ can be

implemented by a sequence of maps that will be described
in the following in terms of their Kraus operators. To this
end, we start with W ¼ W1 and Q ¼ 1 and apply
(1) j0iW2

(2)
P

i;jjiihijW1
⊗ jiþ jihjjW2

(3)
P

i;jhjjW2
⊗ jjiQ,

where the first map is a single outcome measurement of Q
storing the outcome in an ancilla W2 (observed quantum
operation), the second is a permutation on W, and the third
is the forwarding of the system W2 to Q. Identifying
W ¼ W1, we get the desired operation.
For the converse, we first apply a measurement in the

Fourier basis, followed by a correction of the phase on W:
(1) FTk ¼ hk̂jQ ¼Pd

j¼1½ðe2πikj=dÞ=
ffiffiffi
d

p �hjjQ
(2) DðkÞ ¼Pd

i¼1 jiihijWe−2πiki=d,
resulting in the action B−1k ¼Pd

i¼1

P
d
j¼1½ðe2πikðj−iÞ=dÞ=ffiffiffi

d
p �jiihijW ⊗ hjjQ. Obviously, the map defined by these
Kraus operators is an element of LOP and a left inverse of
B, as required. □

Note that the basis on the quantum side can be chosen
arbitrarily in the above lemma. We continue with the proof
of Proposition 1.
Proposition (1). Any operation in LOP can be done

with an arbitrarily high probability of success by a
combination of permutations, observed quantum opera-
tions, and classical to quantum forwarding.
Proof.—LetW have dimension d. The only thing to show

is that, indeed, one can change the phases onW in the above
framework. Let U ¼Pje

iϕðjÞjjihjjW be the wanted phase
shift. We start by identifying Q ¼ Q1. The protocol is
(1) B ¼PijiihijW ⊗ jiiQ2

as in Lem 2

(2) UQ2
¼Pje

iϕðjÞjjihjjQ2

(3) FTk ¼ hk̂jQ2
¼Pd

j¼1½ðe2πikj=dÞ=
ffiffiffi
d

p �hjjQ2
,

(1 ≤ k ≤ d)
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(4) If k ¼ d: stop.
Else: redefine U ¼ U∘Pje

−2πikj=djjihjj and re-
start with item 1.

Theprobability of success in each round is givenby1=d, inde-
pendently of the initial state. AfterM iterations, we therefore
have a probability of success given by

P
M
i¼1 1=dð1 −

1=dÞði−1Þ ¼ 1 − ½1 − ð1=dÞ�M → 1 for M → ∞. □

The next two pages are devoted to the proof of the closed
form of LOP operations, which simplifies its use for both
theoretical and practical purposes, for instance, for the
comparison of LOP to other resource theories.

Proposition (3). Let us denote by Λ1 a selective CPTP
map with outcomes α1 represented by Kraus operators K

α1
1 .

Depending on the obtained outcome α1, we define the next
selective CPTP map Λ2ðα1Þ, with outcomes α2, represented
by Kraus operators Kα2

2 ðα1Þ. In the same way, we define
Λtðα⃗t−1Þ, which depends on the outcomes of all previous
maps through α⃗t−1 ¼ ðα1;…αt−1Þ. For notational conven-
ience, we define α⃗0 ¼ α⃗−1 ¼ 0.

Let Λ be a CPTP map acting on W ⊗ Q. Then Λ is a
LOP operation exactly if it can be written as

Λ ¼ ΛNðα⃗N−1Þ∘…∘Λ2ðα1Þ∘Λ1; ðA1Þ
with

Kαt
t ðα⃗t−1Þ ¼

Xrðα⃗t−2Þ
i¼1

jσα⃗t∘min½rðα⃗t−1Þ; i�ihijW ⊗ Eαt
t ðα⃗t−1; iÞ;

ðA2Þ
where σα⃗t is an injective map to the positive labels of a new
incoherent basis (see footnote [62]); Eαt

t ðα⃗t−1; iÞ is an
arbitrary operator acting on Q, potentially also depending
on previous outcomes and controlled by the populations of
the wire; and 1 ≤ rðα⃗tÞ < rðα⃗t−1Þ for t ≥ 0, with rð0Þ ¼
dimðWÞ. Therefore, the length of the protocol N, possibly
depending on the outcomes αt one obtains, is bounded
by N ≤ dimðWÞ.

One of the nontrivial results that we need to show in the
proof of Proposition 3 is that classical to quantum forward
can indeed be decomposed as described in the proposition.
In the following lemma, we slightly generalize this state-
ment, as it does not significantly complicate the proof and
the statement might be of independent interest.

Lemma 11. Let Λ ¼PαF
α · Fα† be a CPTP map

acting on both W and Q with

Fα ¼
Xd
i¼1

jfðiÞihijW ⊗ Eα
QðiÞ; ðA3Þ

where f maps indices to indices. Then Λ admits a
decomposition as in Proposition 3.

Proof.—For simplicity, we will only prove that there is a
finite protocol of the given form. That the length of the
protocol is bounded by the dimension of W will be proven
independently later in the proof of Proposition 3. The
function f in Eq. (A3) can map different members of the
incoherent basis to the same output state. The main idea of
the proof is to first reorder the incoherent basis of the wire
(using a bijection) in such a way that we can then use a
sequence ofmapswithKraus operators of the formof Eq. (2)
to implement the same map and the same subselection
possibilities as with the given operators in Eq. (A3). The
main trick is to iteratively collapse the subspaces belonging
to the preimage of jfðiÞi.

Let us begin with the case that the image of fðiÞ is
f1;…sg for a s ∈ N ≤ dimðWÞ. Define Wk ¼ fijfðiÞ ¼
kg and a permutation σ1 that maps the elements of Wk to
f1þPk−1

j¼1 jWjj;…;
P

k
j¼1 jWjjg. This implements the

announced reordering of the incoherent basis of the wire
and corresponds to a unitary Λ1 given by K1 ¼ jσ1ðiÞihijW.
Next, we define rt ¼ tþPs−t

j¼1 jWjj, e.g., r0 ¼ dimðWÞ,
r1 ¼ 1þPs−1

j¼1 jWjj, rs−1 ¼ s − 1þ jW1j, and rs ¼ s.
With this, we then define (for t ∈ f2;…sþ 1g)

Kαt
t ¼

Xrt−2
i¼1

jσrt−1⊕ ∘min½rt−1; i�ihijW

⊗
�
Eαt
Q1
ðiÞ ⊗ jαtiQ2

; i ≥ rt−1
1Q1

; i < rt−1
; ðA4Þ

where the permutation σl⊕ is defined by the mapping
i ↦ iþ 1, for i < l and l ↦ 1. These Kraus operators
are of the form given in Eq. (2).

From the CPTP condition for the Kraus operators
defined in Eq. (A3), we get that

P
i;j∈Wk

jiihjjW⊗P
αE

α
QðiÞ†Eα

QðjÞ¼
P

i∈Wk
jiihijW⊗

P
αE

α
QðiÞ†Eα

QðiÞ¼1.
This implies that, for each t ∈ f2;…sþ 1g, Kαt

t are the
Kraus operators of a CPTP map, that is,

P
αt
Kαt

t
†Kαt

t ¼ 1.

It is straightforward to see by induction that

Kαt
t ∘…∘K1 ¼

X
i∈Ws−tþ2

j1ihijW ⊗ Eαt
Q1
ðiÞ ⊗ jαtiQ2

þ
X

i∈Ws−tþ3

j2ihijW ⊗ Eαt−1
Q1

ðiÞ ⊗ jαt−1iQ2
þ…

þ
X
i∈Ws

jt − 1ihijW ⊗ Eα2
Q1
ðiÞ ⊗ jα2iQ2

þ
X

i∈⋃s−tþ1
j¼1

Ws

jσ1ðiÞihijW ⊗ 1Q

¼
Xt
u¼2

X
i∈Ws−tþu

ju − 1ihijW ⊗ Eαtþ2−u
Q1

ðiÞ ⊗ jαtþ2−ui þ
X

i∈⋃s−tþ1
j¼1

Ws

jσ1ðiÞihijW ⊗ 1Q:
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Now, we redefine the map Λsþ1 → TrQ2
Λsþ1, from which

follows the statement in the case that the image of fðiÞ is
f1;…sg for a s ∈ N ≤ dimðWÞ. Now, assume that the
image of f is not f1;…sg. In this case, we can proceed in
the same way and change the permutation of Λsþ1 (before
we trace out Q2) such that we implement the correct f. □
We are now ready to give the proof of Proposition 3.
Proof of Proposition 3.—We need to prove four

statements:
(1) Any elemental LOP map can be decomposed into an

arbitrarily long sequence of CPTP maps represented
by Kraus operators of the form given in Eq. (2).

(2) Any CPTP map given by Kraus operators as in
Eq. (2) can be decomposed as a LOP map.

(3) Induction þ1: The composition of two CPTP maps
that can be decomposed into an arbitrarily long
sequence of CPTP maps represented by Kraus
operators of the form given in Eq. (2) can again
be decomposed into this form. This statement is
trivial.

(4) Any CPTP map that can be decomposed into an
arbitrarily long sequence of CPTP maps represented
by Kraus operators of the form given in Eq. (2) can
also be decomposed into such a sequence with
rðα⃗tþ1Þ < rðα⃗tÞ. From this follows that the choice
N ≤ dimðWÞ is always possible, since rð0Þ is with-
out loss of generality equal to dimW.

The first statement is easy to see; permutations of the basis
Z of W, diagonal unitaries on W, and observed quantum
operations on Q all have the form of Kα1

1 . That classical to
quantum forwarding has the form (2) is a direct corollary of
Lemma 11.
To implement a map given by Kraus operators of the

form (2) [Kαt
t ðα⃗t−1Þ ¼

Prðα⃗t−2Þ
i¼1 jσα⃗t∘min½rðα⃗t−1Þ; i�ihijW ⊗

Eαt
t ðα⃗t−1; iÞ] by elemental operations, the first step is to

implement the trivial observed quantum operation

j0iW2
;

followed by a permutation on W given by

Xrðα⃗t−2Þ
i¼1

jmin½rðα⃗t−1Þ; i�ihijW1
⊗ jiih0jW2

:

Then we do a classical to quantum forwarding of system
W2 to an ancillary system Q2. Up to here, we can
summarize the concatenation of these operations by

Xrðα⃗t−2Þ
i¼1

jmin½rðα⃗t−1Þ; i�ihijW1
⊗ 1Q1

⊗ jiiQ2
:

The next step is a quantum operation on Q defined by the
Kraus operators,

Xrðα⃗t−2Þ
i¼1

Eαt
t ðα⃗t−1; iÞQ1

⊗ jσα⃗t∘min½rðα⃗t−1Þ; i�ihijQ2
;

which is a quantum operation exactly if the Kraus operators
Kαt

t ðα⃗t−1Þ form one. In total, we then have

Xrðα⃗t−2Þ
i¼1

jmin½rðα⃗t−1Þ; i�ihijW1

⊗ Eαt
t ðα⃗t−1; iÞQ1

⊗ jσα⃗t∘min½rðα⃗t−1Þ; i�iQ2
:

After a permutation on W1 that implements σα⃗t , we obtain,
in total,

Xrðα⃗t−2Þ
i¼1

jσα⃗t∘min½rðα⃗t−1Þ; i�ihijW1
⊗ Eαt

t ðα⃗t−1; iÞQ1

⊗ jσα⃗t∘min½rðα⃗t−1Þ; i�iQ2
:

The last step is to use the operation B−1
W1;Q2

from Lemma 2
to get rid of Q2, and we end up with the wanted operation.
As already mentioned, the third statement is trivial. The

hard part is the fourth statement. Assume we have two
arbitrary sets of Kraus operators Kαt

t , K
αt−1
t−1 of the given

form corresponding to Λt and Λt−1. Then, we distinguish
two cases. In the first case, we show that we can find two
new sets of Kraus operators Lαt

t , L
αt−1
t−1 of the required form

such that Kαt
t ∘Kαt−1

t−1 ¼ Lαt
t ∘Lαt−1

t−1 , rðα⃗t−2Þ remains the same,
and rðα⃗t−1Þ < rðα⃗t−2Þ for the two new sets [the place where
one cuts the Hilbert space dimension of the wire in the step
t [rðα⃗t−1Þ] depends on the previous outcomes, but not on
the current one, which is why its index is t − 1 and not t]. In
the second case, one can replace the two CPTPmaps by one
CPTP map of the required form such that rðαt−2Þ remains
unchanged.
Assume rðα⃗t−1Þ ≥ rðα⃗t−2Þ (otherwise, there is nothing to

show). First, we split up the injection σα⃗t−1ðiÞ into a
permutation and an order-preserving injection. Formally,
we define the permutation ηα⃗t−1 on f1;…rðα⃗t−2Þg and
the injection a∶f1;…rðα⃗t−2Þg → σα⃗t−1(f1;…rðα⃗t−2Þg) ⊂
N>0, such that

σα⃗t−1ðiÞ ¼ a½ηα⃗t−1ðiÞ�;

and aðiÞ < aðjÞ for i < j. Then, there is some l ≤ rðα⃗t−2Þ,
such that

min½rðα⃗t−1Þ; ·�∘σα⃗t−1(f1;…rðα⃗t−2Þg) ¼ fað1Þ;…aðlÞg

and

min½rðα⃗t−1Þ; ·�∘σα⃗t−1
¼ min½rðα⃗t−1Þ; ·�∘a∘ηα⃗t−1 ¼ a∘min½l; ·�∘ηα⃗t−1 ;
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with fðx; ·Þ denoting the function fðx; yÞ for fixed x, as a
function of y, and we use fðAÞ for a function f and a set A
to denote the image of the set A under f.
We first consider the case l < rðα⃗t−2Þ. We first define

Fαt
t ðα⃗t−1; iÞ ¼ Eαt

t ½α⃗t−1; σα⃗t−1∘η−1α⃗t−1ðiÞ� ¼ Eαtþ1
t ½α⃗t; aðiÞ�;

with i ∈ f1;…rðα⃗t−2Þg. By further defining the injection
ηα⃗tðkÞ ¼ σα⃗t ½aðkÞ�, we can finally define

Lαt
t ðα⃗t−1Þ ¼

Xrðα⃗t−2Þ
i¼1

jηα⃗t∘min½l; i�ihijW ⊗ Fαt
t ðα⃗t−1; iÞ

and

Lαt−1
t−1 ðα⃗t−2Þ

¼
Xrðα⃗t−3Þ
i¼1

jηα⃗t−1∘min½rðα⃗t−2Þ; i�ihijW ⊗ Eαt−1
t−1 ðα⃗t−2; iÞ:

First, we note that the map defined by Lαt−1
t−1 ðα⃗t−2Þ is CPTP

exactly if the map defined by Kαt−1
t−1 ðα⃗t−2Þ is (as they only

differ by a permutation at the end).
Now, we show that Lαt

t ðα⃗t−1Þ forms a CPTP map as well.
Remember that min½rðα⃗t−1Þ; að·Þ� ¼ aðmin½l; ·�Þ and, since
a is a bijection on its image, hmin½rðα⃗tÞ; aðiÞ�jmin½rðα⃗tÞ;
aðjÞ�i ¼ hmin½l; i�jmin½l; j�i. Then,

1 ¼
X
αt

Kαt
t ðα⃗t−1Þ†Kαt

t ðα⃗t−1Þ

⇔ ∀ i; j∶

1δi;j ¼ ðhijW ⊗ 1QÞ
�X

αt

Kαt
t ðα⃗t−1Þ†Kαt

t ðα⃗t−1Þ
�
ðjjiW ⊗ 1QÞ

¼
X
αt

hmin½rðα⃗t−1Þ; i�jmin½rðα⃗t−1Þ; j�iEαt
t ðα⃗t−1; iÞ†Eαt

t ðα⃗t−1; jÞ

⇔ ∀ i; j∶

1δi;j ¼
X
αt

hmin½rðα⃗tÞ; aðiÞ�jmin½rðα⃗tÞ; aðjÞ�i

Eαt
t ðα⃗t−1; aðiÞÞ†Eαt

t ðα⃗t−1; aðjÞÞ
¼
X
αt

hmin½l; i�jmin½l; j�iFαt
t ðα⃗t−1; iÞ†Fαt

t ðα⃗t−1; jÞ

⇔ 1 ¼
X
αt

Lαt
t ðα⃗t−1Þ†Lαt

t ðα⃗t−1Þ;

where we used in the last line that ηα⃗t is a bijection as well.
Finally, we need to check that we get, indeed, the right mapping [Kαt

t ðα⃗t−1Þ∘Kαt−1
t−1 ðα⃗t−2Þ ¼ Lαt

t ðα⃗t−1Þ∘Lαt−1
t−1 ðα⃗t−2Þ]. This

follows from the equalities

Xrðα⃗t−2Þ
i¼1

jσα⃗t∘min½rðα⃗t−1Þ; i�ihij∘jσα⃗t−1ðjÞi ⊗ Eαt
t ðα⃗t−1; iÞ∘Eαt−1

t−1 ðα⃗t−2; jÞ

¼ jσα⃗t∘min½rðα⃗t−1Þ; σα⃗t−1ðjÞ�i ⊗ Eαt
t ðα⃗t−1; σα⃗t−1ðjÞÞ∘Eαt−1

t−1 ðα⃗t−2; jÞ
¼ jσα⃗t∘a∘min½l; ηα⃗tðjÞ�i ⊗ Eαt

t ðα⃗t−1; aðηα⃗t−1ðjÞÞÞ∘Eαt−1
t−1 ðα⃗t−2; jÞ

¼ jηα⃗t∘min½l; ηα⃗t−1ðjÞ�i ⊗ Fαt
t ðα⃗t−1; ηα⃗t−1ðjÞÞÞ∘Eαt−1

t−1 ðα⃗t−2; jÞ

¼
Xrðα⃗t−2Þ
i¼1

jηα⃗t∘min½l; i�ihij∘jηα⃗t−1ðjÞi ⊗ Fαt
t ðα⃗t−1; iÞÞ∘Eαt−1

t−1 ðα⃗t−2; jÞ:

The case l ¼ rðα⃗t−1Þ can be handled similarly, just by noting that the action of min½l; ·� gets trivial, and one can, therefore,
express the concatenation of the two maps as a single map of the same form.
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This proves that one can chose r such that
dimW ≥ rð0Þ > rðα⃗1Þ > … > rðα⃗N−1Þ ≥ 1. It follows
that it is always possible to have N ≤ dimW. □

We can now use the above proposition to prove one
direction of the connection between LOP and SIO oper-
ations given in Proposition 4.
Proposition (4). Let Λ be a CPTP map acting on

W ⊗ Q. Λ is a LOP operation exactly if it can be written
as a sequence of maps Λ ¼ ΛMðα⃗M−1Þ∘…∘Λ1, for some
finite M, where each Λi is
(a) a physical incoherent operation (see Ref. [40]) onW or
(b) a destructive measurement in one fully coherent basis

of a subsystem of W or
(c) a controlled unitary [Ucontrol ¼

P
mjmihmjcontrol ⊗

UtargetðmÞ] with control W and target Q or
(d) a generalized measurement of Q, encoding the result

on W (ρ ↦
P

αjαihαjW ⊗ KαρKα†).
One can equivalently replace item (a) by “a strictly
incoherent operation on W.”
Proof.—We start the proof by noting that any destructive

measurements on a subsystem of W can be done by LOP
operations by classical to quantum forwarding of the
subsystem in question to an ancilla in Q, Q2, and then
doing the measurement there. Strictly incoherent operations
are those with a Kraus decomposition, with Kraus operators
of the form Kα1 ¼Pd

i¼1 cðαÞjσαðiÞihij [24], which obvi-
ously is a special case of the form K1 in Proposition 3 [i.e.,
Eq. (2)]; the same is true for control unitaries of the form
(c). Next, we note that PIO is a subset of SIO [40], so that
any operation having a decomposition as in the proposition
is an element of LOP.
For the converse, we only need to show that we can do

classical to quantum forwarding using only the operations
(a)–(d). This goes by virtually the same protocol we already
applied for the inverse part of Lemma 2. We first do a
controlled unitary from the system Ws in question to an
ancillary system Qs prepared in the state j0i, to which we
want to teleport and apply a measurement in the Fourier
basis of Ws (note that measurements in different fully
coherent bases only differ by a diagonal unitary, which is an
element of PIO, so we can assume without loss of general-
ity that the basis we can measure in is given by the Fourier
basis), followed by a correction of the phase on Qs:
(1) j0iQs

(2)
P

ijiihijWs
⊗
P

jji ⊕ jihjjWs

(3) FTk
Ws

¼ hk̂jWs
¼PdimðWsÞ

j¼1 ½ðe2πikj= dimðWsÞÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðWsÞ

p �hjjWs

(4) DðkÞ ¼PdimðWsÞ
l¼1 jlihljQs

e−2πikl= dimðWsÞ,
resulting in the action

P
ihijWs

⊗ jiiQs
□.

The most general set of meaningful operations, if one
just has the restriction that one wants to keep the wire
incoherent and classically correlated with the quantum
system, is the operations that do not allow us to generate
states that are not incoherent quantum from those that are. If

one allows postselection, this means that the same should
be true for each Kraus operator defining the operation. This
set, introduced in Ref. [42], is called incoherent-quantum
operations (IQO). Our approach, by contrast, is operational,
in the sense that we only allow some specific elemental
operations that are meaningful. This has the advantage that
it is more transparent and does not allow for operations that
could be nonclassical in a way that might not be obvious,
but the disadvantage is that there might be some operations
that we do not allow that are still meaningful. Fortunately,
we can prove that the gap between the theory we propose
and the completely abstractly defined maximal possible
theory IQO is not that big. The details of this statement are
the content of Proposition 6.
Proposition (6). Be Λ an incoherent-quantum operation

onW1 ⊗ Q, which is exactly the case if it is CPTP and has
a Kraus decomposition with Kraus operators of the form
Kα ¼PijfαðiÞihijW1

⊗ EαðiÞ, for some functions fα act-
ing on the labels of the incoherent basis and some operators
EαðiÞ acting on Q. Let d ≔ dimðW1Þ. If d ¼ 2, Λ ∈ LOP.
For d ≥ 3, LOP ≠ IQO, but there is a stochastic imple-
mentation of the map in LOP with a success rate of at least
1=d; i.e., there is an operation Λ0 ∈ LOPðW2 ⊗ W1←

⇝QÞ
with Λ0½j0ih0jW2

⊗ ρ� ¼ j0ih0jW2
⊗ Λ0

0½ρ� þ j1ih1jW2
⊗

Λ1
0½ρ� with Λ1

0½ρ� ¼ Λ½ρ�=d ∀ ρ.
Proof.—The form of the incoherent-quantum operations

directly follows from applying each Kraus operator to a
product state incoherent on W and requiring that it is still
(up to normalization) a product state incoherent on W. The
converse, namely, that any Kraus operator of that form is
incoherent quantum (that is, preserves the set of incoherent-
quantum states), is a trivial consequence of the convexity of
the set of incoherent-quantum states.
The protocol for doing the operation given by the Kraus

operators Kα ¼PijfαðiÞihijW ⊗ EαðiÞQ, by LOP opera-
tions with a probability of 1=d is given by (identifying
W ¼ W1 and Q ¼ Q1 at the beginning and the end)
(1)

P
ijiihijW1

⊗ jiiQ2
(see Lemma 2),

(2)
P

iEαðiÞQ1
⊗ jfαðiÞihijQ2

,
(3)

P
ijfαðiÞihijW1

⊗ jiiW2
(a permutation after adding

an ancilla),
(4) “Delete” the duplicate Q2 (applying B−1 of Lemma

2 to W1, Q2),
(5)

P
ihijW2

⊗ jiiQ2
,

(6) hk̂jQ2
.

In total, the operation is given by the Kraus operatorsP
ijfαðiÞihijW ⊗ EαðiÞQ · hk̂jii. If the outcome is k ¼ 0,

hk̂jii ¼ 1=
ffiffiffi
d

p ∀i and the protocol is successful. Note that
the probability for this is 1=d, independently of the initial
state the operation is applied to. If k ≠ 0, there is an
i-dependent phase and, in general, the protocol fails (the
information about i is lost, so that, at this point, there is no
way to correct the phases).
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Let us consider the case d ¼ 2. We define the set R ¼
fαjfαð1Þ ¼ fαð2Þg and Rc its complement, separating the
injective from the noninjective functions onW. The idea in
the following is to first check (on Q) whether one has an
injective or a noninjective case on W and then change the
form on W accordingly, while inverting the check and
applying the final operation on Q. Let without loss of
generality α ∈ f1;…Ng. We note that, since the Kα

form a CPTP map, we have, in particular, thatP
α∈RE

αð1Þ†Q∘Eαð2ÞQ ¼ 0. For this reason, it makes sense

to define the operations E0ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

α∈RE
αðiÞ†Q∘EαðiÞQ

q
and K0 ¼Pijiihij ⊗ E0ðiÞ, and it is easy to check that the
Kα, with α ∈ f0g ∪ Rc, again form a CPTP map. This map
has the form of Eq. (2) and is therefore an element of LOP.

For α ∈ R, we then need a second step, and we define the
operations Eα

1ðiÞ ¼ EαðiÞ∘E0ðiÞ−1, where E0ðiÞ−1 is the
Penrose pseudoinverse of E0ðiÞ; that is, if E0ðiÞ ¼
UðiÞ∘DðiÞ∘UðiÞ† is the singular value decomposition of
E0ðiÞ [where we used that E0ðiÞ ¼ E0ðiÞ†, from the
definition of E0ðiÞ], then E0ðiÞ−1 ¼ UðiÞ∘DðiÞ−1∘UðiÞ†
[here, DðiÞ is a diagonal matrix, and DðiÞ−1 is its diagonal
right inverse on its support, and vice versa]. We also need
the operation E0

1ðiÞ ¼ jii ⊗ ½1 − E0ðiÞ∘E0ðiÞ−1�. Here, it is
useful to note that E0ðiÞ∘E0ðiÞ−1 ¼ E0ðiÞ−1∘E0ðiÞ is the
projection on the image of E0ðiÞ. We can then define, in the
notation of Proposition 3, Kα

1 ¼
P

ij1ihij ⊗ Eα
1ðiÞ for α ∈

R ∪ f0g [f1ðiÞ ¼ 1]. We then have that

X
α

Kα
1
†Kα

1 ¼
X
α

X
i;j

jiihjj ⊗ Eα
1ðiÞ†Eα

1ðjÞ

¼
X
i;j

jiihjj ⊗ E0ðiÞ−1
X
α∈R

ðEαðiÞ†EαðjÞÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{δi;jE0ðiÞ2

E0ðjÞ−1 þ
X
i;j

jiihjj ⊗ hijjið1 − E0ðiÞ∘E0ðiÞ−1Þ†ð1 − E0ðiÞ∘E0ðiÞ−1Þ

¼
X
i

jiihij ⊗ E0ðiÞ−1E0ðiÞ þ
X
i

jiihij ⊗ ð1 − 2E0ðiÞE0ðiÞ−1 þ E0ðiÞE0ðiÞ−1Þ ¼ 1:

Noticing that the probability to measure α ¼ 0 in the
second step, provided that the outcome in the first was
α ¼ 0, is 0, and that EαðiÞ∘E0ðiÞ−1∘E0ðiÞ ¼ EαðiÞ [since
the support of E0ðiÞ contains the support of EαðiÞ], we find
that, indeed, applying the protocol as in Proposition 3 with
the above defined operations yields the right map.
The proof of the statement LOP ≠ IQO is done in

Appendix F, where we provide an explicit counterexample
for a wire with Hilbert-space dimension 3. □

Whether one can meaningfully call states that are not free
in a given resource theory “resources” depends on whether
they can be used to do tasks that are impossible under the
application of free operations alone. Theorem 5 shows that
maximally coherent states are resources in the maximal
sense of the word: They enable us to do anything within
quantum mechanics.
Theorem (5). Let Λ be a CPTP map acting onW1 ⊗ Q,

withW1 having dimension d. Let jψi ¼Pd
i¼1ð1=

ffiffiffi
d

p Þjii be
a maximally coherent state on W2. Then, there is an opera-
tion Λ0 ∈ LOPðW2 ⊗ W1←

⇝QÞ, with TrW2
½Λ0½jψihψ jW2

⊗
ρW1;Q�� ¼ Λ½ρW1;Q�.
Proof.—The trick is to do the operation on the quantum

side; that is, send the system W1 to Q2 and do the operation

Λ on Q2, Q1. Then use Lemma 2 to construct a Bell-type
state from the ancillary coherent state on W2. Finally,
teleport the system Q2 back to W1 using the original
teleportation protocol [73] and using up the ancillary Bell
state. In detail (identifying Q1 ¼ Q at the beginning and at
the end),
(1) Preparation: jψiW2

,
(2) (Free) teleportation to the quantum side

P
ihijW1

⊗
jiiQ2

,
(3) Application of Λ on the quantum side: ΛQ2;Q1

,
(4) Doubling of W2 (Lemma 2):

P
ijiihijW2

⊗ jiiQ3
,

(5) Measurement in the “Bell basis” hbðk; lÞjQ3;Q2
,

given by jbðk; lÞi ¼ CNOT∘ðjk̂i ⊗ jliÞ ¼ 1=
ffiffiffi
d

pP
je

2πikj=djji ⊗ jl ⊕ ðj − 1Þi, with a ⊕ b ¼
mod dðaþ b − 1Þ þ 1,

(6) Finish with a diagonal unitary
P

je
2πikj=djjihjjW2

on W2 followed by a permutation
P

jjl ⊕ ðj−
1ÞiW1

hjjW2
, both depending on the d2 possible

outcomes of the previous measurement, given by
the indices k, l.

Using the Kraus decomposition for the map ΛðρÞ ¼P
αK

αρKα†, we get that the full protocol is given by the
(d2) Kraus operators

1=d
X
i;j

jl ⊕ ðj − 1ÞihijW1
⊗ ð½hl ⊕ ðj − 1ÞjQ2

⊗ 1Q1
�∘Kα∘ðjiiQ2

⊗ 1Q1
ÞÞ ¼ Kα=d:
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APPENDIX B: RELATION TO DIFFERENT
CLASSES OF OPERATIONS

In this section, we give additional details to the relation
between LOP and some selected classes of operations
discussed in the literature; see Fig. 4. A complete repre-
sentation is beyond the scope of this article, but the
interested reader can find more references to relevant
articles about these and other classes in Ref. [25].
For coherence theory, the biggest classes of operations we

want to mention are two natural classes whose action on the
set of incoherent states can be modeled by stochastic
operations and are closed under composition and mixing
[74]. These are the ones that do not create coherence on
average [the maximally incoherent operations (MIO) [22] ]
and those that on average are independent of the initial
coherence [coherence nonactivating operations (CNA)
[49,50] ]. The intersection of these two sets is the operations
that can neither create nor detect coherence—the dephasing
covariant operations (DIO) [40,41,49]. They are called so
because they commute with dephasing. MIO contains a
subset of operations that do not generate coherence even
after postselection, the incoherent operations (IO) [23]. LOP
(W←

⇝1) (meaning the effective coherence theory of LOP on
the wire) is similar to IO, but not equivalent. LOP has a more
complicated structure, but it is operationally motivated in the
present article. Subsets of LOP are the SIO [24,39], which
include translationally invariant operations (TIO) [41,51]
inside the PIO [40]. Note that for the inclusion of TIO in
PIO and SIO to be valid, the Hamiltonian of the system needs
to be nondegenerate or, conversely, one needs to generalize
coherence theory to a theory where the dephasing defining
incoherent states is not total and leaves the degenerate
subspaces of the Hamiltonian invariant (see Refs. [22,41]).
These three theories (SIO, TIO, and PIO) also have opera-
tionally sensible interpretations (for instance, TIO play an
important role in thermodynamics [75,76]). However, since
SIO, TIO, and PIO are subsets of DIO, they cannot create or
detect coherence (restricting the free POVMs to a very small
set, namely, all those that cannot measure coherence). This
means that coherence is not a useful resource for any task that
is observable by free measurements in these sets.
For basis-dependent discord, we first have the class that

leaves incoherent-quantum states invariant, even after post-
selection, the IQO [42]). Inside these (though it is still an
open question whether this inclusion is strict), we have the
general operations incoherent on A (GOIA) [43] (here,
A ¼ W). These operations are very similar, but not equiv-
alent, to LOPðW←

⇝QÞ. Instead of allowing permutations on
the wire, in GOIA, any incoherent operation is allowed,
making GOIA slightly less operationally meaningful. SIO
[39], TIO [41], and PIO [40] can also be formulated as
effective theories of basis-dependent discord theories, which,
for convenience, we call by the same names. The connection
between these extended versions of SIO, PIO, and
LOPðW←⇝QÞ is given in the discussion of Proposition 4.

For entanglement between two distant parties, one has the
set of separable operations (SEP) [48] that preserve separable
states (states with no entanglement). Inside of these, there are
the better operationally motivated, but more complex, LOCC
[48,77]. This set is the same as the effective theory of LOP
on the two parties, LOPðQ1→

⇜1←⇝Q2Þ. Replacing the per-
mutations on the wire in the basic definition of LOP by the
identity or by incoherent operations, we still get the same
effective theory, LOCC. However, in the proof of Theorem 7
(concerning the equivalence of the resources coherence and
entanglement in the bipartite setting), we do need the
permutations for one direction and, for the other, we do
use that LOP only consists of the elemental operations
presented here. Therefore, it is not clear for other sets of
incoherent operations whether coherence on the wire and
entanglement between the two parties are equivalent resour-
ces for bipartite tasks. Inside LOCC, finally, there are the
operations that additionally to the locality restriction also
ask that the local operations of the two parties be inco-
herent in a given basis, the local incoherent operations and
classical communication (LICC) [29,30]. Replacing
the incoherent operations there by LOPðW←⇝1Þ, we get
LOPðW1←

⇝1→
⇜1←

⇝1→
⇜W2Þ (meaning that the local environ-

ment of the two parties is connected by a wire).

APPENDIX C: PROOFS ON THE COHERENCE
COST OF ENTANGLEMENT

Both theorems on the coherence cost of entanglement
presented in the main part depend heavily on Remark 9,
which results from just following the respective protocols.
To facilitate reading, we repeat it here:
Remark (9). ∀ρW ¼PipijiihijW ,

1: TrW(Λ∘ðρW ⊗ 1QÞ) ∈ LOCCðQ1;…; QnÞ
∀Λ ∈ LOPðQið1Þ→⇜Wjð1Þ←⇝Qið2Þ→⇜Wjð2Þ←⇝…Þ;

2: Λ ⊗ 1W ∈ LOPðQið1Þ→⇜Wjð1Þ←⇝Qið2Þ→⇜Wjð2Þ←⇝…Þ
∀Λ ∈ LOCCðQ1;…; QnÞ:

We then have
Theorem (7). Let ηLOCC ¼Pijri;jjiihjjQ1

1
⊗ jiihjjQ2

1
be

a maximally correlated state (in arbitrary orthonormal local
bases of Q1

1 ⊗ Q2
1) and ηLOP ¼

P
ijri;jjiihjjW be a corre-

sponding state in the incoherent basis Z of W. If Λ is a
CPTP map on Q1 ⊗ Q2, then the following statements are
equivalent:

1: ∃ΛLOCC ∈ LOCCðQ1; Q2Þ∶
ΛLOCC½ηLOCC ⊗ ρQ1

2
;Q2

2
� ¼ Λ½ρQ1

2
;Q2

2
� ∀ ρQ1

2
;Q2

2

2: ∃ΛLOP ∈ LOPðQ1→⇜W←⇝Q2Þ∶
ΛLOP½ηLOP ⊗ ρQ1

2
;Q2

2
� ¼ Λ½ρQ1

2
;Q2

2
� ∀ ρQ1

2
;Q2

2
:
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Proof.—The “⇒” statement is a direct corollary of
Remark 9 and Lemma 2. The operation B in Lemma 2
allows us to transform the state

P
ijri;jjiihjjW ⊗ ρQ1

2
;Q2

2

to
P

ijri;jjiiihjjjW;Q2
2
⊗ ρQ1

2
;Q2

2
, which by classical to

quantum forwarding can in turn be transformed toP
ijri;jjiiihjjjQ1

2
;Q2

2
⊗ ρQ1

1
;Q2

1
[by LOPðQ1→⇜W←⇝Q2Þ oper-

ations]. By the Remark 9, we then get that the
LOCCðQ1; Q2Þ operation that reproduces Λ is also a
LOPðQ1→⇜W←⇝Q2Þ operation, which concludes the proof
of this direction.
For the converse, assume that a protocol is given, imple-

menting Λ by elemental operations of LOPðQ1→⇜W←⇝Q2Þ,
using an ancillary state

P
ijri;jjiihjjW . To get the equi-

valent LOCCðQ1; Q2Þ protocol using the ancillary stateP
ijri;jjiiihjjjQ1

2
;Q2

2
, replace the elemental operations of the

given protocol in the following way by LOCCðQ1; Q2Þ
operations:
(1) Permutations:

P
ijσðiÞihijW , by permutations on

both sides:
P

ijσðiÞihijQ1
2
followed by

P
ijσðiÞihijQ2

2
.

(2) Phases:
P

je
iϕðjÞjjihjjW , by phases on one side:P

je
iϕðjÞjjihjjQ1

2

(3) Observed quantum operations: jαiWa
⊗ Kα

Qs , by the
same operation, with the outcome in an ancilla of the
systemQs, classically communicating the result α to
the other side Q¬s and encoding it there as well:
jαiQs

a
⊗ Kα

Qs followed by jαiQ¬s
a
.

(4) Classical to quantum forwarding:
P

khkjWa
⊗jkiQs

a
,

by first deleting the copy onQ¬s
2 (by doing a Fourier

measurement, followed by a correction of the phase
on Qs

2, as in the proof of Lemma 2), followed by the
trivial forwarding:

P
khkjQs

2
⊗ jkiQs

a
.

Note that, by doing these replacements (and merging the
ancillary Hilbert spaces withQj

2, j ¼ 1, 2 after each step), a
generic state

P
i;jsi;jjiihjjW ⊗ τði; jÞQ1

1
;Q2

1
in any step of the

protocol gets mapped to
P

i;jsi;jjiiihjjjQ1
2
;Q2

2
⊗ τði; jÞQ1

1
;Q2

1
,

from which the assertion follows.□
A direct corollary of Remark 9 is Theorem 10, which

introduces useful conditions for state transformations in
multipartite entanglement.
Theorem (10). Let ρ, σ be states onW. If ∃τW , a state on

W, s.t.

τW !LOPðQið1Þ
→⇜Wjð1Þ…Þ

ρ;

but

τW ↛
LOPðQið1Þ

→
⇜Wjð1Þ…Þ

σ;

then it follows that ρ ↛
LOCCðQ1;…;QnÞ

σ.

Proof.—Assume the theorem is not valid, that is,

τW !LOPðQið1Þ
→⇜Wjð1Þ…Þ

ρ;

τW ↛
LOPðQið1Þ

→⇜Wjð1Þ…Þ
σ

and

ρ !LOCCðQ1;…;QnÞ
σ:

From Remark 9 (Point 2), it follows that

ρ !LOPðQið1Þ
→⇜Wjð1Þ…Þ

σ

and, therefore,

τW !LOPðQið1Þ
→⇜Wjð1Þ…Þ

σ;

a contradiction. □

APPENDIX D: DIFFERENT TYPES
OF ENTANGLEMENT

Example 11.1. The least coherent state necessary to
produce the jGHZniQ1;…;Qn ¼ð1= ffiffiffi

2
p Þðj0i⊗nþj1i⊗nÞ state

by LOPðW←
⇝Q1 ⊗ …QnÞ is given by jþiW ¼

ð1= ffiffiffi
2

p Þðj0i þ j1iÞ. Similarly, one can produce
jWniQ1;…;Qn ¼ ð1= ffiffiffi

n
p Þðj0;…0; 1i þ…j1; 0;…; 0i using

LOPðW←⇝Q1 ⊗ …QnÞ from jþlog2ðnÞiW ¼ ð1= ffiffiffi
n

p Þðj0iþ
� � � þ jn − 1iÞ.
The least coherent state necessary to produce

the jGHZniQ1;…;Qn state by LOPðQ1→
⇜W1←

⇝Q2→
⇜…

Wn−1←
⇝QnÞ is given by jþn−1iW1;…Wn−1 ¼

½ð1= ffiffiffi
2

p Þðj0i þ j1iÞ�⊗ðn−1Þ. Similarly, one can produce
jW3iQ1;Q2;Q3 by jþWiW1;W2≔ð1= ffiffiffi

2
p Þðj0iþj1iÞ⊗ð1= ffiffiffi

3
p Þ×

ðj0iþ ffiffiffi
2

p j1iÞ, using LOPðQ1→
⇜W1←

⇝Q2→
⇜W2←

⇝Q3Þ.
Proof.—We start by giving explicit protocols that do the

conversions. For the jGHZniQ1;…;Qn state, we simply apply

a CNOT (a permutation) on jþiW1
⊗ j0iðn−1ÞW2;…;Wn−1

n − 1

times (onW1,Wj), resulting in jGHZniW , and then we for-
ward the respective subsystems. For the jWi state, we apply
a permutation that brings jiiW1

⊗j0iðn−1ÞW2;…;Wn−1
to j0iW1

…

j0ij1iWi
j0i…j0iWn−1

to jþlog2ðnÞiW1
⊗ j0iðn−1ÞW2;…;Wn−1

¼
ð1= ffiffiffi

n
p Þðj0i þ � � � þ jn − 1iÞ ⊗ j0iðn−1ÞW2;…;Wn−1

and forward
the subsystems to the different parties. That the generation
of the jGHZni state is optimal is simply seen by the fact that
jGHZ2i is the state with the minimal coherence rank [44]
having the relative entropy of coherence [23] equal
to the relative entropy of entanglement [48,67,68] of
jGHZniQ1;…;Qn , namely, 1.
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For the case with more than one wire, to prepare
the jGHZniQ1;…;Qn state from jþn−1iW1;…;Wn−1 , we
do a local CNOT on each wire, after preparing an ancillary
state j0iWj

2, effectively “doubling” the states, resulting in

jGHZ2i⊗ðn−1Þ
ðW1

1
;W1

2
Þ;…;ðWn−1

1
;Wn−1

2
Þ. We then forward each half of

the system of the respective wires to the quantum systems
they connect, resulting in jGHZ2iðQ1

1
;Q2

1
Þ;ðQ2

2
;Q3

1
Þ;…;

Qn−1
1 ; ðQn−1

2 ; Qn
1Þ⊗ðn−1Þ. We can then double the system

Q2
1, resulting in the state jGHZ3iQ1

1
;Q2

1
;Q2

3
. We can then use

the jGHZ2iðQ2
2
;Q3

1
Þ to teleport the system Q2

3 to Q3
3, and so

on. Iteratively we get the wanted jGHZniQ1;…;Qn state. The
optimality follows from any bipartitions being equivalent to
jGHZ2i states.
Starting from the jþWiW1;W2 state, we first “double”

each of the sides and then make a permutation 1 ↔ 0 on
the site W2

2, which puts the system into the state
jGHZ2iW1

1
;W1

2
⊗ð ffiffiffi

2
p

=
ffiffiffi
3

p Þðj0;1iþð1= ffiffiffi
3

p Þj1;0iÞW2
1
;W2

2
. We

continue by forwarding the system W2
2 to Q2

1. On this site
(Q2), we then continue by applying the operation j0; 0iQ2

1
;Q2

2

h0jQ2
1
þ ð1= ffiffiffi

2
p Þj0; 1iQ2

1
;Q2

2
h1jQ2

1
þ ð1= ffiffiffi

2
p Þj1; 0iQ2

1
;Q2

2
h1jQ2

1
,

leaving us with the jWi state on Q2
1 ⊗ Q2

2 ⊗ W2
1. The next

step is to forward the system W2
1 to Q3. Finally, one can

distribute the jGHZ2iW1
1
;W1

2
state to the connected quantum

systems (yielding jGHZ2iQ1
1
;Q2

3
) and use this to teleport via

LOCC and, hence, LOP, the system Q2
2 to Q1

2. The protocol
thus results in jWiQ1

2
;Q2

1
;Q3 . □

APPENDIX E: ALL NOT INCOHERENT-
QUANTUM STATES ARE RESOURCE STATES

In this section, we show by a very simple (but highly
inefficient) protocol that any state that does not have the
form

P
ijiihijW ⊗ ρðiÞQ is maximally useful, in the sense

that, having enough such states as ancillae, one can do any
operation. If a state does not have this form, it must have the
form

P
i;jjiihjjW ⊗ ρði; jÞQ, with ρði0; j0Þ ≠ 0 for some i0,

j0 (without loss of generality i0 ¼ 1, j0 ¼ 2). The first step
of the protocol is to double the state to getP

i;jjiihjjW ⊗ jiihjjQ1
⊗ ρði; jÞQ2

. To simplify the analysis
we now note that we can make the measurement

K1 ¼ 1=
ffiffiffi
2

p ðh1j þ h2jÞ, K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K†

1K1

q
on Q1, which,

with nonzero probability, will result in a state proportional
to
P

i;j∈f1;2gjiihjjW ⊗ ρði; jÞQ2
. That means that, as long as

we are not interested in the optimal distillation protocol, we
can start without loss of generality with the latter state. The
next thing to note is that, for a state of this form, there is
always a measurement onQ2 that will yield some state with
coherence on W with nonzero probability (the algorithm is
given in the proof of Theorem 2 in Ref. [28]). That means
that we can start without loss of generality with a state

P
i;j∈f1;2gjiihjjWσði; jÞ, with σð1; 2Þ ≠ 0. By a rotation, we

get σð1; 2Þ > 0, and, by the map that is given by the identity
with probability 1=2 and the permutation 1 ↔ 2 with
probability 1=2, we can assume σð1; 1Þ ¼ σð2; 2Þ ¼ 1=2.
Having a state σ1ð1; 2Þ ¼ p=2 on W1 and adding a second
state with σ2ð1; 2Þ ¼ q=2 > 0 W2, one can first do a CNOT

with control W1 acting on W2, followed by the measure-
ment [hþjW1

¼ ðh1jW1
þ h2jW1

Þ= ffiffiffi
2

p
, h−jW1

¼ ðh1jW1
−

h2jW1
Þ= ffiffiffi

2
p

]. With probability 1
2
ð1þ pqÞ, this yields the

result “þ” and the state 
1
2

pþq
2pqþ2

pþq
2pqþ2

1
2

!
;

and with probability 1
2
ð1 − pqÞ one gets the result “−” and

the state  
1
2

p−q
2−2pq

p−q
2−2pq

1
2

!
:

Notice that, by repeating the sequence many times
(adding many times a state with coherence q), if one gets
symmetric outcomes (the same number of þ and −), the
resulting state is equal to the initial one, while the
probability to get outcomes with more þ is higher than
that to get outcomes with more −. There is, therefore, a bias
to get more coherent states over time. Also, the protocol
only saturates at pfinal ¼ 1. This means that, for a given ϵ,
having enough copies of any state that is not incoherent
quantum, LOP allows us to prepare a maximally coherent
state with fidelity f > 1 − ϵ and probability p > 1 − ϵ.
A simulation of this protocol is given in Fig. 7. Of course,

2000 4000 6000 8000 10000

0.2

0.4

0.6

0.8

1.0
p

FIG. 7. The figure shows a simulation of the protocol discussed
in Appendix E. Repeatedly, a state with l1-coherence 0.01 is used
to increase the l1-coherence p=2 of a given state (also initialized
with coherence 0.01). If the coherence becomes negative, the
state is dropped. This is repeated 10 000 times to get the average
behavior. One sees that, at some point, the protocol saturates with
coherence p=2 ≈ 0.5.
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the protocol is suboptimal in many ways: It only considers
two-dimensional coherence and destroys even a part of that
by making the state symmetric at the beginning.
Furthermore, one could maybe improve the algorithm by
grouping states. In any case, it shows that one can distillate
coherence in this setting, similar to how it was done in
Ref. [24] using incoherent operations, even though the
specific protocol given there does not seem to be easily
adapted to LOP. It remains an interesting open question
what is the best possible distillation rate of coherence
in LOP.

APPENDIX F: COUNTEREXAMPLE

Lemma 12. Be A a rank 1 incoherent Kraus operator,
and fBsg a set of incoherent Kraus operators such that

A†A ¼
X
s

B†
sBs:

Then, Bs ¼ λsUsA for certain λs > 0 and Us incoherent
unitary operations.
Proof.—Since A†A is rank 1, and B†

sBs are all positive,
then B†

sBs ¼ λ2sA†A for certain λs, such that
P

sλ
2
s ¼ 1.

Therefore, from the singular value decomposition theorem,
A†A ¼ ðBs=λsÞ†ðBs=λsÞ iff Bs=λs ¼ UsA for certain uni-
taries Us. Finally, because A and Bs are incoherent, Us
must be incoherent.

1. Lemma: General form for three-level systems

From Proposition 3, the most general form of an
operation Λ ∈ LOPðW←⇝QÞ, with dimðWÞ ¼ 3,
dimðQÞ ¼ 1, is given by

ΛðρÞ ¼
X
α1∈I1;3

Fα1
1 ρFα1†

1 þ
X

α2∈I2;2α1∈I1;2
Fα2α1
2;2 ρFα2α1†

2;2

þ
X

α2∈I2;1α1∈I1;1
Fα2α1
2;1 ρFα2α1†

2;1

þ
X

α3∈I3;1α2∈I02;2α1∈I1;2
Fα3α2α1
3 ρFα3α2α1†

3 ; ðF1Þ

with [defining for notational ease cuttðxÞ ≔ minðt; xÞ]

Fα1
1 ¼

X
m

qα1m jσα1ðmÞihmj ðF2aÞ

Fα2α1
2;2 ¼

X
m

qα2α1m jðσα2α1∘cut2∘σα1ÞðmÞihmj ðF2bÞ

Fα2α1
2;1 ¼

X
m

qα2α1m jðσα2α1∘cut1∘σα1ÞðmÞihmj ðF2cÞ

Fα3α2α1
3 ¼

X
m

qα3α2α1m jðσα3α2α1∘cut1∘σα2α1∘cut2∘σα1ÞðmÞihmj

ðF2dÞ

and α1 ∈ I1;3 ∪ I1;2 ∪ I1;1, α2 ∈ I2;1 ∪ I2;2 ∪ I02;2, and
α3 ∈ I3;1. Because of the trace preserving condition, these
operators must satisfy the constraints

X
α2∈I2;1

Fα2α1†
2;1 Fα2α1

2;1 ¼ Fα1†
1 Fα1

1 ; α1 ∈ I1;1 ðF3aÞ

X
α2∈I2;2

Fα2α1†
2;2 Fα2α1

2;2 ¼ Fα1†
1 Fα1

1 ; α1 ∈ I1;2 ðF3bÞ

X
α3∈I3;1

Fα3α2α1†
3 Fα3α2α1

3 ¼ Fα2α1†
2;2 Fα2α1

2;2 ;

α1 ∈ I1;2; α2 ∈ I02;2 ðF3cÞ

X
α2∈I2;2∪I02;2

Fα2α1†
2;2 Fα2α1

2;2 ¼ Fα1†
1 Fα1

1 ; α1 ∈ I1;2 ðF3dÞ

X
α1∈I1;1∪I1;2∪I1;3

Fα1†
1 Fα1

1 ¼ 1: ðF3eÞ

Proof.—It follows from Proposition 3, if we assume,
without loss of generality, that the initial global state is a
product of the initial state ρ on W, and reference ancillary
state ρQ ¼ j0ih0jQ, then the final state is given by

ΛðρÞ ¼ TrQΛWQðρ ⊗ j0ih0jQÞ
¼
X
α⃗

X
m;m0

Qα⃗
mm0 jfα⃗ðmÞihmjρjm0ihfα⃗ðm0Þj

where fα⃗ ¼ σαk∘cutrαk…α1∘…∘σα1 and Qα⃗
mm0 ¼ TrðEα⃗

mj0i×
h0jEα⃗†

m0 Þ ¼ h0jEα⃗†
m0Eα⃗

mj0i ¼ Qα⃗†
mm0 , with Eα⃗

m ¼ Eαk…α1
fαk…α1 ðmÞ…

Eα2α1
fα1 ðmÞE

α1
m the sequence of conditional operators applied at

each step. By construction, Qα⃗
mm0 is a Grahm matrix, and

hence, it is positive semidefinite. With ζα⃗λm ¼ hλjEα⃗
mj0i, it

can be expended asQα
mm0 ¼Pλζ

α⃗λ
m ζα⃗λ†m0 , and we see that the

general form of Λ is given by

ΛðρÞ ¼
X
α⃗;λ

F̃α⃗λρF̃α⃗λ†;

with F̃α⃗λ ¼Pmζ
α⃗λ
m jfα⃗mihmj. The λ coefficient in the sum

can be assimilated to the last set of outcomes, leading to the
form presented in the theorem.

2. Proposition: LOP ≠ IQO

Suppose now that the incoherent operation ΛðρÞ ¼P
4
s¼1KsρK

†
s , defined by
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K1 ¼

0
B@

1
2

− 1
2

0

0 0 1
2

0 0 0

1
CA K2 ¼

0
B@

1
2

0 − 1
2

0 1
2

0

0 0 0

1
CA

K3 ¼

0
B@ 0 1

2
− 1

2

1
2

0 00

0 0 0

1
CA K4 ¼

0
B@

1
2

1
2

1
2

0 0 0

0 0 0

1
CA;

admits that decomposition. Since
P

μλμKsμ is an incoher-
ent Kraus operator iff sμ ¼ const, it follows that, in any
possible incoherent Kraus representation of ΛðρÞ, all the
Kraus operators need to be proportional to someKs, hence,

Fα1
1 ¼ 0 ∀ α1 ∈ I1;3 ðF4Þ

Fα2α1
2;2 ¼ ζα2;α12;2 Kmα2 ;α1

mα2;α1 ∈ f1; 2; 3g ðF5Þ

Fα2α1
2;1 ¼ ζα2;α12;1 K4 ðF6Þ

Fα3α2α1
3 ¼ ζα3;α2;α13 K4: ðF7Þ

Plugging this into the trace preserving conditions F3 results
in

K†
4K4

� X
α3∈I3;1

jζα3α2α13 j2
�

¼ Fα2α1†
2;2 Fα2α1

2;2 ðF8Þ

K†
4K4

�X
α2;1

jζα2α12;1 j2
�

¼ Fα1†
1 Fα1

1 : ðF9Þ

If the left-hand side is nonzero in the first (second)
condition, it implies that, for certain α1, α2 (α1), F

α2α1
2;2

(Fα1
1 ) should (by Lemma 12) be proportional to UK4 for

certain U unitary incoherent, but then, against the hypoth-
esis, Fα2α1

2;2 (Fα1
1 ) needs to be of the form of Eq. (F2b)

[(F2a)]. On the other hand, if both expressions are zero,K4

cannot appear in the Kraus decomposition ofΛ, leading to a
contradiction. Therefore, the explicitly incoherent opera-
tion Λ is not in LOPðW←⇝QÞ, while being an element of IO
and, hence, also of GOIA and IQO. One can easily check
that Λ is also an element of DIO.
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