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Abstract
In recent decades, nanotechnology has received great attention due to its broadfields of application.
The conventional processes applied to the synthesis processes of nanomaterials can be classified in
chemical and physicalmethods. These technologies involve several environmental and cost problems.
In order to avoid the problems caused by conventionalmethods, the use of biological systems such as
bacteria, fungi, yeasts, and algae in the synthesis of nanomaterials has recently received extensive
attention. To the same purpose, the routes of synthesis ofmetallic andmetal oxides nanoparticles
using plant extracts showpromising perspectives. Themethods involving plant extracts, unlike other
biologicalmethods, stand out for their ease and low implementation costs. In addition, the use of
plant extracts avoids the risks associatedwith the use of highly toxic compounds, which are harmful to
humanhealth and the environment. This review summarizes the relevance of using plant extracts in
the synthesis ofmetal andmetal oxides nanoparticles compared to other synthesismethods and
emphasizes the use of extracts of different species ofEucalyptus. Themain topics covered by this
review include (i) the effect of the synthesis parameters on the features of the nanomaterials; (ii) the
effect of the composition of the extracts on the synthesis; (iii) themainmechanisms proposed to
explain the formation of the nanoparticles; and (iv) future challenges related to the green synthesis of
nanoparticles.

Introduction

Nanotechnology constitutes an important pillar in current scientific development, due to itsmultiple
applications in various fields. The performance of the nanomaterials in the different applications is verymuch
affected by their geometry, shape, andmorphology [1]. The conventionalmethods applied to the synthesis of
nanomaterials involve the use of hazardous chemical compounds and/or physical procedures with high energy
requirements. In order to avoid these drawbacks, the principles of green chemistry have been applied to the
synthesis of nanomaterials. Unlike the currentmethods of synthesis, the ‘green synthesis of nanoparticles’
involves processes, which are clean, safe and friendly to the environment [1]. One of the green routes of synthesis
of nanoparticles (NP) involves the use of vegetal extracts. The publication byGardea-Torresdey et al [2] is one of
thefirst research papers dealingwith the preparation of gold nanoparticles employing vegetal biomass from
alfalfa.

To date, the use of vegetal extracts in the synthesis of nanoparticles has increased substantially. For example,
several papers report on the synthesis ofNPmediated by the following extracts: Azadirachta indica (Ag-NP) [3],
Ocimum sanctum (Au-NP) [4], Filicium decipiens (Pd-NP) [5], Euphorbia esula (Cu-NP) [6],Opuntia ficus-indica
(Li-NP),Cacumen platycladi (Pt-NP) [7], Solanumnigrum (ZnO-NP) [8],Morinda citrifolia (TiO2-NP) [9],
Centella asiatica (Ce-NP) [10],Callistemon viminalis (Sm2O3-NP) [11],Euphorbia tirucalli (Dy2O3-NP) [12],
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Hibiscus Sabdariffa (CdO-NP) [13],Agathosma betulina (NiO-NP) [14],Aloe vera (In2O3-NP) [15],Camellia
sinensis (α-Fe2O3-NP) [16] yEucalyptus globulus (MgO-NP) [17], amongmany others.

Extracts of different species ofEucalyptus are among themostly studied extracts in the synthesis of
nanoparticles, possibly due to the high presence of Eucalyptusworldwide. According to the 2013 FAO report,
there aremore than 20million hectares of plantations of various species of Eucalyptusworldwide, beingmore
than 110 species present inmore than 90 countries [18]. For instance inChile, according to the Forest Report
(INFOR) published in 2018 [19], until the end of 2016, therewere 2.414million hectares for forest plantations,
of which 35.6%were destined for the plantation ofEucalyptus (24.5%ofEucalyptus globulus, 11.1%of
Eucalyptus nitens). Thus, the aim of the present review is to analyze in depth the green synthesis of nanomaterials
using plant extracts, highlighting the use of extracts fromdifferent species ofEucalyptus.

Methods for the synthesis of nanoparticles

The choice of the synthesismethods depends on the application that will be given to the nanomaterial. In
general, it is possible to classify the synthesismethods in physical and chemicalmethods. The physicalmethods
include high energy ballmilling, inert gas condensation, physical vapor deposition (sputtering, electron beam
evaporation, pulsed laser deposition and vacuum arc), laser pyrolysis,flame spray pyrolysis, electrospraying, etc;
whereas the chemicalmethods comprise sol-gelmethods,microemulsion, hydrothermal synthesis, polyol
synthesis, chemical vapor deposition, chemical vapor synthesis, and plasma enhanced chemical vapor
deposition, among others [20].

The physical and chemicalmethods of synthesis aremainly used for their high capacity in achieving the
desired features and properties of the nanoparticles to be synthesized. Thesemethods have some drawbacks, e.g.,
physicalmethods have high costs; whereas chemicalmethods involve and produce highly toxic, dangerous and
polluting compounds. Thus, the application of these synthesismethods on an industrial scale is difficult, due to
high costs, energy consumption, and the generation of toxic compounds that are difficult to treat. In this
context, obtaining nanoparticles bymeans of aqueous systems instead of employing organic solvents has
become a great alternative. Although these aqueousmethods aremore environmentally friendly, it is necessary
to add some agents to the system that prevent agglomeration and aggregation of the nanoparticles. Therefore,
the implementation of thesemethods on a large scale comprises the prediction of the potential risks and
problems involved in the synthesis.Moreover, if it is required to synthesize nanomaterials for use in the
biomedicalfield, it is essential to eliminate the use of toxic chemical compounds. These topics have led to an
increase in research in order to establish sustainable and eco-friendly alternatives for the synthesis of
nanoparticles.

Need for green synthesismethods

Although the chemicalmethods of synthesis allow the control of the size,morphology, and composition of the
nanoparticles,most of the agents used are highly toxic, do not degrade easily and damage the environment.
Table 1 lists themost commonly used capping and reducing agents for the synthesis of nanoparticles [21, 22].
Due to the hydrophobic character of these agents, it is necessary to use high amounts of organic solvents.Many
of these solvents are carcinogenic, dangerous to health, corrosive and harmful to the environment.

The adverse effect that the chemicals listed in Table 1 can producewhen used at the laboratory level are of
little relevance, contrary to the effects causedwhen used for the production of nanoparticles on a larger scale. It is
possible tominimize these risks by implementing processes that are less dangerous for the environment. This
challenge has led to the development and study of greenmethods for the synthesis of nanoparticles, which are
based on the use of plant extracts as capping and reducing agents [1].

The development of sustainablemethods for the synthesis of nanoparticles has been the objective ofmany
publications. In this line, it was possible to develop low-cost and eco-friendlymethods using different types of
biological systems. Thesemethods are called ‘biologicalmethods of synthesis’, which involve bacteria, fungi,
yeasts,microalgae,macroalgae and plant extracts [1, 21–26].

Bacteria
Bacteria have attracted attention for their ability to accumulate inorganicmaterial both intracellularly and
extracellularly. As a defensemechanism, to counteract the stress produced by the presence of toxicmetal ions,
some bacterial strains transform toxicmetal ions to nanoparticles [27]. This property of bacteria has been used
to obtain nanomaterials in a relatively simpleway. Some of the bacteria used in the synthesis of different types of
nanoparticles are:Rhodopseudomonas palustris (CdS-NP) [28], Shewanella algae (Au-NP) [29],Rhodobacter
sphaeroides (PbS-NP) [30], Escherichia coli (Ag-NP) [31],Bacillus cereus (Ag-NP) [32],Pseudomonas aeruginosa
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(Au-NP) [33], Lactobacillus sp. (Ti-NP) [34],Magnetospirillummagnetotacticum (Fe3O4-NP) [35], Shewanella
oneidensis (UO2-NP) [36], andBacillus sp. (MnO2-NP) [37].

Fungi
Fungi, like bacteria, are also capable of accumulating inorganicmaterial intracellularly and extracellularly [38].
The extracellular synthesis of nanoparticles by fungimay produce larger nanoparticles than the intracellular
route. The enormous secretory components of fungi are involved in the reduction and capping of nanoparticles
[39]. Among the fungi used for the synthesis of nanoparticles it is possible tofind: Fusarium oxysporum (Ag-NP)
[38],Coriolus versicolor (Ag-NP) [40],Penicillium fellutanum (Ag-NP) [41],Colletotrichum sp. (Au-NP) [42],
Neurospora crassa (Ag/Au-NP) [43], Fusarium oxysporum (TiO2) [44], Saccharomyces cerevisiaeMTCC2918
(ZnS-NP) [45], andAspergillus terreus (ZnO-NP) [46], among others.

Yeasts
The use of yeasts for the production of nanoparticles has also been addressed. Yeast possesses several advantages
over bacteria for the bulk production of nanoparticles as the yeast growmore rapidly, produce higher amounts
of enzymes and are easy to handle in laboratory conditions [47]. Some of the yeasts that have been studied in the
synthesis of nanoparticles are:Candida glabrata (CdS-NP) [48],Torulopsis sp. (PbS-NP) [49],MKY3 (Ag-NP)
[50],Yarrowia lipolyticaNCIM3589 (Au-NP) [51],Yarrowia lipolyticaNCYC789 (Ag-NP) [52], Saccharomyces
cerevisiae (TiO2-NP) [53],Rhodosporidium diobovatum (PbS-NP) [54],Candida utilisNCIM3469 (Ag-NP) [55],
Saccharomyces cerevisiae (Sb2O3-NP) [56], and Schizosaccharomyces pombe (CdS-NP) [57], among others.

Micro andmacroalgae
Algae are non-vascular plants, which lack true roots, stems, and leaves. Several species were used for the
production of nanoparticles, such as:Chaetomorpha linum (Ag-NP) [58], Spirulina platensis (Ag/Au-NP) [59],
Klebsormidium flaccidum (Au-NP) [60],Chlorella vulgaris (Au-NP) [60], Sargassummuticum (ZnO-NP) [61],
Bifurcaria bifurcate (CuO-NP) [62], Sargassum bovinum (Pd-NP) [63],Chlorococcum sp.MM11 (Fe-NP) [64],
and Laminaria japonica (Ag-NP) [65], among others.

Synthesis of nanoparticlesmediated by vegetal extracts

An additional focus on the green synthesis of nanomaterials is the use of plant extracts. The use of plant extracts
for the production of nanomaterials shows several advantages [66]: (i)Easy availability of plantmaterial. (ii)
Safety of operation. (iii) Lowoperating costs. (iv)The ability of the biomolecules that can be found in the extracts
to act as reducing, capping and stabilizing agents. (v)Elimination of elaboratemaintenance of bacteria, fungi,
and yeasts. (vi) Fast synthesis procedures. (vii) Involvement of environmentally friendly processes. (viii)
Production ofmore stable nanoparticles. (ix)The possibility of better controlling the size and shape of the
nanoparticles. (x) Suitability for large scale.

Some biomolecules present in plant extracts are capable of producing nanoparticles. Polyphenols,
terpenoids, amino acids, vitamins, alkaloids,flavonoids, carbohydrates, among others (Figure 1) play amajor

Table 1.Capping and reducing agents, solvents employed in the synthesis of nanoparticles and their types of risk.

Type of risk Capping agents Reducing agents Solvents

Flammable Polyamidoamine H2, CO,NaBH4 Ethanol, toluene,

dimethylformamide

Corrosive Hexadecyltrimethylammoniumbromide, dode-

cylamine, trioctylphosphine oxide, trioctyl-

phosphine, oleylamine

HCHO,H2O2,

NH2OH·HCl,NaBH4,

oleylamine, N2H4

Oleylamine

Acute toxicity Hexadecyltrimethylammoniumbromide, poly-

ethylene glycol, oleic acid, polyamidoamine,

ethylenediaminetetraacetic acid, dodecyla-

mine, linoleic acid, oleylamine

HCHO,CO, citric acid,

Na2CO3,NH2OHiHCl,

ethylene glycol, ascorbic

acid, NaBH4, oleylamine,

N2H4

Ethanol, toluene, oleylamine,

dimethylformamide

Health hazard Hexadecyltrimethylammoniumbromide, poly-

amidoamine, dodecylamine, poly(acrylic
acid), oleylamine

NH2OH·HCl, ethylene gly-

col, NaBH4, oleylamine,

N2H4

Toluene, 1-octadecene, oley-

lamine,

dimethylformamide

May cause damage

to the aquatic

environment

Hexadecyltrimethylammoniumbromide, dode-

cylamine, oleylamine

NH2OH·HCl, oleylamine,

N2H4

Oleylamine
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role in the reduction ofmetal ions. A lot of workwas devoted to the use of vegetal extracts fromdifferent plants
in the synthesis of nanoparticles. The extracts can be obtained fromdifferent parts of the plants, such as leaves,
stems, bark, seeds, pods, and fruits [67–69].

Basically, the synthesis process consists of obtaining the aqueous extracts from the plant biomass,mixing
themwith a solution of themetal ion at a desired temperature and pHwith orwithout shaking [70]. Depending
on the reaction conditions, the synthesis of the nanoparticles with the desired physical features can be completed
quickly [71]. The basic experimental protocol for the synthesis ofmetal nanoparticles based on plant extracts is
represented in Figure 2.

Factors affecting the synthesis ofmetal andmetal oxides nanoparticles

The factors involved in the green synthesis ofmetal andmetal oxide nanoparticles are not completely
understood. This prevents the optimization and scaling up of the processes. For instance, the diversity of
compounds present in the extracts poses amajor challengewhen optimizing the synthesis of nanoparticles from
plant extracts. It was reported that factors such as reaction time, pH, temperature, among others, directly affect
some of the physical and chemical characteristics of the nanoparticles obtained by green synthesis. Table 2 shows
themain parameters that influence the green synthesis of nanoparticles and their effect.

Effect of pH
The pHof themedium inwhich the synthesis of nanoparticles is carried out is a key factor to be considered. The
pH affects the size, shape, reduction rate and stability ofmetal nanoparticles. It was argued that the pH effect on
these features ismainly due to an increase in the reducing activity of the functional groups in the extracts,
increasing the reduction ofmetal ions by increasing the pHof themedium. For instance,Muthu y Priya [77],
Aboelfetoh et al [72], Veerasamy et al [79] andKrishnaraj et al [76] studied the synthesis of Ag-NPmediated by
flower extracts ofCassia auriculata,Caulerpa serrulata, Garciniamangostana, andAcalypha indica, respectively.
They all found a pH effect on the size, stability, and formation rate of Ag-NP. At acid pH it was proposed that the
pHhas a direct effect on the size and shape of the Au-NP synthesized by extracts of four different fruits (Actini
diadeliciosa,Malus domestica, Prunus persica yMusa acuminate). These authors observed that at extreme basic
pH theAu-NPwere smaller andmore spherical. Formation of anAu(OH)3 precipitate would provoke a decrease

Figure 1.Main phytochemicals involved in the synthesis of nanoparticles.

4

Mater. Res. Express 6 (2019) 082006 P Salgado et al



of the availability of Au3+ to react with the reducing compounds present in the extracts, affecting the generation
of Au-NP. Polyakova et al [78] also performed a detailed analysis of the pH effect on some features of Au-NP
synthesized from an extract of theCitrus limon juice. The authors found that the size and shape of the
nanoparticles depend on the type of Au3+ species predominant in the reaction system. They reported that at acid
pH a rapid reduction of Au3+ ions takes place, leading toAu-NPwith various shapes andmainly aggregated. At
neutral and basic pH the authors obtainedAu-NPwithmore spherical forms, but their formation is slower
compared to that observed in syntheses performed at acidic pH. Zeta potentialmeasurements of the
nanoparticles as a function of pH showed that, at acid pH, Au-NPhave a greater tendency to precipitate. Zhan
et al [80] reported that the size of Au-NP obtained from extracts ofCacumen platycladi decreases with increasing
pH, being higher the reduction rate of Au3+. Jebakumar y Sethuraman [74] studied the pH effect in the synthesis
of Ag-NPmediated by extracts ofAcacia nilotica. They reported that themediumpHhas no effect on the shape
of the nanoparticles, but they found that at neutral and basic pH smaller andmoremonodispersed nanoparticles
are obtained. These authors also found that themost stable nanoparticles were obtained at neutral pH. Khalil
et al [75] evaluated the effect of themediumpH in the range from2 to 11 on the formation of Ag-NPmediated by
extracts of olive leaves. They found that the average size of the silver nanoparticles was tunable by simply
changing the extract concentrations used and pHof the reactions. The reduction of the silver precursor was

Figure 2.Experimental protocol for the green synthesis ofmetal nanoparticles.

Table 2.Experimental factors and theirmain effects on the green synthesis of nanoparticles.

Parameter Effect References

pH Size, shape, reduction rate, stability [72–80]
Temperature Size, shape, reduction rate, stability [75, 77, 79, 81]
Reaction time Size, shape [72, 75–77, 79, 81]
Plant species Reduction rate, size, shape [82–86]
Extract concentration Size, shape, reduction rate, stability [72–74, 77, 81]
Precursor concentration Nanoparticles concentration, size, shape, stability [17, 70, 73, 81, 87]
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promoted at elevated pHdue to increased activity of olive leaf extract constituents. In contrast, Aromal et al [73]
reported that smaller Au-NP are obtained from extracts ofTrigonella foenum-graecum under neutral or basic
conditions compared to acidmedium.

The pH effect on the synthesis ofmetal nanoparticles using extracts ofEucalyptuswas also studied in the
literature. For example, Ali et al [88] analyzed the pH effect on the synthesis of Ag-NPusing extracts of
Eucalyptus globulus andmicrowaves. These authors found that increasing the pHof themedium favors the
reduction of Ag+ ions to yield Ag-NP. In addition, Pinto et al [89] studied the effect of systempHon the
synthesis of Au-NP from extracts ofEucalyptus globulus bark. These authors reported that larger andmore stable
of Au-NP are obtained at neutral and basic pH than at acid pH. They attribute this behavior to themainAu3+

species present at neutral and basicmedium: [AuCl2(OH)2]
− and [AuCl(OH)3]

−, which are less reactive than
[AuCl3(OH)]−, the species present at acid pH. The authors assign the high stability at higher pH values to the
increase in the content of anionic biomolecular species that not only are able to reduce Au(III) ions but also act as
stabilizing/capping agents. The negative surface charge of the AuNPs surfaces results in an increase in the
electrostatic repulsion between them, providing an increased stability. Themorphology of the nanoparticles is
also slightly affected by themediumpH.

The pH effect on the formation ofmetal oxide nanoparticles by extracts ofEucalyptuswas also investigated.
For example Saleem et al [87] studied the effect of pHon the formation ofNiO-NP from extracts of Eucalyptus
globulus. These authors suggest that thefirst step in the formation ofNiO-NP, which takes place at higher pH,
Ni2+ ions are reduced toNi0. The deprotonation of the biomolecules at higher pH could increase the ability of
thesemolecules to reduceNi2+ ions. In the second step there is an oxidation in the presence of air to yield the
NiO-NP.Moreover, Ali et al [90] reported that increasing the pHof themedium increasing the size of CuO-NP
using extracts ofEucalyptus globulus.

Effect of temperature
Temperature is a factor that also plays an important role in themain characteristics of nanoparticles. There are
some reports on the effect of temperature on the synthesis ofmetal nanoparticles by plant extracts. For example,
Muthu andPriya [77] investigated the effect of temperature on the synthesis of Ag-NP byflower extracts of
Cassia auriculata. The authors report an increase of the formation rate of the nanoparticles and a decrease their
sizewith increasing temperature. Veerasamy et al [79] studied the effect of temperature on the formation of Ag-
NPby extracts ofGarciniamangostana. The authors reported that a temperature increase results in a faster
formation of bigger nanoparticles. Khalil et al [75] reported that an increase in temperature causes a direct effect
increasing the rate of formation and the total amount of Ag-NP.

There are also some literature works dealingwith the temperature effect on the formation ofmetal oxide
nanoparticles. Jeevanandam et al [81] studied how temperature affects the synthesis ofMgO-NPby amixture of
Amaranthus tricolor,Andrographis paniculata, andAmaranthus blitum. The authors found that at 60 °C the
highest production ofMgO-NPwas obtained, decreasing its yield below and above that temperature. A very
plausible explanation to these observations is that at a lower temperature the energy needed to optimizeMgO-
NPproduction is not obtained, whereas at a higher temperature it is possible that the biocompounds responsible
for the formation ofMgO-NP decompose.

Regarding the use of extracts ofEucalyptus, Pinto et al [89] studied the effect of temperature on the synthesis
of Au-NP from extracts ofEucalyptus globulus. Their results show that there are no significant changes in the
type of crystal structure of the Au-NPwhen they are synthesized at 0, 25 or 80 °C. The authors also found that the
temperature does not play a significant role in the zeta potential, size, and shape of the synthesizedAu-NPs. Ali
et al [88] reported that increasing the temperature on the synthesis of Ag-NPusing extracts ofEucalyptus
globuluswould cause an increase in the size of Ag-NP.

Effect of reaction time
The reaction time inwhich the synthesis of the nanoparticles is carried out is a factor that can directly affect the
size, shape, and speed of their formation. There are several reports dealingwith the effect of the reaction time in
the synthesis ofmetallic nanoparticles.Muthu and Priya [77] studied the effect of time on the synthesis of Ag-NP
byflower extracts ofCassia auriculata. These authors reported that the longer the reaction time, the higher the
yield of production of Ag-NP. Krishnaraj et al [76] evaluated the effect of the reaction time in the synthesis of Ag-
NPusing extracts ofAcalypha indica, and also found that the longer the reaction time, the greater the yield of Ag-
NP synthesized. On the other hand, Aboelfetoh et al [72] studied the role of reaction time on the formation of
Ag-NPmediated byCaulerpa serrulata. They also observed larger yields at longer reaction times, without
observing any significant changes in the size of theAg-NP. Veerasamy et al [79] studied the effect of reaction time
on the formation of Ag-NP by extracts ofGarciniamangostana. They reported that an optimumyield of small
particles is obtained at 60 min of reaction, after that time bigger Ag-NP are obtained due to agglomeration
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phenomena. Khalil et al [75] observed that an increase in the reaction time in the formation of Ag-NP by extracts
of olive leaves increases the production yield of these nanoparticles.

The role of the reaction time on the formation ofmetal oxide nanoparticles by plant extracts has also been
analyzed. Jeevanandam et al [81] studied the synthesis ofMgO-NPby extracts ofAmaranthus tricolor,
Andrographis paniculata, andAmaranthus blitum at 5 min, 10 min, and 15 min. The researchers found that
10 min of reaction at 60 °C,was the optimal time for obtaining larger amounts of small sizeMgO-NP
nanoparticles.

The effect of the reaction timewas also studied in the synthesis ofmetallic nanoparticles by extracts of
Eucalyptus. For instance, Pinto et al [89] studied the role of the reaction time in the synthesis of Au-NPby
extracts ofEucalyptus globulus. The authors observed that the absorption band in the visible associatedwith the
formation of Au-NP increasedwith time, indicating an increase of the amount of AuNP formed up to at least
24 h of reaction. The reaction time had nomajor influence on other parameters, such as the size and shape of the
Au-NP.On the other hand, Pourmortazavi et al [91] reported that an increase in the reaction time in the
formation of Ag-NP by extracts ofEucalyptus oleosa induces a decrease in particle size. Ali et al [88] observed that
the longer the reaction time, the greater the production of Ag-NP from extracts ofEucalyptus globulus.

Regarding the role of reaction time on the synthesis ofmetal oxide nanoparticles by extracts ofEucalyptus.
Jeevanandam et al [17] analyzed the size ofMgOnanorods synthesized by extracts ofEucalyptus globulus after 10,
20, 30, 40, 50 and 60 min of reaction. These authors found that the smallest particles were obtained after 20 min
of reaction. They assign this behavior to the fact that a longer reaction times favors the agglomeration of the
nanoparticles, causing an increase in the size of theMgOnanorods. Another plausible explanation is based on
the decomposition of the biomolecules present in the extracts after longer reaction time, preventing them from
acting as stabilizing agents. Saleem et al [87] studied the effect of the reaction time on the formation ofNiO-NP
from extracts ofEucalyptus globulus. They reported an increase in the yield of formation ofNiO-NPwith
increasing reaction time.

Effect of plant extract
The diversity of the composition of plant extracts is a factor that is very important in the yield and features of the
synthesized nanoparticles. Yang et al [86] studied the effect of extracts ofActini diadeliciosa,Malus domestica,
Prunus persica andMusa acuminate on the size of Au-NP synthesized at a controlled pH (pH=11.0). The
authors found that the average sizes found for Au-NPwere 4.5±2.0 nm, 6.0±1.5 nm, 5.9±2.0 nm and
2.6±1.1 nm forActini diadeliciosa,Malus domestica,Prunus persica andMusa acuminate, respectively. Even
though the difference in the size of the Au-NPobtained is significant, it was not possible to attribute this effect to
the composition of the extracts, since the authors did not analyze the concentration of biomolecules in the
extracts. Xiao et al [85] studied the synthesis of iron nanoparticles by 15 different types of extracts. Out of the
extracts analyzed, S. jambos (L.) Alston andD. longan Lour showed the highest capacity to formnanoparticles.
The extract ofOolong tea showedmoderate capacity for nanoparticle formation; whereas the extractsN. indicum
andA.moluccana (L.)Willd showed the lowest capacity for nanoparticle formation. Unfortunately, the study
does not compare the physical features of the iron nanoparticles obtainedwith the different extracts. In another
workWang et al [84] studied the effect of extracts ofEucalyptus tereticornis,Melaleuca nesophila, and
Rosemarinus officinalis on the formation of nanoparticles formed from ferric complexes. The authors noticed
that theUV-visible spectrumof the nanoparticles synthesized by extracts ofRosemarinus officinaliswas different
from the others. SEM images of the nanoparticles prepared fromRosemarinus officinalis showed aggregation and
irregular shapes, whereas the extracts ofEucalyptus tereticornis andMelaleuca nesophila yielded verywell
distributed nanoparticles of spherical shape. The authors assign these differences to the chemical composition of
the extracts. Ramezani et al [83] evaluated 12 different extracts for the synthesis of Au-NP and found that
Eucalyptus camaldulensis, has the highest capacity for the formation of nanoparticles. The authors also compared
the size of Au-NPobtained from extracts ofEucalyptus camaldulensis andPelargonium roseumThey found that
extracts ofEucalyptus camaldulensis andPelargonium roseum produced gold nanoparticles in the size ranges of
1.25–17.5 and 2.5–27.5 nmwith an average size of 5.5 and 7.5 nm, respectively.

As far aswe know, there is only onework dealingwith the effect of different types ofEucalyptus species on the
synthesis of nanoparticles [82]. The authors of that work evaluated the synthesis of Ag-NP by extracts of
Eucalyptus urophylla,Eucalyptus citriodora, andEucalyptus robusta. Their results showed that Ag-NP synthesized
byEucalyptus urophylla andEucalyptus citriodora are smaller than those synthesized by Eucalyptus robusta. The
authors also reported that the Ag-NP formed byEucalyptus urophylla present higher crystallinity than those
formed by Eucalyptus citriodora andEucalyptus robusta.
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Effect of the extract concentration
The concentration of the extracts is in general associatedwith the efficiency in the production ofmetal
nanoparticles. Aboelfetoh et al [72] studied the effect of varying the concentration of extracts ofCaulerpa
serrulataon the synthesis of Ag-NP. They reported that an increase in the concentration of the extract induces the
formation of a greater amount of smaller Ag-NP.Muthu and Priya [77] investigated the effect of the
concentration offlower extracts ofCassia auriculata on the synthesis of Ag-NP. Their results indicate that an
increase in the concentration of the extracts causes an increase in the yield of Ag-NP, but does not affect the
nanoparticles size.

Jebakumar and Sethuraman [74] reported that increasing the concentration of extracts ofAcacia nilotica
results in an increase of the size and yield of the Ag-NP synthesized.However, Khalil et al [75] observed that an
increase in the concentration of extracts of olive leaf, in addition to causing an increase in the production of Ag-
NP, induces them to reduce their size. The authors did not observe any changes in the shape of theAg-NP.
Aromal et al [73] reported a considerable decrease in the size of the Au-NP in syntheses performedwith
increasing concentration of the extracts ofTrigonella foenum-graecum.

Research has also focused on studying the effect of the concentration of plant extracts on the formation of
metal oxide nanoparticles. Jeevanandam et al [81] studied the effect of the concentration of extracts of
Amaranthus tricolor,Andrographis paniculata andAmaranthus blitum in the synthesis ofMgO-NP: these authors
reported that, in general, at a higher concentration of extracts largerMgO-NP are formed.

Pinto et al [89] studied the effect of the concentration of extracts ofEucalyptus globulus in the synthesis of Au-
NP. These researchers observed that by adding 1 mg l−1 of the extract, formation of Au-NP occurred rapidly.
But, when the concentration of the extract decreased, the rate of formation of the Au-NP also decreased. These
authors also observed that increasing the concentration of the extracts resulted in the production of smaller Au-
NPwith lower stability. The authors also failed to observe changes in the shape of the Au-NPs by changing the
concentration ofEucalyptus globulus extracts. Ali et al [88] studied the effect of the concentration of extracts of
Eucalyptus globulus on the synthesis of Ag-NP. These authors reported an increase in the production of the
nanoparticles by increasing the concentration of the extracts.

As far aswe know, there is only onework dealingwith the effect of different types of the concentration of
Eucalyptus extracts on the synthesis of nanoparticles [17]. These authors reported a decrease in the size ofMgO
nanorodswhen solutions of a higher concentration ofEucalyptus globulus are employed in the synthesis
procedure.

Effect of the concentration of the precursor
It has been proposed that the concentration of the precursor salts will have an influencemainly on the efficiency
of the synthesis ofmetallic nanoparticles by plant extracts.Muthu and Priya [70] studied the effect of the
concentration of Ag+ ions in the synthesis of Ag-NPby flower extracts ofCassia auriculata. Krishnaraj et al [73]
studied the effect of Ag+ concentration in the synthesis of Ag-NPby extracts ofAcalypha indica, finding that the
higher Ag+ concentration themore efficient the production of Ag-NP.

Other works report the effect of the concentration of precursor salts on the synthesis ofmetal oxide
nanoparticles by plant extracts. Jeevanandam et al [81] reported that at higher concentrations ofMg2+ in the
synthesis ofMgO-NP by extracts ofAmaranthus tricolor,Andrographis paniculata, andAmaranthus blitumMgO
microparticles were obtained, whereas at lower concentrations ofMg2+MgO-NPweremainly formed.

The effect of the concentration of precursors has also been studied using extracts of some Eucalyptus species
in the synthesis ofmetal oxide nanoparticles. Saleem et al [87] found that increasing the concentration ofNi2+

ions the yield ofNiO-NP by extracts ofEucalyptus globulus also increased. Jeevanandam et al [17] found that the
size of theMgOnanorods formed by Eucalyptus globulus increases with increasing the concentration ofMg2+

ions.
Regarding the effect on the variation in the concentration ofmetal ions in the synthesis ofmetallic

nanoparticles by extracts ofEucalyptus, Ali et al [88] found that increasing the concentration of Ag+ ions
increases the amount of Ag-NP formed in the presence of extracts ofEucalyptus globulus.

When analyzing the effect of each of the factorsmentioned here, it is quite clear that it is necessary to advance
in establishing the optimal nanoparticle synthesis conditions. It is also essential that studies continue to be
conducted to look for the best species of plants that yield a greater and better production of nanoparticles, and to
investigate how these extracts are related to the type of nanoparticle that is required to synthesize (type and
concentration of precursor), besides considering the importance of the pH, temperature and reaction time.
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Synthesis of nanoparticles byEucalyptus extracts

Although the synthesis of nanoparticlesmediated by plant extracts is relatively easy, there aremany aspects that
have been difficult to understand. One of these topics is to understandwhich biomolecules present in the
extracts are responsible for the reduction of themetal ions of the precursor andwhich biomolecules act as
stabilizing agents of the nanoparticle [92]. For this reason, it is essential to analyze the composition of the
extracts to understand the green synthesis of nanoparticles.

The composition ofEucalyptus extracts

In the literaturemost of the studies of the composition of the extracts of different Eucalyptus species were focused
to the search for phenolic compounds, as shown inTable 3.

From the results summarized in Table 3 it can be inferred that when obtaining extracts of plant species,
either for the green synthesis of nanoparticles or for another purpose, it is necessary to consider among other
factors the type of extraction, the type of solvent used, the species and the part of the plant fromwhich extracts
are desired. Santos et al [93] studied the extraction of phenolic compounds from the bark ofEucalyptus globulus
by two different extractionmethods andwith different solvents. The results show that a solid-liquid extraction
method is from5 to 44 timesmore efficient for the extraction of total phenolic compounds than the extraction
with a supercritical fluid. Chapuis-Lardy et al [94] examined the total phenolic content of three different species
ofEucalyptus extracted by reflux. The results showno significant differences between the species studied. In
otherwork Santos et al [95] reported the total phenolic content extracted by the Soxhletmethod and by a
mixture ofmethanol/H2O from the bark of three different species ofEucalyptus. The authors were able tofind
significant differences in the phenolic content of the species analyzed (see Table 3).

The variability in themethods used for the extraction of phenolic compounds is not only reflected in the
total content of phenolic compounds, but also in the type of phenolic compounds. Table 4 shows some examples
of how the type of phenolic compound extracted can vary depending on themethod used, the plant species, the
part of the plant fromwhich the extracts are obtained and the type of solvent used.

Santos et al [93] studied the effect of CO2 andCO2/Ethanol as supercriticalfluids in the extraction of
phenolic compounds from the bark ofEucalyptus globulus. The results indicate that the use of a supercritical
fluidwith polar characteristics such as CO2/Ethanol favors the extraction, identifying up to 11 additional
compounds compared to the analysismade to the extract obtained byCO2. Chapuis-Lardy et al [94] identified
the same phenolic compounds in three different species ofEucalyptus obtained bymaceration of the leaves. In a
semi-quantitative analysis, the authors did notfind significant differences in the concentrations of the phenolic
compounds contained in the three different extracts. However, Santos et al [95], in anotherwork, identified the
phenolic compounds in barks from three different species ofEucalyptus by Soxhlet extraction and using
methanol/H2Oas solvent. The results reported show variability in the type of phenolic compounds depending
on the species ofEucalyptus. It should be noted thatwhen comparing the analysis of phenolic compounds
carried out by Santos et al [95] andChapuis-Lardy et al [94] ofEucalyptus urograndis different identified
compounds are appreciated. This is probably due to the different extractionmethods, the solvents used in the
extractions, or by the part of the analyzed plant (leaf and bark). As alreadymentioned, there is no doubt that the

Table 3.The total phenolic composition of extracts of Eucalyptus.

Species

Part of the

plant

Extraction

method Fraction analyzed

Total phenolic content (mg

GAE/g) References

Eucalyptus globulus Bark Solid-liquid Methanol:H2O 407.41±16.68 [93]
Ethanol:H2O 159.57±6.75

Supercritical fluid CO2/Ethanol 33.10±0.53
CO2/Ethyl acetate 16.59±0.10
CO2/H2O 9.22±0.27
CO2 10.92±0.23

Eucalyptus urophylla x Euca-

lyptus grandis

Leaves Reflux H2O 119.1 [94]

Eucalyptus uropellita 137.8

Eucalyptus urograndis 115.9

Eucalyptus grandis Bark Soxhlet extraction Methanol/H2O 385.63±11.02 [95]
Eucalyptus urograndis 346.72±7.76
Eucalyptusmaidenii 203.86±4.37
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Table 4. Identification of themain phenolic compounds inEucalyptus species.

Species

Part of the

plant Extractionmethod Fraction analyzed Identification of compounds References

Eucalyptus globulus Bark Supercritical fluid CO2/Ethanol Gallic acid, protocatechuic acid, digalloylglucose, isorhamnetin-hexoside, ellagic acid, taxifolin,methyl-ellagic

acid-pentose,methyl-ellagic acid, eriodictyol, luteolin, isorhamnetin, naringenin

[93]

CO2 Digalloylglucose

Eucalyptus urophylla xEucalyptus

grandis

Leaves Maceration H2O Gallic acid, protocatechuic acid, chlorogenic acid, p-Hydroxybenzoic acid+gentisic acid, caffeic acid,

p-hydroxybenzaldehyde, p-coumaric acid, ferulic acid

[94]

Eucalyptus uropellita Idem

Eucalyptus urograndis Idem

Eucalyptus grandis Bark Soxhlet extraction Methanol/H2O Quinic acid, gallic acid, protocatechuic acid,methyl gallate, catechin, Galloyl-bis-hexahydroxydiphenoyl-glu-

cose, digalloylglucose, epicatechin, ellagic acid-rhamnoside, ellagic acid, Isorhamnetin-rhamnoside.

[95]

Eucalyptus urograndis Quinic acid, gallic acid, protocatechuic acid,methyl gallate, galloyl-bis-hexahydroxydiphenoyl-glucose, epica-

techin, ellagic acid-rhamnoside, ellagic acid, isorhamnetin-rhamnoside

Eucalyptusmaidenii Quinic acid, gallic acid, protocatechuic acid,methyl gallate, catechin, galloyl-bis-hexahydroxydiphenoyl-glu-

cose, digalloylglucose, epicatechin, chlorogenic acid, galloyl-bis-hexahydroxydiphenoyl –glucose, dihy-

droxy-isopropylchromone-hexoside, isorhamnetin-hexoside, ellagic acid-rhamnoside, ellagic acid, taxifolin,

quercetin-hexoside, methyl-ellagic acid-pentose,myricetin-rhamnoside,mearnsetin,mearnsetin-hexoside,

eriodictyol, quercetin, isorhamnetin, naringenin
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extractionmethod and the experimental parameters employed in the extraction of biocompounds of vital
importance.

Role of biocompounds in the green synthesis of nanoparticles

The different biocompounds that can be found in plant extracts play a very important role in the green synthesis
of nanoparticles. Belowwe analyze some of themain biocompoundsmentioned in literature and their role in the
green synthesis of nanoparticles.

Phenolic compounds
The phenolic compounds are one of the biocompounds of greater presence in the extracts of eucalyptus, and
therefore, one of themain compounds responsible for the formation of nanoparticles fromplant extracts.
Shahwan et al [96]were able to synthesize Fe-NP from green tea extracts, proposing in this work that the
polyphenols present in the extracts act as both reducing and capping agents. Additionally, Devatha et al [97]
suggested that in the synthesis of iron nanoparticlesmediated by extracts ofMangifera indica,Murraya koenigii,
Azadirachta indica andMagnolia champaca, themain reducing biomolecules are polyphenols. Khan et al [98]
and Sravanthi et al [99] studied the synthesis of Fe-NP from extracts ofHibiscus sabdariffa andCalotropis
gigantea respectively, finding that the polyphenols present in these extracts actmainly as reducing and capping
agents.

The importance of the phenolic compounds present in extracts ofEucalyptus for the synthesis of
nanoparticles has beenwidely studied. In an exhaustive study, Xiao et al [85] examined the effect of 15 extracts of
different plant species and their content of reducing sugars, flavones, polyphenols and proteins on the synthesis
of iron nanoparticles. The authors were able tofind an excellent relationship between the polyphenolic content
of the 15 extracts studied (amongwhich those from Eucalyptus citriodora stands out) and the production of
nanoparticles, concluding then that the polyphenols were themain Fe3+ reducing agents in the system. In this
line, authors asWang et al [100] and Pinto et al [89] have proposed that in the synthesis of iron and gold
nanoparticles the polyphenols present in extracts ofEucalyptus act as both reducing and stabilizing agents.
Santos et al [101] analyzed the phenolic content of Eucalyptus globulus extracts byHPLC-MS before and after
carrying out the synthesis of Ag-NP andAu-NP. The authors found that the polyphenols derived from gallic acid
were themain reducers of Ag+ andAu3+ ions; whereas the ellagic acid and isorhamnetine derivatives acted as
stabilizers of the synthesized nanoparticles.

In contrast, it has been reported that polyphenols are not only able to reducemetal ions and formmetallic
andmetal oxide nanoparticles, but can instead formnanoparticles composed ofmetal complexes. For example,
Wang et al [102] reported that the polyphenols present in extracts of Salvia officinaliswere able to form
nanoparticles of ferric complexes. SimilarlyMarkova et al [103] proposed the participation of polyphenols from
green tea extracts in the formation of nanoparticles of ferrous and ferric complexes.Wang et al [84] studied the
type of nanoparticles formed between Fe3+ ions and polyphenols in extracts ofMelaleuca nesophila,Rosemarinus
officinalis, andEucalyptus tereticornis, reporting that theywere composed of polyphenol-Fe3+ complexes.Wang
et al also reported in two additional works the formation of nanoparticles formed by polyphenol-Fe3+

complexes using extracts ofEucalyptus tereticornis [104, 105].

Terpenoids
Terpenoids are an important group of polymeric organic compounds. Shankar et al [42] proposed that the
terpenoids found in extracts ofPelargonium graveolenswere themain reducing compounds implied in the
formation of Au-NP.Mashwani et al [106] in an article on the importance of terpenoids in the synthesis of Ag
nanoparticles propose that themain role of terpenoids is related to their capacity to reduceAg+ ions, besides to
the stabilization of the nanoparticles obtained.

The implication of terpenoids in extracts ofEucalyptus has also been addressed. Saleem et al [87] proposed
that terpenoids present in extracts ofEucalyptus are able to reducemetal ions to formNiOnanoparticles, using
both aldehyde and hydroxyl groups present in terpenoidmolecules. In this line Jeevanandam et al [17] found
that eucalyptol, a terpenoid present in extracts ofEucalyptus globulus, was one of those responsible compounds
for the formation ofMgOnanowires fromMg2+ ions, whereas othermolecules of the terpene type act as
stabilizing agents.

Carbohydrates
Among the carbohydrates that can be found in vegetable extracts, there is a type called reducing carbohydrates,
capable of reducingmetal ions. In this way, Castro et al [107] used sugar beet pulp for the synthesis of Au
nanowires, considering that the carbohydrates present in the pulp are one of themain reducers. In a similar way
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Shankar et al [108] found that the carbohydrates in the extracts ofAzadirachta indica acted as stabilizers in the
synthesis of Ag-NP andAu-NP. In the same line,Ortega-Arroyo et al [109]used starch in the synthesis of Ag-NP,
finding that glucose acted as themain agent of Ag+ ion reduction.

On the other hand, Santos et al [101] found the presence of glucose and fructose in extracts ofEucalyptus
globulus. The authors found that both glucose and fructose at low concentrations do not act as reducing agents in
the formation of Ag-NP andAu-NP, but rather as stabilizing agents.

Proteins
It is possible tofind some publications that have addressed the role of proteins present in plant extracts in the
synthesis of nanoparticles. For example, Patra et al [110] proposed that the proteins present in extracts ofButea
monosperm play a reducing role in the formation of Ag-NP andAu-NP. Li et alhave shown in twoworks that the
synthesis of Ag-NP [111] and Se-NP [112] by extracts ofCapsicum annuum ismediated by the proteins in the
extract.

Regarding the participation of proteins from extracts ofEucalyptus species in the formation of nanoparticles,
Mo et al [82] proposed that the proteins and polyphenols present in extracts ofEucalyptus urophylla,Eucalyptus
citriodora, andEucalyptus robusta, were themain reducing compounds in the formation of Ag-NP fromAg+. In
contrast, Santos et al [101] andAli et al [88] reported that themain function of the proteins found in extracts of
bark and leaves ofEucalyptus globulus played the role of stabilizers, but not of reducing agents.

Alkaloids
There are someworks inwhich the ability to formnanoparticles is attributed to some alkaloids present in plant
extracts. For example,Weng et al [113],Wu et al [114], Huang et al [115], Kuang et al [116] andHuang et al [117]
proposed that the caffeine contained in tea extracts was able to form iron nanoparticles acting as a reducing and
stabilizing agent. Feng et al [118] found that in the synthesis of Pd-NP and Pt-NP supported on graphene oxide
the caffeine added to the system acted directing the structure of the nanomaterial and as a capping agent.
Augustine et al [119] raised the possibility that the alkaloids present in the extracts ofPiper nigrum leaves act as
reducing agents in the formation of Ag-NP. Kumar et al [120] found that the alkaloids found in the extracts of
Zingiber officinale used in the synthesis of Au-NP act as capping agents. On the other hand, Begum et al [121]
observed that the caffeine-rich extract obtained fromCH2Cl2 fromblack tea leaves was not able to synthesize Ag-
NP andAu-NP.

To our knowledge, there are not toomany studies that address the presence of alkaloids inEucalyptus
extracts and their influence on the formation of nanoparticles. Dubey et al [122] proved the existence of alkaloids
in extracts ofEucalyptus hybrida, but they do not attribute any effect to these compounds on the synthesis of
silver nanoparticlesmediated by these extracts.Weng et al [123] comment that the presence of alkaloids among
other biomolecules present inEucalyptus leaves could serve both as reducting and capping agents. Ali et al [88]
proposed that the stability found in the synthesis of Ag-NP from extracts ofEucalyptus globuluswas due to the
presence of alkaloids, among other biocompounds.

Tannins
Tannins are compounds, generally polymeric, extracted fromplants, with several hydroxyl groups in their
structure. There are publications inwhich the effect of these compounds in the synthesis of nanoparticles has
been studied. Kumar et al [124] studied the synthesis of Au-NP from extracts ofTerminalia chebula,finding that
thewater-soluble tannins present in the extracts were responsible for the reduction and stabilization of the
nanoparticles. In an additional work, Kumar et al [125] studied the effect of extracts ofTerminalia chebula on the
synthesis of Ag-NP, reporting that the hydrolyzable tannins present in the extracts act only as reducing agents.
Edison et al [126] informed that the tannins found in extracts ofTerminalia chebula used for the synthesis of Ag-
NP act as both reducting and capping agents.

As far aswe know, the participation of tannins from extracts ofEucalyptus has been very little addressed.
Recently,Mo et al [82] proposed that the tannic acids present in extracts ofEucalyptus urophylla,Eucalyptus
citriodora, andEucalyptus robusta have reducing activity in the synthesis of Ag-NP.

Some of the publications that have used extracts ofEucalyptus in the synthesis ofmetal andmetal oxides
nanoparticles, theirmain features, and their application are summarized in Tables 5 and 6 respectively.

Mechanisms of nanoparticle formation

Themechanisms and the biomolecules responsible for the formation of nanoparticlesmediated by plant
extracts have not yet been fully established [24]. It has been reported that various biomolecules such as
polyphenolic compounds, proteins, vitamins, organic acids, terpenoids, alkaloids, polysaccharides, and
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Table 5. Synthesis ofmetallic nanoparticles by extracts ofEucalyptus.

Specie Precursor Capping and/or reducing agents Conditions Type ofNP Size (nm) Morphology Applications References

Eucalyptus globulus AgNO3 Alkaloids, tannins, triterpenoids, flavo-

noids, proteins, carbohydrates and

othermetabolites

20 °C, pH8.0,

microwave

Ag 1.9–25 Spherical Antimicrobial and anti-

biofilm activity

[88]

Eucalyptus urophylla, Euca-

lyptus citriodora, eucaliptus

robusta

AgNO3 Polifenoles y proteinas 30 °C Ag 4–60 Spherical — [82]

Eucalyptus oleosa AgNO3 -OHand -COOgroups 100 °C, 24 h Ag 10–30 Spherical — [91]
Eucalyptus globulus AgNO3 Phenolic compounds 30 °C, 24 h Ag 30–50 Spherical, hexagonal y

cubic

— [127]

Eucalyptus leucoxylon AgNO3 — 27 °C Ag 50 Irregular — [128]
Eucalyptus chapmaniana AgNO3 Flavanoid and terpenoid compounds 20 °C, 24 h Ag 50–150 — — [129]
Eucalyptus AgNO3 — 75 °C Ag 3–9 Spherical Antibacterial activity [130]
Eucalyptusmacrocarpa AgNO3 — 24 °C, 10 min Ag 10–50 Cubic — [131]
Eucalyptus globulus AgNO3 — 20 °C Ag 30–36 Spherical, triangular

and hexagonal

— [132]

Eucalyptus citriodora AgNO3 Tannins 28 °C, 16 h Ag 8–17 Spherical Antibacterial activity [133]
Eucalyptus chapmaniana AgNO3 — 50 °C Ag 60 — Antibacterial activity [134]
Eucalyptus camaldulensis AgNO3 — 20 °C, 2 h Ag 110–250 Spherical — [135]
Eucalyptus globulus AgNO3 Sugars and phenolic compounds 20 °C, 1 h Ag 15–73 Spherical — [136]

HAuCl4 Au 18

Eucalyptus globulus HAuCl4·4H2O Terpenos 20 °C Au 12.8 Spherical — [137]
Eucalyptus globulus HAuCl4·3H2O Phenolic compounds 20 °C, 24 h, pH 2.7 Au 20–100 Spherical — [89]
Eucalyptus oleosa HAuCl4·3H2O — 20ºC Au 28 Spherical — [138]
Eucalyptusmacrocarpa AuCl4

−
— 24 °C, 1 min Au 20–100 Spherical and others Antibacterial activity [139]

Eucalyptus camaldulensis HAuCl4 — 15 min Au 1.25–17.5 Spherical — [83]
Eucalyptus globulus CuCl2·2H2O Phenolic compunds and sugars 2 h, 121 °C, 120 MPa Cu 44–145 Nanowire — [140]
Eucalyptus sp. CuSO4 Phenolic compounds and carboxilic

acids

20 °C, 8 h Cu 27.65–48.19 Cubic — [141]

Eucalyptus FeSO4·7H2O Phenolic compounds 20 °C, 30 min α-Fe 20–80 Spherical Wastewater treatment [142]
Eucalyptus globulus FeSO4·7H2O Phenolic compounds 20 °C, 1 min Fe 50–80 Spherical Cr(VI) adsorption [143]
Eucalyptus FeCl3 Phenolic compounds, aldehydes, amines

and alkanes

80 °C, 30 min, pH 4.0 Fe 95 Spherical Cr(VI) adsorption [144]

Eucalyptus globulus FeCl3·6H2O Phenolic compounds 20 °C Fe 38–47 Irregular, aglomerados As(III) oxidation [145]
Eucalyptus FeSO4·7H2O Phenolic compounds 20 °C,N2 atmos-

phere, 30 min

Fe 71.5 Spherical Cr(VI) adsorption [146]
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Table 5. (Continued.)

Specie Precursor Capping and/or reducing agents Conditions Type ofNP Size (nm) Morphology Applications References

Eucalyptus tereticornis FeCl3 Phenolic compounds — Ferric complex 40–60 Cubic Dye adsorption [104]
Eucalyptus tereticornis FeCl3 Phenolic compounds — Ferric complex 50–80 Spherical Dye oxidation [84]
Eucalyptus FeSO4 Phenolic compounds 20 °C — 20–80 — Cr(VI) andCu(II)

adsorption

[147]

Eucalyptus FeSO4, Ni(NO3)2 Aldehydes, phenols, amines, and alkanes 20 °C, 30 min,N2 Fe/Ni 20–50 Spherical e irregular Dye adsorption and

oxidation

[123]
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Table 6. Synthesis ofmetal oxide nanoparticles by extracts ofEucalyptus.

Specie Precursor

Capping and/or reducing

agents Conditions Type ofNP Size (nm) Morphology Applications References

Eucalyptus

camaldulensis

Cu(NO3)2 — 80 °C, 10 min CuO 21.1 — Antibacterial activity [148]

Eucalyptus globulus CuSO4·7H2O Terpenoids 60 °C, 3 h CuO 16.78–22.50 Spherical, oval and

hexagonal

Antibacterial activity [90]

Eucalyptus globulus Cu(CH3COO)2 — 150 °C, 12 h CuO 12.29 — Photodiode [149]
Zn(CH3COO)2 ZnO 10.16

Eucalyptus FeSO4·7H2O Phenolic compounds 20 °C, 30 min α-Fe-iron oxide-polyphenols 20–80 Spherical (core
shell structure)

Nitrate adsorption [100]

Eucalyptus globulus FeSO4·7H2O Phenolic compounds 50 °C,
30 min,

pH 6

α-FeOOH, γ-FeOOH,α-Fe2O3, γ-Fe2O3, Fe3O4, 5.37–36.51 Spherical Photocatalysis activity [150]

Eucalyptus Laterite Phenolic compounds, aro-

matic amines, aliphatic

amines

60 min Fe, Fe2O3, Fe3O4 20–70 Spherical Herbicide oxidation [151]

Eucalyptus FeCl3·6H2O — 70 °C, 2 h Fe3O4 80–90 Spherical Phosphate adsorption [152]
Eucalyptus FeCl3 Phenolic compounds 70 °C, 2 h Fe3O4 80 Spherical Phosphate adsorption [153]
Eucalyptus globulus Fe(NO3)3·9H2O — 25 °C Fe3O4, γ-Fe2O3, γ-FeOOH,α-Fe2O3 <100 — As(V) adsorption [154]
Eucalyptus FeSO4·7H2O — 80 °C, 1 h Fe(II) and Fe(III) oxides 57.6 Agglomerates Dye adsorption [155]
Eucalyptus globulus FeCl3 — 20 °C, 3 min β-Fe2O3 100 Agglomerates — [156]
Eucalyptus globulus NiNO3·6H2O Phenolic and terpenoid

compounds

70 °C,
4 h, pH8

NiO 3–23 Polymorphic Antibacterial activity [87]

Eucalyptus globulus Mg(NO3)2·6H2O Terpenoids, Phenolic com-

pounds, andflavonoids

80 °C, 20 min MgO 6–9 Nanorods — [17]

Eucalyptus globulus Zn(NO3)3·6H2O Phenolic and terpenoid

compounds

3 h, pH 5.2 ZnO 11.6 Spherical Adsorption and photo-

catalytic activity

[157]

Eucalyptus Graphite oxide — 80 °C, 8 h Reduced graphite oxide 0.807–1.129 Nanocables — [158]
Eucalyptus Graphite oxide Eucalyptols, aldehydes, ter-

pineols, alcohols, amides,

and ethers

80 °C, 8 h Reduced graphite oxide — Spherical Dye adsorption [159]

Eucalyptus Graphene oxide Phenolic compounds — Graphene and gold nanocomposite onto carbon

brush

— Rod-shaped Energy recycle [160]
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heterocyclic compounds are responsible for the reduction ofmetal ions, as well as being able to act as capping
and stabilizing agents [22]. In this way, considering that differentmechanisms have been reported to explain the
formation of nanoparticles depending on the species of plant [161], defining a singlemechanism responsible for
the formation of nanoparticles fromplant extracts seems to be a difficult task.

The phenolic compounds present in the extracts ofEucalyptus play a key role in the synthesis ofmetallic
nanoparticles. Thus, the synthesis ofmetallic nanoparticles can be explained based on the phenolic compounds
(Ar–(OH)n). For example, differentmechanisms have been proposed to explain the formation of iron
nanoparticle (equations (1)–(4)).

nFe 2Ar OH nFe 2nAr O 2nH 1n
3 2+ -  + = ++ + +( ) ( )

nFe 2Ar OH nFe 2nAr O 2nH 2n
2 0+ -  + = ++ +( ) ( )

x2 1 Fe 2Ar O yO 2 Fe Fe O Ar O 3x y
0

2
0+ + = +  - - =( ) ( ) ( )

Fe 3 Ar OH Fe ArO 6H 43
2 2 3

3+ -  ++ - +[ ( ) ] [ ( ) ] ( )

Liu et al [144] proposed that the phenolic compounds, as well as the functional groups of other biomolecules
present in plant extracts, are capable of forming iron nanoparticles in three stages: (1) the compounds form
complexes with Fe3+ and simultaneously reduce it to Fe2+ (quation (1)); (2) the compounds present in the
extracts continue to reduce iron, now fromFe2+ to Fe0 (equation (2)); and (3) the phenolic compounds and
other ligands terminate the reaction, surrounding the nanoparticles and helping to their stability.Wang et al
[142] andRama et al [145] obtained iron nanoparticles from extracts of Eucalyptus, and suggest that the
formation of nanoparticles fromFe2+ ions is produced by the reduction of Fe2+ to Fe0 bymeans of the phenolic
compounds present in the extracts (item2). It has been proposed that phenolic compounds are also capable of
formingmetal oxide nanoparticles with a core of Fe0 and FexOy, and a layer of biomolecules (equation (3))
[100, 144]. Additionally,Wang et al in two publications 84, 104] andMarkova et al [103] have reported the
formation of nanoparticles consisting of stable complexes of phenolic compounds and Fe3+ (equation (4)).

Similarmechanisms have been proposed for the formation ofmetal oxide nanoparticles. Saleem et al [87]
established that the formation ofNiO-NP fromNi2+ and extracts ofEucalyptus globulus occurred by phenolic
compounds able to reduceNi2+ ions toNi0, whereas the phenolic compounds on the surface of the
nanoparticles would cause the formation ofNiO.On the other hand, Jeevanandam et al [17] stated that themain
phenolic compounds in extracts of Eucalyptus globuluswere able to formnanoparticles ofMgO, acting as
chelating and stabilizing agents of theMg2+ ions, to then form the nanoparticles ofMgO.

Applications of nanoparticles

The nanoparticles obtained by greenmethods have been applied in various fields, such as adsorbant/
antioxidants [162], chemocatalytic reactions [163–169], oxidative desulfurization [170], dyes degradation [96,
171–175], degradation of organochlorine compounds [176], sensors development [177, 178], electrodes
development [179, 180], antibacterial agents [164, 181–189], antiviral agents [190], antifungal agents [191],
cytotoxic agents [192, 193], larvicidal agents [190, 194], photocatalysts [187, 195–197], anti-cancer agents
[186, 189, 198–202],α-amylase inhibitors [203] and as components of solar cells [204].

On the other hand, the nanoparticles obtained by extracts of different species ofEucalyptus have beenwidely
studied in environmental applications. For example, Sangami andManu [151] studied the degradation of
Ametryn, awell-knownherbicide, by using iron nanoparticles as Fenton-type catalysts obtained fromLaterite
and extracts ofEucalyptus. Gan et al [152] reported the removal of phosphate ions using nanoparticles of iron
oxides obtained by extracts ofEucalyptus. Jin et al [146] synthesized iron nanoparticles using extracts of
eucalyptus for the removal of Cr(VI).Madhavi et al [143]described theCr(VI) adsorption by zero-valent iron
nanoparticles obtained by extracts ofEucalyptus globulus.Wang et al [100] synthesized iron nanoparticles by
extracts ofEucalyptus, and showed their application in the treatment of swinewastewater. In otherwork,Wang
et al [142] used iron nanoparticles obtained from extracts ofEucalyptus in the treatment of eutrophic
wastewater.Wang et al [100] alsoworked on the synthesis of iron nanoparticles by extracts ofEucalyptus,
applying them in the removal of nitrate ions from swinewastewater.Weng et al [205] reported the synthesis of a
hybridmaterial formed by iron and reduced graphene oxide nanoparticles, synthesized from extracts of
Eucalyptus. This hybrid nanomaterial was successfully used for the removal ofmethylene blue. In otherwork
Weng et al [147] used extracts ofEucalyptus for the synthesis of iron nanoparticles for theCr(VI) andCu(II)
removal. Siripireddy andMandal [157] obtained ZnO-NPusing extracts ofEucalyptus globulus. These
nanoparticles were used as photocatalysts in themethyl orange andmethylene blue degradation. Besides,
Martinez-Cabanas et al [154] reported the application of iron oxide nanoparticles obtained from extracts of
Eucalyptus globulus in the As(V) removal.
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Other applications of the nanoparticles obtained by extracts ofEucalyptus are in the energyfield. In a recent
work Senthilkumar et al [206] usedAg-NP prepared from extracts ofEucalyptus glopus,Azadirachta indica, and
Coriandrum sativum. These Ag-NPwere used as anti-reflecting agents, improving the efficiency of Si solar cells.
Cheng et al [160] obtained from extracts ofEucalyptus, biocompatible anodes of reduced graphene and gold
obtained, whichwere successfully tested for efficient energy recycling.

It is also possible tofindworks dealingwith the synthesis of nanoparticles with antimicrobial activity from
extracts ofEucalyptus. For example,Mohammed [207] described the synthesis of Ag-NP from extracts of
Eucalyptus camaldulensiswith antimicrobial activity. Likewise, Sulaiman et al [134] reported the antimicrobial
activity of Ag-NP synthesized from extracts of Eucalyptus chapmaniana.Moreover, Poinern et al [139]
synthesizedAu-NP from extracts ofEucalyptusmacrocarpa and showed their antimicrobial activity. Paosen et al
[133] obtainedAg-NP by extracts ofEucalyptus citriodorawith antimicrobial activity. Torabi et al [208] reported
the synthesis of Au-NPby extracts ofEucalyptus camaldulensis for the treatment of cutaneous zoonotic
leishmaniasis caused by Leishmaniamajor (MRHO/IR/75/ER). Saleem et al [87] studied the effect ofNiO-NP
synthesized from extracts ofEucalyptus globulus in the growth inhibition and biofilm formation of isolated
clinical bacteria.

Conclusions and future perspectives

This review has summarized recent research in the field of synthesis ofmetallic andmetal oxides nanoparticles
mediated by plant extracts, especially extracts ofEucalyptus. The use of non-toxic plant extracts in the synthesis
ofmetallic andmetal oxides nanoparticles is considered amethod friendly to the environment and inexpensive.
In particular, the use of extracts of different species of Eucalyptus seems to be an interesting way to synthesize
metallic andmetal oxides nanoparticles. The fact that leaves and bark ofEucalyptus are considered disposable
plantmaterial, alongwith themassive availability of plantations ofEucalyptus species, would support the
synthesis ofmetallic andmetal oxides nanoparticles on an industrial scale. In future investigations, it is necessary
to paymore attention to the role of the different components of the extracts ofEucalyptus in the different stages
of synthesis ofmetallic andmetal oxides nanoparticles. Although there aremany reports in the literature
regarding themechanisms that govern the synthesis ofmetallic andmetal oxides nanoparticles by plant extracts,
including extracts ofEucalyptus, they are hypothetical. Thus, further research is necessary to fully understand the
reaction steps behind the synthesis processes. Since the composition of the extracts depends on the extraction
methods, the effect of the type of Eucalyptus species and the part of the plant used should be optimized to favor
the extraction of the components involved in the differentmetallic andmetal oxides nanoparticle synthesis.
Additionally, it is necessary to scale the synthesis ofmetallic andmetal oxides nanoparticles by extracts of
Eucalyptus from laboratory to industrial scale. The scale-up of the chemicalmethods is not such a trivial process
and requires a fully understanding of the involved steps. The use ofmetallic andmetal oxides nanoparticles in
various forms of environmental remediation, energy applications, and antimicrobial activity have been
addressed. In order to achieve amore secure implementation ofmetallic nanoparticles andmetal oxides in
biomedical and environmental applications, it is necessary to increase the study and characterization of these
materials in terms of their toxicity, biocompatibility and actionmechanisms of the nanoparticles. Due to the
constant efforts to improve and optimize the efficiency of the synthesis ofmetallic andmetal oxides
nanoparticles, it is expected that these approaches will allow expanding their applications in thefield ofmedicine
and agriculture in the coming years.
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