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Abstract
Many extensions of general relativity are based on considering metric and 
affine structures as independent properties of spacetime. This leads to the 
possibility of introducing torsion as an independent degree of freedom. In this 
article we examine the effects of torsion on the affine Killing vectors of two-
dimensional manifolds. We give a complete description of the Lie algebras of 
affine Killing vector fields on homogeneous surfaces. This can be used in the 
search of non-metrizable surfaces of interest.

Keywords: affine connection, affine Killing vector fields, torsion,  
non-Riemannian surfaces, modified gravity

1. Introduction

General relativity is at present the most successful description of the gravitational interaction. 
However, many open questions settled by the present status of astrophysical observations 
motivate the search for modified formulations of this theory. In addition, black hole physics 
and early universe models require a framework compatible with quantum mechanics. For 
these reasons, general relativity in its present form is not considered as an ultimate description 
of gravity and different generalizations are currently under study.

One approach to this reformulation is based on a reexamination of the canonical degrees 
of freedom of the theory. Constructing an invariant action requires a metric and an affine 
connection, both describing different geometric properties of spacetime. In standard general 
relativity, only the metric is a fundamental field whereas the affine structure is given by the 
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Levi-Civita connection. However, from the mathematical point of view, the Riemannian and 
affine structures need not be related; the connection is an independent degree of freedom 
locally given by non-metrizable Christoffel symbols [1]. In a general setting, the difference 
between the Christoffel symbols and those derived from the Levi-Civita connection is given 
by the non-metricity tensor and the torsion tensor [2].

Geometries with non-vanishing non-metricity have attracted renewed attention aimed at 
exploring the coupling to matter [3] as well as the geometric properties of new spacetime 
configurations (see e.g. [4] and references therein). On the other hand, gravity theories with 
non-vanishing torsion have been the subject of extensive study: there are models of the early 
universe in which torsion has a fundamental role as an alternative to inflation [5, 6]. The 
propagation of quantum fields on a spacetime with torsion has been analyzed in [7], and an 
example of the torsion field as a propagating degree of freedom can be found in [8]. Other 
models with non-metricity and torsion waves have been studied in [9] and [10]. A one-loop 
effective action in terms of the connection has been analyzed in [11]. Apart from the theor-
etical interest in non-Riemannian models of gravity, there are a variety of experiments which 
have been designed to measure the effects of torsion; for a quite comprehensive account we 
refer to [12]. There is also a substantial body of literature in the purely mathematical setting 
(we refer to [13–18], to cite just a few representative examples).

In this context we consider it useful to pursue the analysis of purely affine properties with-
out regard to any possible Riemannian structure. The purpose of this work is to examine how 
the torsion impacts the geometry of a surface; we shall focus our attention on describing the 
effect of torsion on the associated Lie algebra of affine Killing vectors. As we do not use field 
equations, our results are model independent.

To ensure that the Lie algebra of affine Killing vectors is sufficiently rich, we shall assume 
that the surface in question is locally homogeneous; a complete classification of such local 
geometries is available [19, 20]. In addition, we believe that our study gives insight into the 
analysis of three- and higher-dimensional manifolds. This notwithstanding, theories of grav-
ity with torsion in two dimensions constitute an active area on their own—for a review of its 
motivations and development see [21–23].

In the present paper we shall assume the underlying manifold in question is simply con-
nected to facilitate the passage from local to global questions. The Lie algebra K of affine 
Killing vector fields has played an important role in the study of surfaces which are torsion 
free; in this paper, we examine the relationship between the torsion and K. We say that a Lie 
sub-algebra K0 of K is effective if given any point P of the underlying manifold, there exist 
Xi ∈ K0 so that {X1(P), X2(P)} are linearly independent. Since the underlying structure is 
assumed locally homogeneous and simply connected, K is effective (see Hall [24] or Nomizu 
[25]). We refer to [26, 27] for recent examples where affine Killing vector fields have played 
an important role in the analysis.

We first present the fundamental definitions and properties of affine manifolds introducing 
torsion and the space of affine Killing vector fields. We focus on homogeneous affine surfaces 
and recall known results concerning their classification, in particular those related to affine 
Killing vector fields. We state the main result of the paper, namely the description of locally 
homogeneous affine surfaces in terms of the algebra of their affine Killing vectors.

1.1. Affine surfaces, Christoffel symbols, and the torsion tensor

An affine surface is a pair M = (M,∇) where M is a smooth surface and ∇ is a connection on 
the tangent bundle of M. In contrast to the notation adopted by some authors, we emphasize 

that we permit ∇ to have torsion. Let ∂k := ∂
∂xk in some system of local coordinates (x1, x2) 
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on M. We sum over repeated indices to express ∇i∂j = Γk
ij∂k; the connection is determined by 

the Christoffel symbols Γk
ij . For two vectors X, Y, let T(X, Y) := ∇XY −∇YX − [X, Y] be the 

torsion tensor; the components of the torsion tensor are expressed by

T = (dxi ∧ dx j)⊗ (Γk
ij − Γk

ji)∂k = (dx1 ∧ dx2)⊗ 4Ti∂i for Ti :=
1
2
(Γi

12 − Γi
21).

We say M is torsion free if T  =  0, i.e. if Γk
12 = Γk

21 for k = 1, 2. There is a canonically associ-
ated torsion free connection 0∇ := ∇− T  with Christoffel symbols

0Γk
ij :=

1
2
(Γk

ij + Γk
ji).

The connection 0∇ is in a certain sense the symmetric part of the connection ∇ and the torsion 
T is the anti-symmetric part. We let 0M := (M, 0∇). Conversely, given an affine surface with-
out torsion 0M and a torsion tensor T = (dx1 ∧ dx2)⊗ (4Ti∂i), we can perturb 0M to define 
a surface TM with torsion T by setting T∇ = 0∇+ T ; the resulting Christoffel symbols are 
given by setting:

TΓ1
11 = 0Γ1

11, TΓ2
11 = 0Γ2

11, TΓ1
22 = 0Γ1

22,
TΓ2

22 = 0Γ2
22, TΓ1

12 = 0Γ1
12 + T1, TΓ2

12 = 0Γ2
12 + T2,

TΓ1
21 = 0Γ1

12 − T1, TΓ2
21 = 0Γ2

12 − T2.

 (1)

These constructions are independent of the particular coordinate system chosen.

1.2. Affine Killing vector fields

Let M be an affine surface. A smooth vector field X = v1∂1 + v2∂2 = (v1, v2) on an affine 
surface is said to be an affine Killing vector field if the Lie derivative of the connection with 
respect to the vector field X vanishes or, equivalently (see Kobayashi and Nomizu [28, chapter 
VI]), if the 8 affine Killing equations for 1 � i, j, k � 2 are satisfied

Kk
ij : 0 =

∂2vk

∂xi∂x j + vl ∂Γ
k
ij

∂xl − Γl
ij
∂vk

∂xl + Γk
il
∂vl

∂x j + Γk
lj
∂vl

∂xi . (2)

The affine Killing equations form an over determined elliptic system of second-order partial 
differential equations. The Lie bracket makes the linear space K(M) of affine Killing vector 
fields into a Lie algebra of dimension at most 6 since an affine Killing vector field is deter-
mined by X(0) and ∇X(0).

1.3. Homogeneous affine surfaces

We say that a diffeomorphism from one affine surface to another is an affine map if it inter-
twines the two associated connections. We say that an affine manifold M is affine homoge-
neous if the Lie group of affine diffeomorphisms of M acts transitively; the corre sponding 
local notion is defined similarly. To pass between local and global results, we shall assume 
henceforth that the underlying manifold M is simply connected and locally affine homoge-
neous. In this setting, every affine Killing vector field which is locally defined extends to a 
globally defined affine Killing vector field.
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Opozda [20] classified the locally homogeneous affine surfaces without torsion; this clas-
sification was later extended to the case of surfaces with torsion by Arias-Marco and Kowalski 
[19]. We summarize their result as follows.

Theorem 1.1. If M is a locally homogeneous affine surface, possibly with torsion, then at 
least one of the following possibilities holds.

 1.  There exists a coordinate atlas for M so that the Christoffel symbols of ∇ are constant; 
M is said to be Type A.

 2.  There exists a coordinate atlas for M so that the Christoffel symbols have the form 
Γk

ij = (x1)−1Ak
ij, with Ak

ij constant; M is said to be Type B.
 3.  There exists a coordinate atlas for M such that ∇ is isomorphic to the Levi-Civita connec-

tion of the round sphere.

We say that M = (R2,∇) is a Type A model if the Christoffel symbols Γk
ij  are constant. If 

we identify R2 with the group of translations, then ∇ is a Type A model if and only if ∇ is left 
invariant. We can describe Type A models in terms of the algebra of translations in the plane. 
Let KA := span{∂1, ∂2}. Then M = (R2,∇) is a Type A model if and only if KA ⊂ K(M). 
We say that N = (R+ × R) is a Type B model if Γk

ij = (x1)−1Ak
ij for Ak

ij constant. We identify 
R+ × R  with the ax  +  b group under the action (x1, x2) → (ax1, ax2 + b); (R+ × R,∇) is a 
Type B model if and only if ∇ is left invariant under the natural action of the ax  +  b group. 
By theorem 1.1, any locally homogeneous surface geometry is locally isomorphic to either a 
Type A model, a Type B model, or the round 2-sphere. We remark that there are geometries 
which admit both Type A and Type B structures. We also note that there are simply connected 
geometries with a Type A structure which are not affine equivalent to any open subset of a 
Type A model; more than one coordinate system is required for such geometries.

1.4. The algebra of affine Killing vector fields for homogeneous surfaces

Let M be a simply connected locally homogeneous affine surface. Fix a basepoint of M. 
Define the following Lie algebra structures on R2 and R3 by the nonzero brackets:

KA : [e1, e2] = 0,
KB : [e1, e2] = e1,

so(3) : [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2,
so(2, 1) : [e1, e2] = e1, [e2, e3] = e3, [e3, e1] = 2e2.

As already noted, KA is the algebra of translations in the plane and KB is the algebra of hori-
zontal translations and dilatations in the upper half-plane. Following the notation of Patera 
et al [29], we define the following 4-dimensional Lie algebras by specifying their non-zero 
brackets:

A0
4,9 :[e2, e3] = e1, [e1, e4] = e1, [e2, e4] = e2,

A4,12 :[e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2, [e2, e4] = e1.

Let A6 be the 6-dimensional (6D) Lie algebra of the full affine group.
Recently Brozos-Vázquez et al [30] gave a quite different proof of theorem 1.1 by examin-

ing the affine Killing equations directly. Their result, from which theorem 1.1 follows, may 
be stated as follows.
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Lemma 1.2. Let M = (M,∇) be locally homogeneous and simply connected.

 1.  There is an effective Lie subalgebra K̃ of K(M) which is isomorphic to KA, KB, or so(3).
 2.  If K̃ ≈ KA, then there is a coordinate atlas so that Γij

k are constant.
 3.  If K̃ ≈ KB, then there is a coordinate atlas so that Γij

k = (x1)−1Aij
k for constant Aij

k.
 4.  If K̃ ≈ so(3), then there is a coordinate atlas where ∇ is the Levi-Civita connection de-

fined by the metric of the round sphere.

In this paper we will complete their analysis. Our main result is the following; it is implicit 
in the computations of Arias-Marco and Kowalski [19] but is not stated in this fashion there; 
our approach is quite different from theirs.

Theorem 1.3. Let M be a locally homogeneous simply connected affine surface with tor-
sion.

 1.  Suppose M contains an effective Lie subalgebra which is isomorphic to KA. Then K(M) 
is isomorphic to KA, to KB ⊕ KB, to A0

4,9, or to A4,12.
 2.  Suppose M contains an effective Lie subalgebra which is isomorphic to KB. Then K(M) 

is isomorphic to KB, to KB ⊕ KB, to A0
4,9, or to so(2, 1).

 3.  Suppose M contains an effective Lie subalgebra which is isomorphic to so(3). Then M 
is without torsion and modeled on the round sphere.

1.5. Outline of the paper

The remainder of this paper is devoted to the proof of theorem 1.3. We begin in section 2 by 
establishing the following useful observation.

Lemma 1.4. Let M be an affine surface and let 0M be the associated surface without tor-
sion. Then K(M) ⊆ K(0M).

Brozos-Vázquez et al [31] and Gilkey and Valle-Regueiro [32] have classified, up to linear 
equivalence, all the Type A and Type B models without torsion where dim{K} > 2. Given 
an arbitrary model TM of Type A or Type B with torsion, we pass to the associated torsion 
free model 0M and write down a basis for K(0M). We then examine the affine Killing equa-
tions to determine which affine Killing vector fields on 0M are affine Killing vector fields 
for M. This then provides a classification of all the Type A and Type B models with torsion 
where dim{K(M)} > 2, which is of interest in its own right. Once this classification has been 
performed, we analyze the resulting Lie algebras to complete the proof of theorem 1.3. This 
analysis is performed in section 3 in the Type A setting and in section 4 in the Type B set-
ting. The original analysis of Brozos-Vázquez et al [31] ignored the flat geometries as being 
uninteresting as they are in the torsion free setting. But once torsion is added, it is necessary to 
include these geometries as the flat geometries give rise to non-trivial geometries with torsion 
and for this the additional analysis of Gilkey and Valle-Regueiro [32] is required.

2. Affine Killing equations in the presence of torsion

In this section we give a proof of lemma 1.4. We also give two examples which help to under-
stand the role of torsion in the affine Killing algebra.
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Let (v1, v2) ∈ K(TM). Call TKk
ij the r.h.s of equation  (2) when the Christoffel symbols 

involve a torsion T. The corresponding equation for the symmetrized part of the Christoffel 
symbols is 0Kk

ij. A direct computation gives

TKk
ij =

0Kk
ij + vl ∂Tk

ij

∂xl − Tl
ij
∂vk

∂xl + Tk
il
∂vl

∂x j + Tk
lj
∂vl

∂xi = 0.

Taking i  =  j  in the last expression gives TKk
ii =

0Kk
ii = 0. To obtain a similar result for the non-

diagonal elements consider the equations

TKk
ij =

0Kk
ij + vl ∂Tk

ij

∂xl − Tl
ij
∂vk

∂xl + Tk
il
∂vl

∂x j + Tk
lj
∂vl

∂xi = 0,

TKk
ji =

0Kk
ji + vl ∂Tk

ji

∂xl − Tl
ji
∂vk

∂xl + Tk
jl
∂vl

∂xi + Tk
li
∂vl

∂x j = 0.

Adding these we have 0 = TKk
ij +

TKk
ji =

0Kk
ij +

0Kk
ji. Since the Christoffel symbols for T  =  0 

are symmetric, 0Kk
ij =

0Kk
ji = 0. Lemma 1.4 follows. □ 

Example 2.1. Let M4
1 be the Type A surface without torsion defined by the Christoffel sym-

bols Γ1
11 = −1, Γ1

12 = 1, Γ1
22 = 0, Γ2

11 = 0, Γ2
12 = 0 and Γ2

22 = 2. Let 0 �= T = (T1, T2) ∈ R2 . 
We shall see presently that dim{K(M)} = 4, that dim{K(TM)} = 4 if T2  =  0. This shows 
that the equality in lemma 1.4 can hold.

Example 2.2. Given a torsion free manifold which is locally homogeneous, the perturbed 
manifold need not be homogeneous. Consider the type A surface M6

1 defined by the Christoffel 
symbols Γ1

11 = 1, Γ1
12 = 0, Γ1

22 = 0, Γ2
11 = 0, Γ2

12 = 1 and Γ2
22 = 0, with dim{K(M6

1)} = 6. 
Perturb it by adding a type B torsion T where T1  =  0 and T2 = t2/x1 �= 0. The resulting struc-
ture has

K(TM6
1) = span{∂2, x2∂2, e−x1

∂2}.

This algebra has no effective subalgebras for all (x1, x2) and hence the surface is not homo-
geneous. Now perturb it by adding a type B torsion T with T1 = t1/x1 �= 0 and T2  =  0. The 
resulting structure has K(TM6

1) = span{∂2}. This example shows that the addition of torsion 
to a homogeneous, torsion free surface does not necessarily give a homogeneous surface.

3. Type A surfaces with torsion

In this section we obtain the spaces of affine Killing vector fields for Type A models. This 
gives the algebras of theorem 1.3(1).

Parametrize the set of Type A models by setting M(�ξ) := (R2,∇A(�ξ)) for ξ ∈ R8 where 
the Christoffel symbols of ∇A(�ξ) are given by:

Γ11
1 = ξ1,Γ11

2 = ξ2,Γ12
1 = ξ3,Γ12

2 = ξ4,

Γ21
1 = ξ5,Γ21

2 = ξ6,Γ22
1 = ξ7,Γ22

2 = ξ8.

The torsion free models M(�ξ) form a 6D subspace where ξ3 = ξ5 and ξ4 = ξ6. The general 
linear group GL(2,R) acts on the space of Type A models by change of basis and defines 
thereby a linear representation of GL(2,R) on R8. We say that two Type A models are linearly 
equivalent if they lie in the same orbit of this representation. The works [31, 32] mentioned 
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previously classify all Type A torsion free models up to linear equivalence. We restrict this clas-
sification to those torsion free models where dim{K} > 2 to obtain models M j

i (�; 0) where 
there is an auxiliary parameter � in certain examples. If j   =  6, then dim{K(M j

i (�; 0))} = 6 
and if j   =  4, then dim{K(M j

i (�; 0))} = 4. We then add torsion to obtain models M j
i (�; T); 

we no longer have, of course, that dim{K(M j
i (�; T))} = j if T �= 0. Still, it seemed useful 

to keep the notation since 0M j
i (�; T) = M j

i (�; 0). We have that M j
i (�; T) and M�

k(�; T̃) are 
not linearly equivalent for (i, j) �= (k, �). Within a given class defined by (i, j) determining the 
precise set of representatives under linear equivalence is considerably more delicate and we 
have not attempted such a finer classification.

We now establish the main result of the paper. To obtain assertion (1) in theorem 1.3 we 
will compute the Lie algebras of affine Killing vector fields for all the models M j

i (�; T). We 
first write down a basis for K(M j

i (�; 0)) and then examine the effect of the torsion tensor on 
the affine Killing equations to derive the following result.

Lemma 3.1. Let M be a Type A model with torsion tensor T = (T1, T2) so that 
dim{K(M)} > 2. Then M is linearly equivalent to one of the following surfaces with the 
values of T listed; K(M) = span{∂1, ∂2} for other values of T.

 1.  Let M6
0(T) := M(0, 0, T1, T2,−T1,−T2, 0, 0). Then

 (a)  K(M6
0(0)) = span {∂1, ∂2, x1∂1, x1∂2, x2∂1, x2∂2}.

 (b)  K(M6
0(T)) = span {∂1, ∂2, x1(T1∂1 + T2∂2), x2(T1∂1 + T2∂2)} if T �= 0.

 2.  Let M6
1(T) := M (1, 0, T1, 1 + T2,−T1, 1 − T2, 0, 0). Then T1  =  0 and

 (a)  K(M6
1(0, 0)) = span {∂1, e−x1

(∂1 − x2∂2), x2∂2, x2(∂1 − x2∂2), ∂2, e−x1
∂2}.

 (b)  K(M6
1(0, T2)) = span {∂1, ∂2, x2∂2, e−x1

∂2} if T2 �= 0.
 3.  Let M6

2(T) := M(−1, 0, T1, T2,−T1,−T2, 0, 1). Then T1T2 = 0 and
 (a)  K(M6

2(0)) = span {∂1, ex1
∂1, ex1+x2

∂1, ∂2, e−x1−x2
∂2, e−x2

∂2}.
 (b)  K(M6

2(T)) = span {∂1, ∂2, e−x1−x2
∂2, e−x2

∂2} if T1 = 0, T2 �= 0.
 (c)  K(M6

2(T)) = span {∂1, ex1
∂1, ex1+x2

∂1, ∂2} if T1 �= 0, T2 = 0.
 4.  Let M6

3(T) := M(0, 0, T1, T2,−T1,−T2, 0, 1). Then T1T2 = 0 and
 (a)  K(M6

3(0)) = span {∂1, x1∂1, ex2
∂1, ∂2, e−x2

∂2, x1e−x2
∂2}.

 (b)  K(M6
3(T)) = span {∂1, ∂2, e−x2

∂2, x1e−x2
∂2} if T1 = 0, T2 �= 0.

 (c)  K(M6
3(T)) = span {∂1, ∂2, x1∂1, ex2

∂1} if T1 �= 0, T2 = 0.
 5.  Let M6

4(T) := M(0, 0, T1, T2,−T1,−T2, 1, 0). Then T2  =  0 and
 (a)  K(M6

4(0)) = span{∂1, ∂2, (x1 + 1
2 (x

2)2)∂1, x2∂1,
(−x1x2 − 1

2 (x
2)3)∂1 + (x1 + 1

2 (x
2)2)∂2,−(x2)2∂1 + x2∂2}.

 (b)  K(M6
4(T

1, 0)) = span {∂1, ∂2, (x1 + 1
2 (x

2)2)∂1, x2∂1} for T1 �= 0.
 6.  Let M6

5(T) = M(1, 0, T1, 1 + T2,−T1, 1 − T2,−1, 0). Then T  =  0 and
  K(M6

5(0)) = span {∂1, ∂2, cos(2x2)∂1 − sin(2x2)∂2, sin(2x2)∂1 + cos(2x2)∂2

e−x1
(cos(x2)∂1 − sin(x2)∂2), e−x1

(sin(x2)∂1 + cos(x2)∂2)}.
 7.  Let M4

1(T) := M(−1, 0, 1 + T1, T2, 1 − T1,−T2, 0, 2). Then T2  =  0 and
  K(M4

1(T
1, 0)) = span {∂1, ∂2, ex1

∂1, x2ex1
∂1}.

 8.  Let M4
2(c; T) := M(−1, 0, c + T1, T2, c − T1,−T2, 0, 1 + 2c) for c �= 0,−1. Then 

T2  =  0
  and K(M4

2(c; (T1, 0))) = span {∂1, ∂2, ex1
∂1, ex1+x2

∂1}.
 9.  Let M4

3(c; T) := M(0, 0, c + T1, T2, c − T1,−T2, 0, 1 + 2c) for c �= 0,−1. Then T2  =  0
  and K(M4

3(c; (T1, 0))) = span {∂1, ∂2, ex2
∂1, x1∂1}.

 10.  Let M4
4(c; T) := M(0, 0, 1 + T1, T2, 1 − T1,−T2, c, 2). Then T2  =  0 and

  K(M4
4(c; (T1, 0))) = span {∂1, ∂2,

(
x1 + c

2 (x
2)2

)
∂1, x2∂1}.
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 11.  Let M4
5(c; T) := M(1, 0, T1, T2,−T1,−T2, 1 + c2, 2c). Then T2  =  0 and

  K(M4
5(c; (T1, 0))) = span {∂1, ∂2, e−x1+cx2

cos x2∂1, e−x1+cx2
sin x2∂1}.

One now performs a careful examination of the Lie algebras of lemma 3.1 to determine 
their isomorphism type. This leads to the following classification result from which theorem 
1.3(1) follows:

Lemma 3.2. Adopt the notation established in lemma 3.1. Let M be a Type A model with 
torsion. Generically, K(M) = KA. Let ε �= 0 and let (ε1, ε2) �= (0, 0). If dim{K(M)} > 2, 
then K(M) has one of the following structures.

 1.  K(M6
i (0, 0)) ≈ A6.

 2.  KB ⊕ KB ≈ K(M6
1(0, ε)) ≈ K(M6

2(0, ε)) ≈ K(M6
2(ε, 0)) ≈ K(M6

3(ε, 0))
≈ K(M4

2(c; (T1, 0))) ≈ K(M4
3(c; (T1, 0))).

 3.  A0
4,9 ≈ K(M6

0(ε1, ε2)) ≈ K(M6
3(0, ε)) ≈ K(M6

4(ε, 0))
≈ K(M4

1(c; (T1, 0))) ≈ K(M4
4(c; (T1, 0))).

 4.  A4,12 ≈ K(M4
5(c; (T1, 0))).

4. Type B surfaces with torsion

We proceed in a similar fashion in the Type B setting. We parametrize the set of Type B mod-
els by setting N (�ξ) := (R+ × R,∇B(�ξ)) where the Christoffel symbols take the form:

Γ11
1 = (x1)−1ξ1, Γ11

2 = (x1)−1ξ2, Γ12
1 = (x1)−1ξ3, Γ12

2 = (x1)−1ξ4,

Γ21
1 = (x1)−1ξ5, Γ21

2 = (x1)−1ξ6, Γ22
1 = (x1)−1ξ7, Γ22

2 = (x1)−1ξ8.

The structure group for the set of Type B models is not the full general linear group but rather 
the ax  +  b group acting by the shear (x1, x2) → (x1, bx1 + ax2); again we say two Type B 
models are linearly equivalent if they are in the same orbit of the induced linear action on 
R8. The work of [31, 32] mentioned previously does not provide a full classification of all the 
Type B models without torsion up to linear equivalence. It does suffice, for our purposes, in 
that it does classify the torsion free Type B models with dim{K} > 2 by providing models 
N j

i (�; 0) where � is an auxiliary parameter present in some instances. Of particular interest 
are the geometries N 3

3 , which is the Lorentzian hyperbolic plane, and N 3
4 , which is the hyper-

bolic plane. The geometries N 4
i (�; 0) are also Type A geometries. The torsion tensors are, of 

course, quite different. The geometries N 6
i (�; 0) are flat. The proof of lemma 4.1 now follows 

by first writing down a basis for K(N j
i (�; 0)) and then examining the effect of the torsion ten-

sor on the affine Killing equations.

Lemma 4.1. Let X := x1∂1 + x2∂2. Let N  be a Type B model with torsion tensor 
T = (T1, T2) so that dim{K(N )} > 2. Then N  is linearly equivalent to one of the following 
surfaces with the values of T listed; K(N ) = span{X, ∂2} for other values of T.

 1.  Let N 6
0 (T) := N (0, 0, T1, T2,−T1,−T2, 0, 0). Then

 (a)  K(N 6
0 (0)) = span{∂1, ∂2, x1∂1, x1∂2, x2∂1, x2∂2}.

 (b)  K(N 6
0 (0, T2)) = span {X, ∂2, x1∂2, x2∂2} if T2 �= 0.

 2.  Let N 6
1 (±; T) := N (1, 0, T1, T2,−T1,−T2,±1, 0). Then T  =  0 and

K(N 6
1 (±, 0)) = span {X, ∂2, 1

x1 ∂1, x2

x1 ∂1, (x1)2±(x2)2

x1 ∂1, −x2((x2)2±(x1)2)
x1 ∂1 + ((x1)2 ± (x2)2)∂2}.

 3.  Let N 6
2 (c; T) := N (−1 + c, 0, T1, c + T2,−T1, c − T2, 0, 0) for c �= 0. Then T1T2 = 0 
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and
 (a)  K(N 6

2 (c; 0)) = span {x1∂1, x2∂2, ∂2, (x1)−c∂2, (x1)−c(x1∂1 − cx2∂2), x2(x1∂1 − cx2∂2)}.
 (b)  K(N 6

2 (c; (0, T2))) = span {X, ∂2, x2∂2, (x1)−c∂2} if T2 �= 0.
 (c)  K(N 6

2 (− 1
2 ; (T1, 0))) = span {X, ∂2, x2(x1∂1 +

1
2 x2∂2)} if T1 �= 0.

 4.  Let N 6
3 (T) := N (−2, 1, T1,−1 + T2,−T1,−1 − T2, 0, 0). Then T1  =  0 and

 (a)  K(N 6
3 (0)) = span {X, ∂2, x1∂2, (x2 + x1 log x1)∂2,

  −(x1)2∂1 + x1(x1 − x2)∂2, (x2 + x1 log x1)(−x1∂1 + (x1 − x2)∂2)}.
 (b)  K(N 6

3 (0, T2)) = span {X, ∂2, x1∂2, (x2 + x1 log x1)∂2} if T2 �= 0.
 5.  Let N 6

4 (T) := N (0, 1, T1, T2,−T1,−T2, 0, 0). Then T1  =  0 and
 (a)  K(N 6

4 (0)) = span {X, ∂2, x1∂2, (x2 + x1 log x1)∂2,
∂1 − (1 + log x1)∂2, (x2 + x1 log x1)(∂1−(1 + log x1)∂2)}.

 (b)  K(N 6
4 (0, T2)) = span {X, ∂2, x1∂2, (x2 + x1 log x1)∂2} if T2 �= 0.

 6.  Let N 6
5 (T) := N (−1, 0, T1, T2,−T1,−T2, 0, 0). Then T1  =  0 and

 (a)  K(N 6
5 (0)) = span {X, ∂2, x2∂2, x1x2∂1, log x1∂2, x1 log x1∂1}.

 (b)  K(N 6
5 (0, T2)) = span {X, ∂2, x2∂2, log x1∂2} if T2 �= 0.

 7.  Let N 6
6 (c; T) := N (c, 0, T1, T2,−T1,−T2, 0, 0) for c �= 0,−1. Then T1  =  0 and

 (a)  K(N 6
6 (c; 0)) = span  {X, ∂2, x2∂2, (x1)−c∂1, (x1)−cx2∂1, (x1)c+1∂2}.

 (b)  K(N 6
6 (c; (0, T2))) = span {X, ∂2, x2∂2, (x1)c+1∂2} if T2 �= 0.

 8.  Let N 4
1 (κ; T) := N (2κ, 1, T1, T2 + κ,−T1,−T2 + κ, 0, 0) for κ �= 0,−1. Then T1  =  0 

and K(N 4
1 (κ; (0, T2))) = span {X, ∂2, x1∂2, x1(∂1 − log x1∂2)}.

 9.  Let N 4
2 (κ, θ; T) := N (−1 + θ + 2κ, 0, T1, T2 + κ,−T1,−T2 + κ, 0, 0) for θ �= 0 and 

κ(κ+ θ) �= 0. Then T1  =  0 and K(N 4
2 (κ, θ; (0, T2))) = span {X, ∂2, x2∂2, (x1)θ∂2}.

 10.  Let N 4
3 (c; T) := N (2c − 1, 0, T1, T2 + c,−T1,−T2 + c, 0, 0) for c �= 0. Then T1  =  0 

and K(N 4
3 (c; (0, T2))) = span {X, ∂2, x2∂2, log x1∂2}.

 11.  Let N 3
1 (±; T) := N (− 3

2 , 0, T1,− 1
2 + T2,−T1,− 1

2 − T2,± 1
2 , 0). Then T2  =  0 and 

K(N 3
1 (±; (T1, 0))) = span {X, ∂2, x2

(
2x1∂1 + x2∂2

)
}.

 12.  Let N 3
2 (c; T) := N (− 3

2 , 0, 1 + T1,− 1
2 + T2, 1 − T1,− 1

2 − T2, c, 2). Then T2  =  0 and 
K(N 3

2 (c; (T1, 0))) = span {X, ∂2, x2
(
2x1∂1 + x2∂2

)
}.

 13.  Let N 3
3 (T) := N (−1, 0, T1,−1 + T2,−T1,−1 − T2,−1, 0). Then T  =  0 and

  K(N 3
3 (T)) = span {X, ∂2, 2x1x2∂1 + ((x2)2 + (x1)2)∂2}.

 14.  Let N 3
4 (T) := N (−1, 0, T1,−1 + T2,−T1,−1 − T2, 1, 0). Then T  =  0 and

  K(N 3
4 (0)) = span {X, ∂2, 2x1x2∂1 + ((x2)2 − (x1)2)∂2}.

One now performs a careful examination of the Lie algebras of lemma 4.1 to determine 
their isomorphism type. This leads to the following classification result from which theorem 
1.3(2) follows:

Lemma 4.2. Adopt the notation established in lemma 4.1. Let N  be a Type B model with 
torsion. Generically, K(N ) is 2-dimensional (2D) and is isomorphic to the 2D non-Abelian 
Lie algebra KB. Let ε �= 0. If dim{K(N )} > 2, then K(N ) has one of the following structures.

 1.  K(N 6
i (0, 0)) ≈ A6.

 2.  KB ⊕ KB ≈ K(N 6
0 ((0, ε))) ≈ K(N 6

2 (c; (0, ε))) ≈ K(N 6
3 (0, ε)) ≈ K(N 6

4 (0, ε))
≈ K (N 6

6 (0, ε)) ≈ K  (N 4
1 (c; (0, T2))) ≈ K(N 4

2 (κ, θ; (0, T2))).
 3.  A0

4,9 ≈ K(N 6
5 (0, ε)) ≈ K(N 4

3 (c; (0, T2))).
 4.  so(2, 1) ≈ K(N 6

2 (− 1
2 ; (ε, 0))) ≈ K(N 3

1 (±; (T1, 0))) ≈ K(N 3
2 (c; (T1, 0)))

≈ K(N 3
3 (0, 0)) ≈ K(N 3

4 (0, 0)).

Note that for the particularly interesting cases N 3
3  and N 3

4  (the Lorentzian and Riemannian 
hyperbolic planes) any torsion perturbation reduces their Lie algebra of affine Killing vectors 
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from so(2, 1) to KB. These two surfaces, together with N 6
1 (±), are the only cases of homo-

geneous Type B surfaces which under any perturbation with a torsion tensor reduces the Lie 
algebra of affine Killing vectors to KB.

5. Conclusions

Possible extensions of general relativity are based on the independence between the metric 
and the affine properties of spacetime [2, 3, 33]. In this context torsion plays a fundamental 
role. In the present article we examine the effects of torsion on the affine Killing vectors of a 
surface. Since we consider homogeneous surfaces we have a large number of symmetries that 
preserve the affine connection. In fact, even flat surfaces with non-zero torsion tensor have a 
very rich structure.

In this paper we have obtained a complete description of the Lie algebra K(M) of affine 
Killing vectors fields on any homogeneous surface M with non-vanishing torsion. In the Type 
A setting K(M) is restricted to be one of the following: KB ⊕ KB, A0

4,9, A4
12, or KA. In the 

Type B setting, K(M) can only be one of the following: KB ⊕ KB, A0
4,9, so(2, 1), or KB. This 

completes the analysis of [31].
We believe that a systematic description of affine structures with torsion is useful in the 

search of interesting non-metrizable geometries. A detailed classification of homogeneous 
surfaces in terms of the torsion tensors they admit is currently in progress. There is no imme-
diate extension of this work to the higher-dimensional setting since there is no analogous 
classification of the possible affine models, even if torsion is absent. However, we recall that 
lemma 1.4 holds in any dimension; it is plausible that the analysis of the addition of torsion 
to a given torsion-free connection at the level of the affine Killing equations could give some 
insight on possible approaches to the problem.
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