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Abstract. Very few learning systems applied to problem solving have focused 
on learning operator definitions from the interaction with a completely unknown 
environment. Autonomous Intelligent Systems (AIS) deal with that issue by 
means of architectures where learning is achieved by establishing plans, execut-
ing those plans in the environment, analyzing the results of the execution, and 
combining new evidence with prior evidence. This paper proposes a selective 
mechanism of learning allowing an AIS to learn new operators by receiving them 
from another AIS in a higher stage in the Learning Life Cycle (LLC) with more 
cycles of interaction in the environment. The proposed collaboration mechanism 
also considers how to deal with theory ponderation (operators ponderation) and 
how to include the new operators (provided for) in the set of theories of the re-
ceiver AIS. The experimental results show how using collaboration-based learn-
ing among AIS provides a better percentage of successful plans, plus an improved 
convergence rate, than the individual AIS alone. 

1   Introduction 

We are presenting in this work the results achieved from the application of collabo-
ration from the autonomous intelligent systems (AIS) of robots that are in a higher 
stage in the learning life cycle of an AIS [1].The autonomous intelligent systems 
(AIS) evolve from initial theories (set of operators built in by the AIS´s programmer) 
to ones learned from interaction with the environment or other AISs. Given unknown 
environments, real autonomous systems must generate theories of how their envi-
ronment reacts to their actions, and how the actions affect the environment. Usually 
these learned theories are partial, incomplete and incorrect but can be used to plan, to 
further modify those theories, or to create new ones. The previous work on machine 
learning applied to problem solving has mainly focused on learning knowledge, 
whose goal was to improve the efficiency of the problem-solving task [2]; [3]. There 
is also a current interest in learning state transition probabilities in the context of 
reinforcement learning. [4] However, few researchers have approached the general-
ized operator acquisition problem [5], [6], described as techniques for automatically  
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acquiring generalized descriptions of a domain theory. This issue is crucial when  
dealing with systems that must autonomously adapt to an unknown and dynamic 
environment. LOPE (Learning by Observation in Planning Environments) is an AIS 
implemented architecture that integrates planning, learning, and execution in a 
closed loop, showing an autonomous intelligent behavior [7]. Learning planning 
operators (what we will call operators is also referred to as action models within the 
reinforcement learning community) are achieved by observing the consequences of 
executing planned actions in the environment. In order to speed up the convergence, 
heuristic generalizations of the observations have been used. Moreover, probability 
distribution estimators have been introduced to handle the contradictions among  
the generated planning operators [8] and how by sharing among AISs the learned 
operators improve their behavior [9].In this context, a learned operator O (theory)  
in LOPE [8] is a tuple <C,A,F,P,K,U> where: C is the initial situation (conditions), 
A is the action to be performed, F is the final situation (post-conditions), P means  
the times that the operator Oi was successfully applied (the expected final situation  
F was obtained), K means the times that the action A was applied to C, U means  
the utility level reached by applying the action to the initial situation C of the  
operator. 

As the natural next step this paper aims to propose the general description of the 
collaboration model within the framework of the Learning Life Cycle (section 2), to 
describe the experimentation design and to analyze the results attained (section 3) and 
to draw some conclusions and future research lines (section 4).  

2   General Description of the Collaboration Mechanism  

In this section it is presented the description of the collaboration method between an 
AIS that has reached a higher evolutionary stage and a receiver AIS that is in a lower 
stage of evolution. The mechanism proposed considers theory ponderation and the 
inclusion of new theories in the knowledge base of the receiver AIS, provided by the 
collaborator AIS. Figure 1 shows a diagram of the model oriented to collaboration, on 
the basis of the LLC (Learning Life Cycle) proposed by the authors [1]. In the frame-
work of the LLC of an AIS, three learning layers are presented: [a] Layer BIO (Built-
In Operators)  is the layer where the operators are implanted into the “Born” AIS by 
their creator, [b] Layer TBO (Trained Base Operations) is the one where the operators 
are learned by the “Newbie” AIS, in the simulation scenario (previously designed) 
and by evolutionary learning techniques, [c] Layer WIO (World Interaction Opera-
tors) is the one where the operators are learned by interaction of the “Trained” AIS 
with the part of the world representing their operation environment and with the pres-
ence of other AISs to turn into a “Mature” AIS. 

The objective of the AIS is to autonomously learn operators (action models) that 
may predict the effects of the actions on the environment, through the observation  
of the consequences of these actions and to advance in their evolution state (Born, 
Newbie, Trained, Mature). 

The collaboration allows that an AIS may receive knowledge that has been previ-
ously acquired by an AIS that is in a higher evolutionary stage within the framework 
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Fig. 1. Collaboration model proposed 

of the LLC (Learning Life Cycle). Figure 1 shows the possible levels of collaboration: 
[a] a Mature AIS that ended layer WIO with a Trained AIS that is at the beginning of 
layer TBO, or with a Born AIS at the end of layer BIO;[b] a Trained AIS that ended 
layer TBO with a Newbie AIS that ended layer BIO or a Born AIS starting layer BIO; 
[c] a Newbie AIS that ended layer BIO with a Born AIS that is starting layer BIO. 

When an AIS collaborates, it shares the experience gained, which is the product of 
both right and wrong performance.  Therefore, by following the theory model and its 
ponderation method, when collaborating with operators it is necessary to reflect this 
knowledge in the receiver AIS, by maintaining the consistency of its set of theories. A 
theory (operator) is represented by T: Initial Situation (IS), Action (A), Final Situation 
(FS), P,K,U. [8]; where P means the quantity of times a theory TI was successfully 
used (the predicted effects were attained) and K means the quantity of times the the-
ory TI was used. Finally, U means the level of utility reached when applying the ac-
tion A to the initial situation (IS) of the theory TI. The method employed provides for 
the concept that the theory successfully used must be reinforced by increasing its P 
and its K and that the theory unsuccessfully used must be weakened by increasing its 
K, without increasing its P [8]. 

In the collaboration process, if a theory exists in the receiver AIS, it is reinforced 
by adding up its P and K; on the other hand, if a theory of the collaborator AIS does 
not exist in the receiver AIS, but a similar theory does exist in the latter, this theory 
weakens, maintaining the same P and adding up the K of the collaborator AIS to its 
K. Furthermore, the theories of the collaborator AIS that are not in the receiver AIS or 
are not similar or equal do not show any change, and are only transferred to the re-
ceiver AIS with their P and K values. To maintain the soundness of the method of 
theory ponderation, it is verified that after the collaboration the addition of the Ps of 
the similar theories in the receiver AIS is equal to the K of any of them. 

The collaboration method algorithm is detailed in Pseudo-code 1. The algorithm 
works in the following way: for each Theory of the Receiver AIS (RA), (1) it tries to 
find if there exists a similar theory in the set of Theories of the Collaborator AIS 
(CA); (1.1.) If this is the case, the Ks of similar theories are added up, (1.1.1). Then, if 
besides the existence of a similar theory there exists an equal theory in the Set of 
Theories of the Collaborator AIS (SetCA), the Ps of the equal theories are added up. 
(1.1.2). After repeating this process for each theory existing in the set of Theories of 
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the Receiver AIS (SetRA), the theories of the set of the collaborator AIS (SetAC) that 
have not equal theories in the set SetRA are processed. 

(2). If a theory of the SetCA has a similar theory in SetRA, (2.1), it is registered in 
this one with the P of the theory of SetCA and the K of the similar theory of SetRA. If 
it does not exist a similar theory, it is registered in SetRA, without modifying the P 
and the K. 

 
Pseudo-code .1 “Collaboration Algorithm” 

3   Experimentation and Result Analysis 

In this section we are presenting the design of the experiments, the results attained 
and their analysis. Several experiments have been carried out on the basis of the e-
puck robot, by using the Cyberbotics´ Webots 6 mobile robot simulator developed in 
the Laboratory of Micro-Informatics of the Swiss Federal Institute of Technology, 
Lausanne, Switzerland (EPFL). Figure 2 shows the experimentation scenario and the 
AIS (e-puck robots). The labyrinth-shaped setting is composed of four joined walls 
that surround the external limits of the setting and internally of a three-cornered laby-
rinth. In turn, at the end of the labyrinth it appears the type of block obstacle (besides 
the wall-type). 

Two types of utility functions have been applied. The first one was based on the 
situation perceived by the robot from the information on the distance to the obstacles 
given by its sensors; considering that the range of each sensor is [0 to 1024], the the-
ory applied by the robot has more “U” utility, the farther the wall or the obstacle is; 
the nearer to zero (0) the values of its sensors are, the farther from the obstacle the 
robot will be. Finally, it was transformed the final utility of the theory into the value 
range [-1 a +1], the higher the value obtained by adding up the values of each sensor, 

INPUTS: Set Theories AIS receiver (SetAR), Set Theories collaboration 
AIS (SetAC). 
0UPUT: Set Theories AIS receiver SetAR 

1. FOR EACH THEORY Ti in SetAR 
BEGIN 

 1.1 IF exists TJ which belongs to SetAC Similar to TI 
of SetAR THEN 

 1.1.1 KTI=KTI+KTJ 
 1.1.2 IF exists TJ which belongs to 

SetAC equal to TI of SetAR THEN 
PTI=PTI+PTJ 

END. 
2. FOR EACH THEORY TJ in SetAC 
IF not exists TJ which belongs to SetAC equal to TI which belongs  
to SetAR THEN. 
BEGIN 

2.1 IF exists TI which belongs to SetAR Similar to TJ THEN 
Register TJ with P=PTJ and KTI in SetAR 
ELSE 
Register TJ with P=PTJ and K =KTJ in SetAR 
END. 
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the nearer to -1 the utility will be. So as to count the successful theories, it was 
adopted as a criterion the “U” utility value range: 0.75<U≤ 1. 

The second utility function was based on the action carried out by the robot (speeds 
applied to each wheel of the robot); the utility was determined on the basis of the 
speeds calculated by applying Braitenberg quotients [10], compared to the speeds 
indicated by the action of the theory applied by the AIS for its left and right wheels. 
The nearer the action carried out by the robot is with regard to the one calculated with 
the quotients, the higher the utility of the action taken by the AIS (nearer 1) will be; 
the farther the action is, the lower utility (near -1) it will be. To count the successful 
theories, it was adopted as a criterion the “U” utility value range: 0.75<U≤ 1. 

The AIDs constituted by robot autonomous Systems (RASs), during the experi-
mentation, have formulated a set of theories that allow them an “a priori” prediction 
of the effects of their actions. Upon this experimentation basis, the exchange (coop-
eration) was performed between Newbie AISs that are in the layer BIO and the col-
laboration from a Trained AIS that went around the layer TBO to a Newbie receiver 
AIS located in the LLC (Learning Life Cycle) layer BIO. 

For the experimentation, it was applied the knowledge base of theories of three 
AISs that are represented by: the robot A (born -with 600 simulation cycles, which is 
starting layer BIO), the robot B  (born- with 3000 simulation cycles, which is going 
around layer BIO), the robot B (newbie- with 6000 simulation cycles, which is finish-
ing layer BIO). On the basis of said theories generated, it was implemented the ex-
change at the ´born´ stage in layer BIO, between robot A (born) and robot B (born), 
the collaboration of robot B (newbie) that is starting layer TBO towards the receiver 
robot A (born) which is in layer BIO. 

The stated theory bases were used by robot E (experimentation robot), on which 
the experiments with the application of the methods of plan ponderation, mutation and 
a combination of both were conducted. The neuter AIS was developed on the basis of 
a born robot that got 600 cycles (robot A). The robots A and B started with their crea-
tor (programmer), getting 400 cycles to generate their initial theory base through an 
initial reactive behavior. The theory bases of the different robots were stored in an 
XML format. 

 

Fig. 2. Experimentation setting of the E-puck AIS 

3.1   Experiment Design 

The procedure applied in each experiment was performed on the basis of the simulation 
of the AIS robot for a number of 600 cycles (cycle = perception/action), considering the 
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starting position of the AIS and the selection of the environment at random. Every 20 
cycles, it was generated a report on the status of the AIS variables, as shown in table 1 
as an example, thus creating the row I of the matrix containing the variables of the AIS 
,which was generated in the cycle I*20. The general experimental procedure considers 
fifty experiments for each case, from which an average matrix resulting from the matri-
ces corresponding to each experimental stage is constructed. The generation of graphs 
of the experiments presented is carried out on the basis of the information of each aver-
age matrix and the interpretation of the results achieved. 

Table 1. Structure of the Report on the status of the AIS variables 

Cycles Situations New 
Theories 

s 

Theories 
[0,75 <U 

< 1] 

Quantity 
of  

Successful 
Plans 

Quantity of 
Successful 

Cycles 

%  
Successful 

Cycles 

1 1 0 56 0 0 0 
20 2 0 56 8 19 95 

.. .. .. .. .. .. .. 
600 116 472,33 128,33 459,33 193,33 32 

 
Independent Variables: The following independent variables are regarded: [a] Time, 
the experiments are developed on the basis of this independent variable; a time unit is 
considered as the period elapsed between one perception of the environment and 
another one. It is a quantitative variable whose value corresponds to the interval 
[0,600]; [b] Threshold of Sensor reading, the comparison of readings for each of the 
eight IR sensors in the proximity of the AIS (e-puck robot), is a set of quantitative 
variables [0,999] for each of the eight sensors of the AIS, from which the readings of 
the situations perceived throughout the time are compared. The determination of the 
comparison threshold of each sensor was carried out on the basis of the standard de-
viation of the readings of the situations registered by the robot in its initial born stage 
for fifty cycles, showing a reactive behavior; [c] Threshold of Reading comparison of 
the effectors, the speed values for each wheel of the AIS, is a set of quantitative vari-
ables [0,999] for each of the two wheels of the robot AIS, from which the readings of 
the actions (speeds applied to each wheel) are compared. The determination of the 
threshold for each wheel of the robot AIS is carried out on the basis of the standard 
deviation of the readings of the actions registered by the robot in its initial stage 
(born) for fifty cycles, showing a reactive behavior; [d] Mutation is a qualitative vari-
able; it indicates if the theory mutation is active, generating new theories from similar 
theories, [8]; [e] Plan ponderator is a qualitative variable that indicates if the behavior 
of plan ponderation [8] is active; it is used for the selection of the plan to be executed 
by the AIS; [f] Theory exchange is a qualitative variable that indicates if theory ex-
change [9] is active and is used in the generation and assessment of theories between 
AISs as a product of exchange (cooperation); [g] Collaboration is  a qualitative vari-
able (proposed) that indicates if the collaboration between AISs is active, and is used 
in the generation and assessment of theories, from the theories provided by the action 
of collaboration of an AIS that is going around a higher LLC (Learning Life Cycle) 
layer towards a receiver AIS that is going around a lower LLC layer.  
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Dependent Variables: In the context of the experiments carried out, the following 
dependent variables are considered: [a] Quantity of Situations is a quantitative variable, 
whose value corresponds to the interval [0,200], and indicates the quantity of different 
situations that have been generated by the AIS according to the variable  ¨time ;̈ [b] 
Quantity of successful theories is a quantitative variable, whose value corresponds to the 
interval [0,600] and indicates the quantity of successful theories according to the vari-
able  ¨time .̈ Successful theories are considered to be those whose “U” utility exceeds 
the threshold of 0.75; [c] Quantity of successful plans is a quantitative variable, whose 
value corresponds to the interval [0,600]. This variable indicates the quantity of success-
ful plans which have been generated by the system in the time interval: [0, time]. It is 
the quantity of plans that have reached their end after having gone around all the nodes 
of the plan chain; each node represents a situation (supposed conditions or predicted 
effects.)  This value can be a rational number, since when a plan is not successful, its 
partial success is taken; [d] Quantity of successful cycles is a quantitative variable, 
whose value corresponds to the interval [0,600] and indicates the quantity of cycles that 
have proved to be successful according to the variable “time”; it is a value that is accu-
mulated during the simulation and starts at zero (0) and increases by one (1) whenever 
the robot has carried out a cycle in which it ended with a U utility theory > 0,75 and U < 
1; [e] Percentage of successful cycles is a quantitative variable, whose value corre-
sponds to the interval [0,100] and indicates the percentage of cycles that have proved to 
be successful according to the variable “time”. This variable indicates the percentage of 
cycles that have ended with a new theory with U utility: 0,75<U≤ 1, at a given instant of 
the robot simulation which corresponds to the time interval [0, time]; [f] Quantity of 
new theories is a quantitative variable, whose value corresponds to the interval [0,600] 
and indicates the quantity of new theories according to the variable “time”. The theories 
considered are only those that were generated during the AIS operation and not those 
that were accumulated by the AIS in its theory base. 

3.2   Graphs and Discussion of the Experimentation Results 

To set up the architecture of each AIS that participates in every experiment, the fol-
lowing methods corresponding to independent variables were considered: mutation, 
plan ponderator, theory exchange between AISs and the proposal of the method of 
collaboration between AISs. Several experiments that come from the application  
of the different methods of learning acceleration and their combinations have been 
developed on the basis of the above-mentioned dependent and independent variables. 

Figure 3 shows the comparison graph between situations and theories generated 
throughout the time, which has been obtained on the basis of the experimentation of 
an AIS set up with the methods of plan ponderation, mutation, and exchange and the 
collaboration one proposed. It is shown that even later, when it is observed a tendency 
to stabilization of the number of situations, the quantity of theories increases faster 
compared to the quantity of situations (supposed conditions or predicted effects). This 
shows that the system discovers relations between situations, being the AIS the theory 
generator.  

Here follow the results of the experiments, compared to related works, by means of 
comparison graphs: the quantity of successful plans (fig.4), the quantity of successful 
cycles (fig.5), the percentage of successful cycles (fig.6), the quantity of successful 
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theories (fig.7) and the quantity of new theories (fig.8),under the following method 
configurations: AIS with plan ponderator and mutation methods, adding the collabo-
ration method proposed (APMEC), AIS with plan ponderator, mutation and exchange 
methods (APME),proposed by Garcia Martinez et al [9], AIS with with plan pondera-
tor and mutation (APM), proposed by García Martínez, R. y Borrajo, D., [8], Neuter 
AIS (AN) does not apply any method, proposed by Fritz, W et al [2]. 

Figure 4 shows the comparison graph of the quantity of successful plans; the AIS 
that combines the plan ponderator and mutation methods, adding the collaboration 
method proposed (APMEC), obtained the greater quantity of successful plans 
throughout the time, followed during the initial period by the AIS that applied plan 
ponderator, mutation (APM); after the initial period, the AIS that applied theory ex-
change experiences a slowing down in the quantity of successful plans generated and 
is surpassed by the AIS with Plan ponderator, mutation and exchange (APME). The 
lower quantity of successful plans throughout the time was generated by the neuter 
AIS (AN) that does not apply any method for learning acceleration. 
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Fig. 3. Quantity of Theories vs situations            Fig. 4. Quantity of successful plans 

Figure 5 shows the comparison graph of “Quantity of successful cycles”, the AIS 
(APMEC) that applies collaboration obtained the greater quantity of successful cycles 
throughout the time. The same is observed in figure 6, the comparison graph of “Per-
centage of successful cycles”, the AIS (APMEC) that applies collaboration obtained 
the best average percentage of successful cycles throughout the time, with respect to 
the other methods applied by the AISs (APME, APM, AN). 

 

0
50

100
150
200
250

1 60
120

180
240

300
360

420
480

540
600Cycles

Q
u

an
ti

ty

AN APME APM APMEC

0 %

10 %

2 0 %

3 0 %

4 0 %

50 %

6 0 %

70 %

8 0 %

9 0 %

10 0 %

Cicl
os 40

10
0

16
0

220
28

0
34

0
400

460
52

0
58

0

P
er

ce
n

ta
g

e 
%

APME AN

APM APMEC

 

       Fig. 5. Quantity of successful cycles                     Fig. 6. Percentage of successful cycles 



 Learning by Collaboration in Intelligent Autonomous Systems 151 

These results contribute to the fact that the AIS that applies collaboration may gen-
erate a greater quantity of successful plans, on the basis that it has a greater quantity 
of accumulated successful theories (theories whose utility is 0.75<U≤ 1), being the 
product of the application of the collaboration method proposed, as it can be observed 
in figure 7: Quantity of Successful Theories.  
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Fig. 7. Quantity of Successful Theories    Fig. 8. Quantity of New Theories 

Figure 8 shows the graph “Quantity of New Theories”; the greater quantity of new 
theories generated throughout the time corresponds to the neuter AIS (AN) and the 
smaller quantity to the AIS (APMEC) that applies collaboration. This is due to the 
fact that the knowledge base of theories of the neuter AIS is less representative re-
garding experience than that of the AIS that received collaboration; that is the reason 
why by having more experience in the operation environment (more quantity of suc-
cessful theories), the AIS that received collaboration generated the smallest quantity 
of new theories compared to the rest of the methods that generated new theories dur-
ing the experimentation. 

Other series of experiments were carried out. They considered the individual com-
parison of each method applied on the basis of a neuter AIS, plan ponderator- muta-
tion AIS, Exchange AIS, Collaboration AIS; the results were satisfactory for the AIS 
that received collaboration. 

4   Preliminary Conclusions and Future Research Lines 

According to the results achieved during the experimentation, it is observed that the 
collaboration produces a greater acceleration in the learning of a receiver AIS, with 
respect to the methods compared, with an increase of its successful plans and its suc-
cessful theories throughout the time, as well as the quantity of successful cycles, the 
percentage of successful cycles and attaining a performance that required the genera-
tion of a smaller quantity of new theories, because of having a more representative 
theory base of its operation environment, attaining the best performance that results 
from the learning by collaboration. As new research lines we are exploring the 
mechanisms that may allow to invoke dynamically the collaboration of an AIS that is 
at a higher evolutionary stage, considering the selection metrics of theory bases of the 
AISs, based on percentages of successful cycles, quantity of theories with a utility 
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over 75 %, quantity of successful cycles and quantity of successful plans. Finally, we 
consider collaboration experimentation from an AIS that comes from a creator or 
developer different from that of the receiver AIS, given the proposed extension of the 
LLC (Learning Life Cycle).Possible real life examples of applicability of autonomous 
systems, are guided robot to avoid obstacles, for example to access the rescue of vic-
tims of earthquakes, these robots will share their theories and receive collaboration of 
robots that are in an upper layer of Learning Life Cycle.  
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