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Fermionic entanglement in the Lipkin model
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We examine the fermionic entanglement in the ground state of the fermionic Lipkin model and
its relation with bipartite entanglement. It is first shown that the one-body entanglement entropy,
which quantifies the minimum distance to a fermionic Gaussian state, behaves similarly to the
mean-field order parameter and is essentially proportional to the total bipartite entanglement be-
tween the upper and lower modes, a quantity meaningful only in the fermionic realization of the
model. We also analyze the entanglement of the reduced state of four single-particle modes (two
up-down pairs), showing that its fermionic concurrence is strongly peaked at the phase transition
and behaves differently from the corresponding up-down entanglement. We finally show that the
first measures and the up-down reduced entanglement can be correctly described through a basic
mean-field approach supplemented with symmetry restoration, whereas the concurrence requires at
least the inclusion of RPA-type correlations for a proper prediction. Fermionic separability is also
discussed.

I. INTRODUCTION

Quantum correlations have attracted much attention
ever since the theory of quantum mechanics was intro-
duced [1, 2]. In particular, quantum entanglement has
become a central concept in present-day physics, due to
its role as a resource in quantum information science [3–
7] and the deep insight it provides in many-body physics
[8–13] and fundamental problems [14–16]. Nonetheless,
the definition of quantum entanglement relies heavily on
the tensor product structure of the Hilbert space and
the subsequent notion of locality [17]. When consider-
ing systems of indistinguishable particles, the standard
definition cannot be directly applied, thus preventing a
straightforward extension of well-known measures.
In the last years, there has been a great interest in

generalizing the notion of entanglement to fermionic sys-
tems [18–39]. Two different approaches have been taken:
mode entanglement [24–28], where the subsystems are
described as a collection of single-particle (sp) modes
(with the fermion number of each subsystem not nec-
essarily fixed) and entanglement depends on the chosen
basis for the whole sp space; and particle entanglement

[18–23, 29–35], where entanglement is basis independent
and defined beyond antisymmetrization, i.e., as a vanish-
ing quantity in the case of a Slater Determinant (SD). In
the case of two fermions, a Schmidt-like decomposition
of a general pure state in terms of SD’s can be performed
[18], and this entanglement can be associated with that
of two distinguishable fermions, in the sense of occupying
orthogonal subspaces [18–21].
In [32] an entropic measure of mode entanglement was

introduced, which, after minimization over all sp bases,
becomes a measure of fermionic entanglement, in the
sense of vanishing iff the state is a SD. The ensuing
quantity is based upon the one-body density matrix and
represents essentially a minimum distance to a fermionic
Gaussian state [35]. It can be extended to states with no
fixed fermion number (but fixed number parity) through

the quasiparticle density matrix, vanishing iff the state is
a quasiparticle vacuum [32]. These measures can also be
applied to mixed states through convex roof extension.
In a sp space of dimension 4 (first nontrivial case) they
can be evaluated by means of a fermionic concurrence
[18, 32], analogous to the standard concurrence [40], van-
ishing iff the state is a convex combination of fermionic
Gaussian states.

The aim of this work is to examine these measures
in the well-known Lipkin model, considering the origi-
nal fermionic version [41–43]. This model can be exactly
solved through its mapping onto a spin system and has
been extensively used as a benchmark for testing many-
body approximations and studying quantum phase tran-
sitions and dynamics [41–50]. It has also been employed
for analyzing entanglement in its spin realization [51–59].
Its simulation with circuit QED was considered in [60].

We first analyze the one-body entanglement entropy in
the exact ground state (GS) for a finite size. We show
that this quantity exhibits a close correlation with the
mean-field (MF) order parameter, becoming significant
in the symmetry breaking MF phase and saturating for
strong couplings. We also show that it is approximately
proportional to the bipartite mode entanglement entropy
between all up and down fermionic modes, a quantity
physically accessible only in the fermionic realization of
the model. We then analyze the entanglement of the re-
duced state of four fermionic modes (two up-down pairs).
Its fermionic concurrence, which measures the deviation
of the reduced state from a mixture of SD’s, is explicitly
evaluated. It is shown to correspond to the spin-pair con-
currence, exhibiting a peak at the MF GS transition and
being strongly affected by the coupling anisotropy. In
contrast, the up-down mode entanglement of the reduced
state, which can be measured through the pertinent nega-
tivity, behaves similarly to previous global measures. The
analytic description of these quantities through differ-
ent approximations, including standard and symmetry-
restored MF approaches as well as RPA (random-phase
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approximation)-based schemes are also provided. The
isotropic limit and the fermionic GS separability are as
well discussed.
The formalism is briefly reviewed in section II, while

the model and its fermionic entanglement are analyzed
in III. Conclusions are finally provided in IV.

II. FORMALISM

We consider an n-dimensional single-particle (sp)

Hilbert space H spanned by the fermionic operators c†i ,
i = 1, . . . , n, satisfying the anticommutation relations

{ci, c†j} = δij , {ci, cj} = {c†i , c†j} = 0. Given a pure

fermionic state |Ψ〉 (assumed to have a definite number

of fermions:
∑

i c
†
ici|Ψ〉 = N |Ψ〉), the elements of the

one-body density matrix are ρspij = 〈c†jci〉 ≡ 〈Ψ|c†jci|Ψ〉.
In [32] we defined the one-body entanglement entropy as

E(|Ψ〉) = Trh(ρsp)

= −
∑

k

fk log2 fk + (1 − fk) log2(1− fk) , (1)

where h(f) = −f log2 f − (1 − f) log2(1 − f) and fk =

〈a†kak〉 denote the eigenvalues of ρsp (ak =
∑

i Ukici, with

U unitary satisfying 〈a†l ak〉 = (UρU †)kl = fkδkl). Eq.
(1) is proportional to the minimum, over all sp bases of
H, of the average entanglement entropy between a single
fermionic mode and its orthogonal complement [32]:

E(|Ψ〉) = Min
{ci}

∑

i

h(〈c†i ci〉) . (2)

This quantity is a measure of fermionic entanglement, in
the sense that it vanishes iff |Ψ〉 is a Slater Determinant
(SD), i.e. iff (ρsp)2 = ρsp (fk = 0 or 1 ∀ k), and re-
mains invariant under one-body unitary transformations

|Ψ〉 → exp[−ic†Oc]|Ψ〉 (with c†Oc =∑i,j Oijc
†
icj an her-

mitian one-body operator), which just lead to a unitary
transformation of ρsp (ρsp → e−iOρspeiO).
As shown in [35], Eq. (1) can also be interpreted as

the minimum relative entropy (in the grand canonical en-
semble) between ρ = |Ψ〉〈Ψ| and any fermionic Gaussian
state ρ′:

E(|Ψ〉) = Min
ρ′

S(ρ||ρ′) . (3)

Here S(ρ||ρ′) = Tr ρ(log2 ρ − log2 ρ
′) is the quantum

relative entropy [61, 62] satisfying S(ρ||ρ′) ≥ 0, with
S(ρ||ρ′) = 0 iff ρ′ = ρ, and ρ′ is the exponent of a one-
body operator:

ρ′ = exp[−λ0 − c†Λc] , (4)

with λ0 = ln Tr exp[−c†Λc] = ∑

k ln(1 + e−λk) and λk
the eigenvalues of the matrix Λ. Therefore, Eq. (1) repre-
sents a measure of the distance between ρ and its closest
fermionic Gaussian state, thus vanishing whenever |Ψ〉 is

a SD. The formalism can be extended to pure states |Ψ〉
with no fixed fermion number but fixed number parity

PN = exp[−iπ∑i c
†
i ci] [32, 35].

In the case of a two-fermion state, which can be always
written by means of the fermionic Schmidt decomposi-

tion [18–20] as |Ψ〉 =
∑ns

k=1

√
λkc

†
kc

†

k
|0〉, with λk > 0,

∑

k λk = 1 and ns the Slater rank (k, k denote orthog-
onal sp states), it is easily seen that fk = fk = λk and
E(|Ψ〉) = 2

∑

k h(λk) > 0 iff ns > 1, i.e., iff |Ψ〉 is not a
SD. The state can then be viewed as an entangled state of
two fermions occupying orthogonal subspaces, spanned
by the sp states k and k̄ respectively, with 1

2E(|Ψ〉) a
measure of the associated bipartite entanglement.
Let us consider now a subset of sp states spanning a

subspace HA of the sp space H, with HB its orthog-
onal complement (HA ⊕ HB = H). A general state
can be written as |Ψ〉 =

∑

µ,ν Cµν |µν〉, where |µν〉 =

[
∏

i∈A(c
†
i )
n
(ν)
i ][

∏

j∈B(c
†
j)
n
(µ)
j ]|0〉 are SDs and n

(ν)
i = 0, 1

the occupation number of sp state i in configuration
ν. The reduced state of HA can be obtained by tak-
ing the partial trace, ρA =

∑

µ,µ′(CC†)µµ′ |µ〉〈µ′|, such
that 〈Ψ|OA|Ψ〉 = TrA ρAOA for any observable OA built
with fermion operators acting just on HA. Its entropy
S(ρA) = −TrρA log2 ρA measures the bipartite mode en-
tanglement between this set and its orthogonal comple-
ment. For instance, if HA contains just one sp level i,

ρA =

(

〈c†i ci〉 0

0 〈cic†i 〉

)

, (5)

in the basis {c†i |0〉, |0〉}, with 〈cic†i 〉 = 1 − 〈c†i ci〉, and

S(ρA) = h(〈c†i ci〉) is the mode entanglement entropy be-
tween i and all remaining sp states, used in (2).
The convex-roof extension of the one-body entropy (1)

for a mixed state ρA (with [ρA,
∑

i∈A c
†
i ci] = 0) is

E(ρA) = Min∑
α qα|ψA

α 〉〈ψA
α |=ρA

E(|ψAα 〉) , (6)

where qα > 0,
∑

α qα = 1 and minimization is over all de-
compositions of ρA as convex combinations of pure states
|ψAα 〉 (with definite particle number) [20, 32]. This quan-
tity, analogous to the bipartite entanglement of formation
[63], is a measure of fermionic entanglement for mixed
states in the sense of vanishing iff ρA is a convex mixture
of SD’s, remaining invariant under one-body transforma-

tions ρA → e−ic
†OcρAe

ic†Oc. Moreover, if |Ψ〉 is a SD,
E(ρA) = 0 for any subspace HA since, due to the valid-
ity of Wick’s theorem, ρA will be a Gaussian state [35].
In order to have E(ρA) > 0, a subspace HA of di-

mension ≥ 4 is required, since any pure state with
fixed particle number in a subspace of lower dimension
is always a SD [18, 32]. And for HA of dimension 4,
E(ρA) > 0 ensures finite biparitte entanglement of ρA
for any bipartition of HA into subspaces of finite dimen-
sion (HA = HA1 ⊕HA2) [33, 35]. Moreover, in this case,
an analytic evaluation of (6) for any state ρA having fixed
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number parity PN becomes feasible through the fermionic
concurrence C(ρA) [18, 20, 32], like in a two-qubit system
[40]. The result is E(ρA) = 2[h(f+) + h(f−)] = 4h(f+)

[32], with f± = (1 ±
√

1− C2(ρA))/2 and

C(ρA) = Max[2λmax − TrR(ρA), 0] , (7)

where λmax is the largest eigenvalue of R(ρA) =
√

ρ
1/2
A ρ̃Aρ

1/2
A and ρ̃A = Tρ∗AT . We will consider

in what follows states ρA with even number par-
ity PN = +1. In this case a four dimensional HA

leads to an 8-dimensional Fock space with PN = +1
and the operator T is represented, in the basis

{|0〉, c†1c†2|0〉, c†1c†3|0〉, c†1c†4|0〉,−c†1c†2c†3c†4|0〉, c†3c†4|0〉,−c†2c†4|0〉,
c†2c

†
3|0〉}, by the matrix

T =

(

0 14

14 0

)

, (8)

with 14 the 4 × 4 identity. For instance, any pure two-
fermion state in such HA can be writtten as |ψA〉 =

(αa†1a
†
2 + βa†3a

†
4)|0〉 [4, 32], with |α|2 + |β|2 = 1, in which

case, for ρA = |ψA〉〈ψA|, Eq. (7) leads to C(ρA) = 2|αβ|
and hence to f+ = |α|2, f− = |β|2, which are the (two-
fold degenerate) eigenvalues of ρsp.

III. LIPKIN MODEL

The original fermionic Lipkin model [41–43] describes
a system of fermions in 2Ω sp states |p±〉, p = 1, . . . ,Ω,
with energies εp± = ±ε/2, fully connected through uni-
form two-body couplings. The Hamiltonian is

H = 1
2ε
∑

p

(c†p+cp+ − c†p−cp−)−W
∑

p,q

c†p+c
†
q−cq+cp−

− 1
2V
∑

p,q

(c†p+c
†
q+cq−cp− + c†p−c

†
q−cq+cp+) , (9)

where the V -coupling creates (and destroys) particle-hole
pairs over the unperturbed GS

|Ψ0〉 = (
∏

p

c†p−)|0〉 , (10)

while the W -coupling is a hopping term for these pairs.
As is well known [41–44], this Hamiltonian can be

mapped into a spin system through the operators

S± = Sx±iSy =
∑

p

c†p±cp∓ ,

Sz =
1

2

∑

p

(

c†p+cp+ − c†p−cp−

)

, (11)

which satisfy exact SU(2) commutation relationships:
[S+, S−] = 2Sz, [Sz, S±] = ±S±. The Hamiltonian (9)
can then be rewritten as

H = εSz − W
2 (S+S− + S−S+ −N)− V

2 (S
2
+ + S2

−)(12)

= εSz − Vx
(

S2
x + χS2

y

)

+ Vx
1+χ
4 N , (13)

where Vx = W + V , χ = W−V
W+V and N =

∑

p,µ=± c
†
pµcpµ

is the fermion number operator. In what follows we will
consider the half-filled case of N = Ω fermions, where
the total spin S can reach the maximum value Ω/2. We
will set, without loss of generality, |χ| ≤ 1 (i.e. Vy ≤ Vx)
and focus on the attractive case Vx ≥ 0. These two
conditions imply W ≥ 0, V ≥ 0. It also convenient to
scale the coupling strength as

Vx = vx/(Ω− 1) , (14)

such that 〈H〉/Ω stays finite and Ω-independent for large
Ω at fixed vx, χ. And at the mean-field level (see sec.
III B) the GS transition to the symmetry-breaking phase
will take place exactly at vx = ε ∀ Ω.
The Hamiltonian H obviously commutes with the to-

tal spin S2 = S2
x + S2

y + S2
z . In the half-filled attrac-

tive case the minimum energy is reached for maximum
spin S = Ω/2, i.e., for the completely symmetric mul-
tiplet. The exact GS |Ψ〉 can then be obtained by di-
agonalizing the equivalent spin-hamiltonian (13) within
the S = Ω/2 subspace, of dimension Ω + 1, which con-
tains the unperturbed GS (10) and where there is always
just one fermion per site p (note that [H,np] = 0, with
np =

∑

µ=± c
†
pµcpµthe number of fermions at site p). It

will then have the form

|Ψ〉 =
Ω
∑

K=0

CK |K〉 , (15)

where K denotes the number of fermions in the upper
level and |K〉 ≡ |S = Ω/2, Sz = K − Ω/2〉 ∝ SK+ |Ψ0〉 are
the eigenstates of Sz for maximum total spin S = Ω/2.
All coefficients CK will be real and of the same sign if
V > 0.
Moreover, H also commutes with the Sz-parity Pz :

[H,Pz ] = 0 , Pz = exp[iπ(Sz +Ω/2)] , (16)

which forN = Ω is equivalent to the parity of the number

of fermions in the upper level: Pz = exp[iπ
∑

p c
†
p+cp+].

This implies that in any non-degenerate GS the sum in
(15) will run over either even or odd values of K, accord-
ing to the GS parity Pz = ±1. This symmetry will have
a deep influence in fermionic entanglement measures.
In the isotropic case χ = 1 (V = 0), the Hamiltonian

(13) also commutes with Sz, implying that the sum in
(15) reduces to a single term. The exact eigenenergies
for N = Ω and χ = 1 become, using Eq. (13),

ESK = ε(K − Ω
2 )− Vx[S(S + 1)− (K − Ω

2 )
2 − Ω

2 ] ,
(17)

with S ≤ Ω/2 and Ω
2 −S ≤ K ≤ Ω

2 +S. It is then verified
that for Vx > 0, the GS is obtained for maximum spin
S, with K starting at 0 for Vx = 0 and ending up at
[Ω/2] for large Vx. Thus, the χ = 1 GS undergoes [Ω/2]
transitions K → K + 1 as Vx increases from 0, at the
couplings

V Kx =
ε

Ω− 1− 2K
, K = 0, . . . , [Ω2 ]− 1 , (18)
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with v0x = V 0
x /(Ω−1) = ε coinciding with the MF critical

value. For fixed χ ∈ (0, 1) (0 < V < W ) and finite Ω,
these transitions will evolve into [Ω/2] Sz-parity transi-
tions. On the other hand, for χ ∈ [−1, 0] (V ≥ W ) the
exact GS will have even parity Pz = +1 ∀ Vx > 0, owing
to the dominant role of the V -coupling.

A. Exact GS entanglement

1. One body entropy

We start with the evaluation of the one-body entan-
glement entropy (1). Due to conservation of the single
site fermion number np, the elements of the one-body
density matrix ρsp in a state of the form (15) satisfy
〈c†pµcqν〉 = δpq〈c†pµcpν〉. And due to translational invari-
ance over the states p, they form Ω identical blocks

ρspp =

(

〈c†p+cp+〉 〈c†p−cp+〉
〈c†p+cp−〉 〈c†p−cp−〉

)

=

(

f+ 0
0 f−

)

, (19)

where 〈c†p±cp∓〉 = 〈S±〉/Ω = 0 owing to Pz conservation

and f± =
(

1
2 ± 〈Sz〉/Ω

)

, i.e., f+ = 〈K〉/Ω = 1− f− with

〈K〉 =
∑

K C
2
KK. The one-body entropy E ≡ E(|Ψ〉)

then becomes

E = Ω[h(f+) + h(f−)] = −2Ω(f+ log2 f+ + f− log2 f−) .
(20)

It is determined just by 〈Sz〉, vanishing only if |〈Sz〉| =
Ω/2. This shows that any state (15) with definite parity

Pz is not a SD unless CK = δK0 or δKΩ. This includes in
particular the states |K〉 (GS’s for χ = 1), where f+ =
K/Ω ≡ k and

EK = −2Ω[k log2 k + (1− k) log2(1− k)] , (21)

is positive for 1 ≤ K ≤ Ω−1, reflecting the fact that they
are collective excitations generated by S+ and are hence
not SD’s. Eq. (20) is 2Ω times the single spin entangle-
ment entropy in the spin picture (i.e. the entanglement
of spin i with the rest of the system), where the block
(19) represents the reduced single spin density matrix.

The behavior of the one-body entropy (20) as a func-
tion of vx/ε is shown in Fig. 1 for Ω = 50 and different
anisotropies χ, together with other entanglement mea-
sures discussed below. It becomes significant for vx > ε,
i.e. in the strongly coupled regime where the MF GS
exhibits Sz-parity breaking (see sec. III B), increasing
monotonously with increasing strength vx/ε and saturat-
ing for vx/ε → ∞. Moreover, it is almost independent
of χ, except for the steps visible in the χ = 1 case which
reflect the Sz transitions K → K + 1 (the steps due to
the Pz transitions at χ = 0.5 are already very small at
the size shown and are not appreciable). An analytic
description of E for large Ω is provided in III B.
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FIG. 1. The intensive one-body entropy E/(2Ω), Eq. (20),
together with the intensive up-down entanglement entropy
E+−/Ω and the scaled fermionic concurrence ΩC/2, in the GS
of Hamiltonian (9)–(13) as a function of the relative coupling
strength vx/ε, for three different anisotropies χ and Ω = 50
fermions. All labels are dimensionless.

2. Up-down entanglement entropy

The fermionic version of the model enables to consider
a bipartition where Alice has access to the Ω lower single
fermion levels and Bob to the Ω upper levels, which has
no physical counterpart in a pure spin realization. It is
only in the fermionic case where this partition becomes
meaningful and the ensuing up-down mode entanglement
can be considered as a physical resource. Let us also
remark that due to the definite Sz-parity of the GS, each
side will contain fermionic states with definite number
parity (PN± = Pz (±Pz) for Ω even (odd)), entailing
that arbitrary linear combinations of the involved local
states will not break the number parity superselection
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rule [26, 64].
In order to compute this entanglement exactly, we first

note that each state |K〉 can be explicitly written as an

equally weighted sum of
(

Ω
K

)

orthogonal SD’s with K
fermions up and Ω−K fermions down at different sites,

|K〉 = 1
√

(

Ω
K

)

∑

α

(

∏

p

(c†p+cp−)
npα

)

|Ψ0〉 , (22)

where npα = 0, 1,
∑

p npα = K and α = 1, . . . ,
(

Ω
K

)

. Since
all terms in the previous sum involve different orthogo-
nal states at each side, Eq. (22) constitutes the Schmidt
decomposition [5] for the up-down partition. Then, the
up-down entanglement entropy of the states |K〉 is

E+−
K = log2

(

Ω

K

)

. (23)

Using Eq. (22), the ensuing up-down entanglement en-
tropy determined by the exact GS (15) is

E+− =
∑

K

C2
K [log2

(

Ω
K

)

− log2 C
2
K ] , (24)

where the first sum in (24) represents the average entan-
glement stemming from the states |K〉 while the second
is that emerging from the distribution over these states.
While E+− does not require in principle a correlated

GS (it can be non-zero in a SD, see sec. III B), it is here
essentially half the one-body entropy (20) for sufficiently
large Ω: In the states |K〉, an expansion of (23) for large
Ω and K, with k = K/Ω finite, leads to

E+−
K ≈ −Ω[k log2 k + (1 − k) log2(1− k)]

− log2
√

2πΩk(1− k)

= EK/2 +O(log2 Ω) . (25)

A similar relation E+− ≈ E/2 holds for large Ω in a typ-
ical definite parity GS (15) (see sec. III B). This result
indicates a close correlation between the fermionic entan-
glement measured by E(|Ψ〉) and the bipartite up-down
mode entanglement in the exact definite parity GS. This
enables an approximate estimation of the latter, which
can be considered as a quantum resource, through an
easily accessible one-body average (〈Sz〉). The behavior
of E+− with vx/ε is also depicted in Fig. 1, where the
approximate proportionality is verified.

3. Fermionic concurrence and reduced up-down
entanglement

We now examine the fermionic and up-down entangle-
ment in the reduced state ρpq of four single fermion states
p±, q±, p 6= q, which is a mixed state for Ω > 2 and is here
the first non-trivial case for both measures. We first note
that since np = 1, the reduced state ρp of a single pair
of modes p± (represented in principle by a 4 × 4 matrix

in the basis {|0〉, c†p+|0〉, c†p−|0〉, c†p+c†p−|0〉) contains here
just a diagonal 2×2 non-zero block ρp identical with Eq.

(19) in the restricted basis {c†p+|0〉, c†p−|0〉}:

ρp =

(

〈c†p+cp+cp−c†p−〉 〈c†p−cp+〉
〈c†p+cp−〉 〈cp+c†p+c†p−cp−〉

)

=

(

f+ 0
0 f−

)

.

(26)
This state has obviously no fermionic entanglement, in
the sense that it is just a mixture of elementary sin-
gle fermion states (ρp =

∑

ν=± fνc
†
pν |0〉〈0|cpν). Be-

sides, it has no up-down mode entanglement either, since

Pz-conservation implies 〈c†p±cp∓〉 = 0 and prevents co-
herence between both single fermion states (i.e., terms

∝ c†p+|0〉〈0|cp−). Thus, if Alice and Bob have access just
to a single p state (p− for Alice, p+ for Bob) the joint
state ρp contains just classical correlations (it is equiv-
alent to a two-qubit state f−|01〉〈01|+ f+|10〉〈10|, with
|01〉 = c†p−|0〉, |10〉 = c†p+|0〉).
The situation changes when they have access to

two different states p 6= q (p−, q− for Alice, p+, q+
for Bob). Since the number np of fermions per site
p is 1, the support of ρpq (in principle a 16 × 16
matrix) will just involve the four two-fermion states

{c†p+c†q+|0〉, c†p+c†q−|0〉, c†p−c†q+|0〉, c†p−c†q−|0〉} (see Fig. 2).
In this restricted basis it will be given by

ρpq =











〈np+nq+〉 0 0 〈sp−sq−〉
0 〈np+nq−〉 〈sp−sq+〉 0

0 〈sp+sq−〉 〈np−nq+〉 0
〈sp+sq+〉 0 0 〈np−nq−〉











(27)

where np± = c†p±cp± and sp± = c†p±cp∓. In the GS (15),
its elements are independent of p, q and can be exactly
evaluated in terms of global averages:

〈sp±sq±〉 =
〈S2

±〉
Ω(Ω− 1)

, (28)

〈sp±sq∓〉 =
Ω2/4− 〈S2

z 〉
Ω(Ω− 1)

= 〈np±nq∓〉 , (29)

〈np±nq±〉 =
(

1

4
± 〈Sz〉

Ω
+

〈S2
z 〉 − Ω/4

Ω(Ω− 1)

)

. (30)

The fermionic entanglement of this mixed state, which
indicates its deviation from a statistical mixture of SD’s,
can be measured through the fermionic concurrence (7),
which becomes

C = 2Max[|〈sp+sq+〉| − 〈np+nq−〉,

|〈sp+sq−〉| −
√

〈np+nq+〉〈np−nq−〉, 0] . (31)

This concurrence is equivalent to that of a two-qubit
system, coinciding with that of a spin pair in the spin
realization [51, 53, 55] (i.e., with that measuring bipar-
tite mode entanglement between p± and q± states). It
can be regarded as “parallel” (“antiparallel”) when the
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FIG. 2. The possible occupancies of four sp states p±, q±
in the GS of the Hamiltonian (9). The reduced state (27)
contains coherences between the two upper states and, sepa-
rately, between the two lower states, which lead to a nonzero
fermionic concurrence and up-down entanglement.
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FIG. 3. Fermionic entanglement measures in the states
|K〉 = |S = Ω

2
,M = K − Ω

2
〉 for Ω = 50 fermions. Here E is

the one-body entanglement entropy (21), E+− the up-down
entanglement entropy (23) and C the concurrence (32).

first (second) term in (31) is positive, and scales as Ω−1

[51, 55].
As seen in Fig. 1, the behavior of C differs from that of

previous entanglement measures. It is peaked at vx ≈ ε,
i.e. at the onset of the symmetry-breaking MF phase, and
it is strongly affected by the anisotropy. For χ = 1 the
GS’s are the states |K〉 and the concurrence is then only
of antiparallel type, as 〈S2

±〉 = 0, and given by

CK =
2

Ω

1

1 +
√

1− Ω−1
K(Ω−K)

, 1 ≤ K ≤ Ω− 1 . (32)

vanishing for K = 0,Ω and satisfying CK = CΩ−K .
It is sharply peaked at K = 1 (and K = Ω − 1),
with C1 = 2/Ω (the maximum attainable value in this
model [55]), dropping significantly already for K = 2

(C2/C1 ≈ 2 −
√
2 ≈ 0.586 for large Ω) and reaching

its minimum at K = Ω/2 (CΩ/2 = 1
Ω−1 ). An explicit

comparison between the concurrence CK and the entan-
glement entropies EK and E+−

K is shown in Fig. 3.
The concurrence remains peaked at vx ≈ ε for other

anisotropies, but the sharpness of the peak decreases as
χ decreases, as seen in Fig. 1. In addition, for χ ∈ (0, 1)
(central panel) it vanishes at the separability point

vx = ε/
√
χ , (33)

(see Appendix) where it changes from antiparallel to par-
allel [65, 66]. This point corresponds to the first GS Sz-
parity transition, where it becomes two-fold degenerate
and the GS subspace is spanned by two non-orthogonal
SDs (see sec. III B). For χ < 0 GS separability no longer
occurs and C is positive and parallel ∀ vx > 0.
The finite fermionic concurrence of the reduced state

ρpq warrants non-zero bipartite entanglement for any bi-
partition of the four dimensional sp space [35]. In partic-
ular, ρpq will lead to a finite up-down mode entanglement,
which can be quantified through the pertinent negativity
[39, 67, 68]. This partition involves four distinct states

at each side: |0〉, c†p−c†q−|0〉, c†p−|0〉 and c†q−|0〉 for Alice
and similar states at the upper level for Bob (Fig. 2),
leading to a two-qudit system with d = 4. Pz symme-
try implies that just states with the same local fermion
number parity are connected in ρpq, entailing that par-
tial trasposition will not mix local states with different
number parity and standard formulas can be applied [39].
The ensuing negativity is just minus the sum of the two
negative eigenvalues of the partial trasposed matrix:

N+− = |〈sp+sq+〉|+ |〈sp+sq−〉| . (34)

As seen in Fig. 4 (bottom panel), the behavior of
this quantity resembles that of the global entropies E
and E+−, increasing monotonously for increasing vx/ε.
While still weakly dependent on χ for χ < 1, it is reduced
by half for χ → 1 : In the states |K〉 the first term in
(34) vanishes and Eq. (29) leads to (k = K/Ω)

N+−
K =

Ω

Ω− 1
k(1− k) , (35)

approaching 1
4

Ω
Ω−1 for vx/ε → ∞. However, for χ < 1

both terms in (34) contribute and the ensuing negativity
as a function of vx/ε becomes essentially twice the value
for χ = 1, as verified in Fig. 4 (see section III B).
Previous considerations hold of course for Ω > 2.

We remark that in the trivial Ω = 2 case, ρpq be-
comes pure (ρpq = |Ψ〉〈Ψ|) and all previous quantities

become equivalent: C = 2N+− = 2
√

f+(1 − f+), and
E = 4E+− = 4h(f+), with f+ = |β|2 for a Pz = +1 GS

|Ψ+〉 = α|K = 0〉+ β|K = 2〉 = (αc†p−c
†
q− + βc†p+c

†
q+)|0〉

(|α|2 + |β|2 = 1), and f+ = 1/2 for a Pz = −1 GS

|Ψ−〉 = |K = 1〉 = 1√
2
(c†p+c

†
q− + c†p−c

†
q+)|0〉

where all previous quantities are maximum.
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FIG. 4. Top panel: Comparison between the exact one-
body entanglement entropy and the value obtained from the
mean-field approximation through basic Sz-parity projection
(PMF), Eq. (42), for χ = 0.5 and Ω = 50 fermions. The MF
order parameter ∆ = 2|〈sx〉|mf = sin θ is also depicted. The
inset depicts the exact result for different values of χ, show-
ing the weak dependence on the anisotropy. Bottom: The
exact up-down negativity in the reduced state ρpq, Eq. (34),
for χ = 0.5 and χ = 1 (Eq. 35), together with the mean-
field results obtained through basic Sz-parity (χ = 0.5) and
Sz (χ = 1) projections, Eqs. (46)– (47), which are almost
coincident with the exact ones.

B. Approximate description

We now discuss the evaluation of previous measures
through approximate methods, with the aim of identify-
ing their main sources and obtaining an analytic descrip-
tion, exact in the thermodynamic limit Ω → ∞.

1. Mean-field approach

We start with the basic mean-field (MF) approach,
where the GS is approximated by a SD, here of the form

|Ψmf〉 = e−iθn·S |Ψ0〉 =
∏

p

c′
†
p−|0〉 , (36)

where S = (Sx, Sy, Sz), c
′†
p± = e−iθn·Sc†p±e

iθn·S are ro-
tated fermion operators and n a unit vector. Both θ and
n are to be obtained from the minimization of the mean
energy, which by means of Wick’s theorem becomes

〈Ψmf |H |Ψmf〉 = Ω[ε〈sz〉 − vx(〈sx〉2 + χ〈sy〉2)] , (37)

where sµ = Sµ/Ω. For |χ| < 1, the minimum will be
always obtained for 〈s〉 lying in the x, z plane (n.S = Sy),
which leads to 〈s〉 = − 1

2 (sin θ, 0, cos θ) and

c′
†
p± = cos θ2 c

†
p± ± sin θ

2 c
†
p∓ . (38)

Minimization of (37) with respect to θ yields

cos θ =

{

1 , vx ≤ ε
ε/vx , vx > ε

, (39)

i.e., to a normal phase with θ = 0 for vx ≤ ε and to an
Sz-parity breaking phase with |θ| ∈ (0, π/2) (and hence
∆ ≡ 2|〈sx〉| = sin θ > 0) for vx > ε. In the latter the sign
of θ remains arbitrary, leading to a two-fold degeneracy
of the MF GS (for χ = 1, this degeneracy becomes con-
tinuous, as the orientation of 〈s〉 in the xy plane becomes
arbitrary). Note that θ is independent of χ (for |χ| ≤ 1).
Any SD implies a zero one-body entropy and fermionic

concurrence. In particular, the one-body density matrix
ρspmf(θ) determined by (36) consists of Ω identical blocks

ρspp (θ) =

(

〈c†p+cp+〉 〈c†p−cp+〉
〈c†p+cp−〉 〈c†p−c−〉

)

=
1

2

(

1− cos θ sin θ
sin θ 1 + cos θ

)

,

(40)
whose eigenvalues are obviously 1 and 0. Nonetheless,
it is possible to extract an effective MF one-body entan-
glement entropy by considering just the diagonal terms
in (40), since the exact off-diagonal terms vanish due to
the Sz-parity symmetry. This can be justified through a
basic Sz-parity restoration (see next subsection), which
leads to the one-body density (ρspmf(θ)+ρ

sp
mf (−θ))/2, com-

posed of diagonal blocks

1

2
(ρspp (θ) + ρsp(−θ)) = 1

2

(

1− cos θ 0
0 1 + cos θ

)

. (41)

The ensuing one-body entanglement entropy becomes

Emf = −2Ω
∑

ν=±

1 + ν cos θ

2
log2

1 + ν cos θ

2
, (42)

with cos θ given by (39), and is positive for θ ∈ (0, π)
(vx > ε), saturating for vx/ε→ ∞ (E → 2Ω).
As seen in the top panel of Fig. 4, Eqs. (39)–(42) pro-

vide an excellent estimation of the exact one-body en-
tropy E ∀ vx > ε if Ω is not too small, becoming exact for
Ω → ∞. As previously mentioned and as verified in the
inset, the exact E exhibits only a very weak dependence
on the anisotropy χ. And for χ→ 1 and large Ω, the ex-
act Eq. (18) implies 〈sz〉 = K/Ω− 1

2 = − 1
2ε/vx plus terms

O(Ω−1), which is the MF result 〈sz〉 = − 1
2 cos θ, with
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Eq. (21) becoming identical to (42) (k = 1
2 (1 − ε/vx)).

Thus, in this model the MF approach is able to provide,
through basic Sz-parity projection (extraction of diag-
onal terms) the exact result of the intensive one-body
entropy E/(2Ω) for large Ω.
Besides, the up-down entanglement entropy directly

determined by the MF state (36) is non-zero: This state
can be written in the form (15) with coefficients

CK(θ) =

√

(

Ω

K

)

cosΩ−K θ
2 sinK θ

2 , (43)

for n · S = Sy. Eq. (24) then leads to

E+−
mf = −Ω

∑

ν=±

1 + ν cos θ

2
log2

1 + ν cos θ

2
=

1

2
Emf ,

(44)
which is in agreement with the exact trend for large Ω and
provides a good approximation in this limit. The result
(44) is also apparent as the up or down occupations at
each site p in the MF state (36) are independent from
those at other sites. Hence, the MF result (44) is that
of Ω independent two-qubit systems in a pure entangled

state c′
†
p−|0〉 = cos θ2 |01〉+sin θ

2 |10〉, where |01〉 = c†p−|0〉,
|10〉 = c†p+|0〉, which is the single p reduced state at the
MF level.
Notice, however, that the up-down entanglement of a

single p subsystem is a MF effect arising from Sz-parity
breaking. As we have seen in (26), the single p reduced
state derived from the exact GS is mixed and just clas-
sically correlated, instead of pure and entangled. Thus,
in contrast with MF, in the exact GS E+− emerges from
two-body correlations and accordingly, is not strictly ex-
tensive (see also Eq. (53) in next section).
On the other hand, the fermionic four-state concur-

rence (31) lies strictly beyond the basic MF approach.
Without Sz-parity projection, the state (36) obviously
leads to a pure reduced state ρpq(θ) = |ψpq〉〈ψpq| with
|ψpq〉 = c′

†
p−c

′†
q−|0〉 a SD, implying C = 0. But even

after a basic parity projection, which leads to

ρpq =
1
2 (ρpq(θ) + ρpq(−θ))

=
1

4













(1− cos θ)2 0 0 sin2 θ
0 sin2 θ sin2 θ 0

0 sin2 θ sin2 θ 0
sin2 θ 0 0 (1 + cos θ)2













,(45)

we still obtain C = 0 ∀ θ (according to Eq. (31)), since
this state is a convex combination of Gaussian states.
Eq. (45) does lead, however, to a correct estimation of

the up-down negativity (34) for χ < 1,

N+−
mf =

1

2
sin2 θ (χ < 1) , (46)

which provides an excellent description for large Ω, as
seen in the bottom panel of Fig. 4. Notice that (46) is

smaller than the result derived directly from the unpro-
jected MF reduced state ρpq(θ) (i.e., from the pure state
|ψpq〉), which leads to N+−

mf (θ) = | sin θ|(1 + 1
2 | sin θ|),

since the latter includes terms connecting states with dif-
ferent Pz which are removed by the basic projection.
Eq. (46) fails only in the isotropic limit χ → 1, where

an Sz projection would be required. The main effect of
such projection is just to cancel the term 〈sp+sq+〉 =
1
4 sin

2 θ in (45), leaving 〈sp+sq−〉 essentially unaltered.
This leads to half the value (46):

N+−
mf =

1

4
sin2 θ (χ = 1) , (47)

which is in excellent agreement with the exact result, as
also seen in Fig. 4. In fact, for large Ω Eq. (18) implies
k = 1

2 (1− vx/ε) and the exact result (35) becomes iden-
tical with Eq. (47).
We finally remark that for χ ∈ (0, 1), both MF states

|Ψmf(±θ)〉 become exact GS’s for any finite Ω at the sep-
arability point (33) (see Appendix). However, the exact
limit at this point of the one-body entropy is still given
by Eq. (42) for large Ω, and is hence non-zero, since the
exact GS side-limits have definite Pz (see next section).

2. Sz-Parity projected mean-field

A more rigorous extraction of fermionic entanglement
measures at the MF level can be achieved by considering
the exact Sz-parity restored states

|Ψ±〉 = |Ψmf(θ)〉 ± |Ψmf(−θ)〉
√

2(1± cosΩ θ)
, (48)

where |Ψmf(θ)〉 denotes the state (36) (for n · S =
Sy) and |Ψmf(−θ)〉 = Pz |Ψmf(θ)〉. If the overlap
〈Ψmf(−θ)|Ψmf(θ)〉 = cosΩ θ and other terms of similar
order are neglected (they are very small for not too small
Ω and θ), the one-body density ρsp and the reduced state
ρpq derived from the states (48) are precisely given by
Eqs. (41) and (45).
Nonetheless, it is also possible to derive the exact pro-

jected expressions. The contractions derived from the
states (48) are 〈c†pµcqν〉± = δpqδµνf

±
µ for µ, ν = ±, where

f±
ν are the projected average occupations

f±
ν =

1− ν cos θ

2

(

1∓ ν cosΩ−1 θ

1± cosΩ θ

)

, (49)

satisfying f±
+ + f±

− = 1. Hence, these states lead to a
diagonal one-body density matrix with Ω identical blocks

ρ±p =

(

f±
+ 0
0 f±

−

)

. (50)

Since the difference between f±
ν and the unprojected av-

erage occupations 1−ν cos θ
2 of Eq. (41) is O(cosΩ−1 θ), the

exact one-body entropy determined by the states (48),

E± = −2Ω(f±
+ log2 f

±
+ + f±

− log2 f
±
− ) , (51)
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is very close to the diagonal MF result (42) if Ω and θ
are not too small.
The up-down entanglement determined by the states

(48) can also be exactly evaluated: The ensuing normal-
ized coefficients in the expansion (15) are just

C±
K(θ) =

√

1±(−1)K

1±cosΩ θ CK(θ) , (52)

with CK(θ) the MF coefficients (43), and lead to

E+−
± = −Ω

(

∑

ν=±

f±
ν log2

1+ν cos θ
2

)

− log2
2

1±cosΩ θ .

(53)
Even if terms O(cosΩ θ) are neglected, a reduction ≈
− log2 2 = −1 is now obtained in comparison with (44)
due to Sz-parity projection, which implies a spread over
just half the total number of states. This lowering ex-
plains the small difference with half the one-body entropy
observed in the exact results of Fig. 1 for χ < 1. In partic-
ular, the up-down entanglement is maximum for θ = π/2
(vx/ε → ∞), in which case (53) yields E+−

± = Ω − 1,
while (44) leads to E+− = Ω. An alternative interpreta-
tion of this reduction is that while in the nonprojected
MF, Alice (lower levels) and Bob (upper levels) share Ω
independent maximally entangled qubit pairs, in the pro-
jected state the last pair is not independent as its state
becomes determined by the parity constraint, thus low-
ering E+− in one unit. On the other hand, full Sz pro-
jection is required for obtaining an accurate evaluation
at χ = 1, which would lead to the exact result (23).
The exact reduced four-mode state ρpq derived from

the states (48) has the form (27) with elements (ν = ±)

〈spνsqν〉± =
sin2 θ

4

(

1± cosΩ−2 θ

1± cosΩ θ

)

〈spνsq−ν〉± =
sin2 θ

4

(

1∓ cosΩ−2 θ

1± cosΩ θ

)

= 〈npνnq−ν〉± (54)

〈npνnqν〉± =
1

2
− 〈spνsq−ν〉± ∓ cos θ

2

(

1± cosΩ−2 θ

1± cosΩ θ

)

.

In contrast with (45), this state leads to a small but finite
fermionic concurrence

C±(θ) = sin2 θ
cosΩ−2 θ

1± cosΩ θ
, (55)

which is parallel (antiparallel) for positive (negative) Sz-
parity. Nevertheless, it is very small unless Ω and θ are
sufficiently small. In a projected after variation treat-
ment, θ = 0 for vx < ε and (55) implies an appreciable
concurrence just in a very narrow interval after the phase
transition at vx = ε, where θ is still small but non-zero.
For vx < ε, it is possible to improve previous result by

projecting before variation, i.e., by determining θ (and
Pz) through the minimization of 〈Ψ±|H |Ψ±〉. In this
case θ will be non-zero ∀ vx > 0 and (55) will lead to a
finite appreciable concurrence in the normal region (0 <
vx . ε), where θ remains small. As seen in Fig. 5, the

PMFV
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vx/ε
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C
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FIG. 5. Comparison between exact results for the fermionic
concurrence for χ = 0 and χ = 0.5 with Ω = 50, and those
obtained with an Sz-parity projected (before variation) mean-
field approach (PMFV).

ensuing results are accurate for small vx/ε≪ 1, although
for vx > ε, θ increases and the concurrence (55) becomes
again vanishingly small for appreciable Ω, as ρpq becomes
essentially a convex mixture of Gaussian states.
On the other hand, the up-down negativty determined

by the elements (54),

N+−
± =

sin2 θ

2(1± cosΩ θ)
, (56)

is very close to the previous result (46) derived from (45)
for appreciable Ω and θ, thus providing a correct descrip-
tion for χ < 1.
A final comment is that the projected states (48) con-

stitute the exact GS side-limits at the separability point
(33) ∀ Ω. As we have seen, these states lead to a fi-
nite one-body entropy E (and also finite up-down en-
tropy E+− and negativity N+−), which does not vanish
for large Ω, in contrast with the associated fermionic con-
currence (55). Thus, for not too small Ω this point will
be clearly visible only in the concurrence, as verified in
Fig. 1 (see also Appendix).

3. Mean-field plus Random-phase approximation

In order to obtain a reliable analytic description of the
concurrence for large Ω, it is necessary to employ at least
a random-phase approximation (RPA) [44], equivalent
to a first-order Holstein-Primakoff bosonization of the
Hamiltonian around the MF solution (see [44] and also
[51, 53, 54] and [55, 57]). It can be implemented in a
simple way by mapping approximately the collective spin
operators to boson operators. For 0 < vx < ε (and |χ| <
1) this mapping takes the form

S+ →
√
Ωb†, S− →

√
Ωb, Sz → b†b− Ω/2 ,

where the condition [b, b†] = 1 is imposed. It is valid
when 〈Sz〉 is close to −Ω/2, i.e. in the normal MF phase
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vx < ε, where the vacuum |0〉 of b corresponds to the
unperturbed GS |Ψ0〉. This leads to an approximate
quadratic boson Hamiltonian:

H − E0 → Hb = (ε− w)b†b− v

2
(b†

2
+ b2)

= λb′
†
b′ − ε− w − λ

2
, (57)

where E0 = 〈Ψ0|H |Ψ0〉, w = WΩ, v = V Ω, and b′ =
αb − βb† is the final normal boson operator, with (αβ ) =
√

ε−w±λ
2λ ([b′, b′†] = α2 − β2 = 1) and

λ =
√

(ε− w)2 − v2 =
√

(ε− vx)(ε− vy) , (58)

the normal boson energy, where vy = χvx. The GS |Ψ〉 is
then approximated by the vacuum |0′〉 = α exp[ β2αb

†2]|0〉
of b′, which leads to 〈b2〉 = αβ = v

2λ , 〈b†b〉 = β2 and

hence to 〈S+〉2 ≈ Ωv
2λ , 〈Sz〉 ≈ ε−w−λ

2λ − Ω/2. With these
values, we can estimate the concurrence through Eq. (31),
which for large Ω leads to the asymptotic expression

C ≈ 1− λ/(ε− vy)

Ω− 1
, 0 < vx < ε . (59)

This value corresponds to a parallel-like concurrence
(normal phase) [53, 55].
For vx > ε, the bosonization should be done around

the parity breaking MF state |Ψmf〉 of Eq. (36), which
will correspond to the initial boson vacuum, and applied
to the rotated operators S′

±, S
′
z. This leads to

H − E′
0 → Hb = (ε′ − w′)b†b− v′

2
(b†

2
+ b2)

= λ′b′
†
b′ − ε′ − w′ − λ′

2
, (60)

where E′
0 = 〈Ψmf |H |Ψmf〉, cos θ = ε/vx, ε

′ = ε cos θ,
w′ = (vx(3 cos

2 θ−2)+vy)/2, v
′ = (vx cos

2 θ−vy)/2 and

λ′ = | sin θ|
√

vx(vx − vy) . (61)

The final expression for the asymptotic concurrence is

C ≈
{

1−λ′/(vx−vy)
Ω−1 , ε < vx < ε/

√
χ

1−(vx−vy)/λ
′

Ω−1 , vx > ε/
√
χ

(62)

where the upper (lower) formula corresponds to the par-
allel (antiparallel) concurrence, with the transition be-
tween both taking place at precisely the separability
point (33) [55, 66]. At this point v′ = 0 and λ′ = vx−vy,
implying a zero RPA concurrence, in agreement with
the exact result for large Ω. Moreover, at this point
ε′ − w′ = λ′ and b′ = b, so that the bosonic vacuum
remains unaltered, i.e., it is the MF GS. Thus, sep-
arability is directly and exactly detected in RPA. For
−vx < vy < 0 (i.e. −1 < χ < 0) the concurrence is
parallel and just the upper row in (62) should be applied
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FIG. 6. Comparison between exact and RPA results for the
fermionic concurrence at two different anisotropies and Ω =
50 fermions. Results from both the analytic expressions (59),
(62) (ARPA), valid for large Ω, and the finite Ω results derived
from the states (63)–(64) (PRPA), are depicted.

(∀ vx > ε). Expressions (59)–(62) yield an excellent de-
scription of the fermionic concurrence for all −1 ≤ χ < 1
and both vx < ε and vx > ε for appreciable Ω, as verified
in Fig. 6.
We finally mention that it is possible to further im-

prove this approach for finite systems by considering the
fermionic state corresponding to the bosonic vacuum |0′〉.
For vx < ε, such state has the form

|ΨRPA〉 ∝ exp[γS2
+]|Ψ0〉 , (63)

where S+ =
∑

p c
†
p+cp−. The parameter γ can be taken

from RPA (γ = β
2Ωα ) or determined variationally. It is

then seen explicitly that (63) has definite Sz-parity and
is not a SD, containing genuine fermionic correlations.
For vx > ε we may just replace |Ψ0〉 → |Ψ(θ)〉 and

S+ → S′
+ in (63), with |Ψ(θ〉) the MF state (36), leading

to a state |ΨRPA(θ)〉. Moreover, in this case we may also
consider Sz-parity restoration, which leads to a projected
RPA state

|Ψ±
RPA〉 ∝ |ΨRPA(θ)〉 ± |ΨRPA(−θ)〉 . (64)

Results obtained in this way are very accurate for all vx
and sizes, as verified in Fig. 6, but nevertheless approach
the values (62) for large Ω. And for χ = 1, Sz projection
should be instead implemented, which in this model will
directly lead to the exact GS’s |K〉.
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IV. CONCLUSIONS

We have analyzed the fermionic entanglement in the
exact GS of the Lipkin model and its relation with bipar-
tite entanglement. A global measure of fermionic entan-
glment such as the one body entropy, which measures the
minimum relative entropy to a fermionic Gaussian state
(thus vanishing iff the GS is a Slater Determinant) and
which can be accessed through one body measurements,
correlates essentially with the mean-field order parameter
associated with parity breaking, increasing monotonously
with the coupling strength and saturating for strong cou-
plings. It is also approximately proportional to the total
bipartite entanglement entropy between the upper and
lower modes, a quantity which has no physical analogue
in a pure spin realization of the model. Both entropies
scale with the size Ω of the system, are weakly dependent
on the anisotropy and can be correctly (and analytically)
described by an Sz-parity breaking mean-field approach
with basic symmetry restoration. This symmetry plays
an important role in the previous proportionality and en-
sures a fixed number parity in the entangled up or down
modes, enabling to consider the total up-down entangle-
ment as a standard quantum resource.
We have also analyzed the fermionic entanglement of

the reduced state ρpq of two up-down pairs (first non-
trivial case) through the fermionic concurrence. As op-
posed to previous global measures, this concurrence,
which measures the deviation of ρpq from a convex mix-
ture of Gaussian states (i.e., from a statistical mixture
of Slater Determinants) presents a dominant peak at the
phase transition, whose sharpness increases for χ → 1
(where the maximum corresponds to the narrow inter-
val where the |K = 1〉 eigenstate is the GS). While this
concurrence can be directly associated with a bipartite
mode entanglement (i.e. to an effective p − q spin 1/2
pair), it differs from the up-down mode entanglement of
ρpq, which can be measured through the pertinent nega-
tivity and behaves similarly to previous global measures.
The mean-field approach can correctly predict this nega-
tivity through basic symmetry restoration, but it cannot
yield a non-vanishing concurrence for strong couplings
even after full Sz-parity projection. Only by considering
RPA (collective-boson type) correlations on top of the
mean-field it is possible to capture its proper behavior.
The present study then provides a detailed analysis of the
fermionic entanglement in a strongly interacting system
and its potential for quantum information through its
relation with relevant bipartite entanglement measures.
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Appendix A: Fermionic separability

The exact definite Sz-parity GS (15) of the Lipkin
model is entangled, i.e. it is not a SD, if |Sz| < Ω/2.
However, at the parity transitions arising for increasing
vx/ε at fixed χ ∈ (0, 1), the GS becomes two-fold degen-
erate and exact GS’s with no definite Pz become feasible
[66]. In particular, at the first transition (Eq. (33)) an
Sz-parity breaking SD of the form (36) (the MF GS) be-
comes an exact GS for any Ω (fermionic separability).
This result can be easily seen by writing the Hamilto-

nian of Eq. (13) in terms of the rotated quasispin oper-

ators S′
± =

∑

p c
′†
p±c

′
p∓, S

′
z = 1

2

∑

p(c
′†
p+c

′
p+ − c′

†
p−c

′
p−),

determined by the primed fermion operators (38). We
obtain, dropping the constant term Vx(1 + χ)N/4,

H = ε cos θS′
z − Vx(S

′
x
2
cos2 θ + S′

z
2
sin2 θ + χS′

y
2
)

+ sin θ[εS′
x + Vx cos θ(S

′
xS

′
z + S′

zS
′
x)] .

(A1)
The MF stationary condition (39) cancels the single
fermion excitation terms ∝ S′

+, present in the second
line of (A1), when applied to the MF state (36) (for

n·S = Sy). And the two-fermion excitation terms ∝ S′
+
2

in the first line of (A1) also vanish iff the condition

cos θ =
√
χ (A2)

is satisfied, in which case the MF state (36)–(38) becomes
an exact eigenstate, obviously for both signs of θ. Since
for θ > 0 its coefficients CK(θ), Eq. (43), are all positive,
such state cannot be orthogonal to the GS (15) (where
CK ≥ 0 ∀ k) and must then be a GS. Eq. (A2) then
leads, together with (39), to the factorizing point (33).
This separability is equivalent to that occurring in the
spin representation [65, 66, 69, 70], where it corresponds
to a factorized (i.e., product) GS.
The side limits of the exact GS at this transition

do have, however, a definite parity and are then given
by the Sz-parity projected MF states (48) [66], with θ
determined by (A2). These states are both entangled
for θ ∈ (0, π), i.e., χ < 1 (for χ → 1, θ → 0 and
|Ψ+〉 → |Ψ0〉 = |K = 0〉, whereas |Ψ−〉 → |K = 1〉).
Therefore, at the side-limits of the separability point, the
exact one body entropy approaches the values given by
Eq. (51), i.e., essentially the diagonal MF result (42) for
not too small θ and Ω, which are non-zero and the same
for both parities (the same occurs with the side-limits
of E+− and N+−, Eqs. (53) and (56)). In contrast, the
exact side-limits (55) of the four-level fermionic concur-
rence become very small for not too small θ and Ω, as ρpq
is essentially a convex mixture of Gaussian states. Con-
sequently, the existence of separability at an Sz-parity
transition is clearly reflected in the vanishing value of
the fermionic concurrence, but not in the behavior of E
(nor E+− or N+−), as seen in Fig. 1.
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