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1 | INTRODUCTION

In 1933, McVittie [1933) discovered an exact solu-

tion of Einstein’s field equations that describes an inho-
mogeneity embedded in a Friedmann-Lemaftre-Robertson-
Walker (FLRW) cosmological background. The line element
takes the form:

2
ds®> = —f(t, Rydr* — _2HOR iR + 4R
\/1-2my/R 1—2my/R
+ R*(d6” +sin* 0d¢?*) , (D
where
f(t, R =1-2my/R— H(t)*R>. )

Here, H(t) = a(t)/a(t) is the Hubble factor corresponding to
the background cosmological model, and m, is a non-negative
constant. The coordinate R denotes the aereal radius coordi-
nateEl Setting a(r) = 1, Eq. (1) reduces to the Schwarzschild
line element, and in the limit m; — 0 the FLRW metric is
recovered.

The McVittie solution is based on two hypotheses:

I'The areal radius coordinate R is defined by R := y/.A/4x, where A is the
area of the 2-sphere of symmetry, and where

d’Q,) 1= do? +sin9°d¢?, 3)

is the line element on the unit 2-sphere|[Faraoni] R0T5).

We determine the causal structure of the McVittie spacetime for a cosmological
model with an asymmetric bounce. The analysis includes the computation of trap-
ping horizons, regular, trapped, and anti-trapped regions, and the integration of the
trajectories of radial null geodesics before, during, and after the bounce. We find a
trapped region since the beginning of the contracting phase up to shortly before the
bounce, thus showing the existence of a black hole. When the universe reaches a cer-
tain minimum scale in the contracting phase, the trapping horizons disappear and the
central singularity becomes naked. These results suggest that neither a contracting

nor an expanding universe can accommodate a black hole at all times.

Black holes, General Relativity, Cosmology

e The matter is a perfect fluid with density p and isotropic
pressure p. The energy-momentum tensor is given by

[Carrera & Giulini] @010):
T=puQ@u+pa@u-g), (€]

where @ := g(u,.) is the 1-form metric dual to the vector
u that represents the four-velocity of the fluid.

e The four-velocity of the fluid is
u = e, )]

that is, the fluid has zero velocity with respect to the cho-
sen reference frame. Here, e is the 0-component of the
orthormal tetrad {e,},c(. 3 of the metric defined by
e, :=[10/0x"["'a/0x".

We stress that no equation of state is assumed.

After a long debate in the literature about the physical inter-
pretation of the McVittie spacetime, it has been established
that the McVittie metric represents a dynamical black hole
embedded in a cosmological background (see for instance the
series of works by [Kaloper, Kleban, & Martin] 2010); [Cake &]
[Abdelqader] 20TT): [Nolan] (T998} [T999a} [T999B)). The details
of the solution and its possible analytical extension depend of
the behaviour of H(¢) for t - oo (Cake & Abdelgader] R0TT).
The solution displays a curvature singularity at R = 2m,, for
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finite values of 7, as evidenced by the Ricci scalar, given by: factor is given by
_ 2 6H 1 —_ 3(l—w ﬁ
R=12H>+ — 6) at) = [_3p( 4w) +a >f(t)] ’ -
Y
1/2

The singularity is spacelike and, as shown by [Nolan] (T9995), r\? (1-—w)\> (F+0*)

Y fo = [1+(5) + (3 | - ®
gravitationally weak (Tipled [T977). o 4 a,’

The McVittie solution has been investigated, so far, for a
standard prescription of the scale factor of the universe. In
this work we extend the research to models that allow for an
asymmetric bounce. We discuss whether the solution includes
a black hole before the bounce and what happens with the hori-
zons along the cosmological history of a bouncing universe.
The results we have found, along with those presented by Pérez
et al. (Pérez, Perez Bergliaffa, & Romero} P020)), will help to
obtain a better understanding of both the McVittie solution and
the fate of a dynamical black hole through a cosmic bounce.

The article is organized as follows: in Section[2]we introduce
the scalar factor of the asymmetric bouncing cosmological
model. In the next section, we compute the trapping horizons
and integrate the trajectories of null radial geodesics of the
metric; we also provide several plots showing the results. In
Subsection 3.2} we analyze the causal structure of the McVit-
tie solution before the bounce, and determine whether a black
hole is present. In the last section, we discuss the implications
of the results here obtained, and the open issues that deserve
to be explore in future works.

2 | SCALAR FACTOR FOR AN
ASYMMETRIC BOUNCING
COSMOLOGICAL MODEL

Cosmological models that display a bounce solve by construc-
tion the initial singularity problem, as well as the horizon
and flatness problems of the standard cosmological model EI
Models with a bounce join a contracting phase, in which the
universe was very large and almost flat initially, to a subse-
quent expanding phase. The bounce can be either generated
classically (see e.g. |Galkina, Fabris, Falciano, & Pinto-Neto|
(20T19); [lGjas & Steinhard{ Z016); [Wands| (Z009)), or by quan-
tum effects (see e.g.[Almeida, Bergeron, Gazeau, & Scardual
(20T18); [Bacalhau, Pinto-Neto, & Dias Pinto Vitenti] (2013));
[Frion & Almeidal (2019)); [Peter & Pinto-Neto] (2008)). In this
work, we explore the effects of an asymmetric bounce on the
McVittie solution. The expression for the corresponding scale

where w is the equation of state parameter of the cosmological
fluid, o is the standard deviation of the initial wave function,
p is a parameter directly related to the intensity of the asym-
metry, and a, is a normalization constant. The expression for
the scale factor was obtained by [Delgado & Pinto-Neto] Z020)
considering quantum corrections to the classical evolution of
the scale factor. The corrections were obtained by solving
the Wheeler-deWitt equation in the presence of a single per-

fect fluid, in the framework of the de Broglie-Bohm quantum
theory (Pinto-Neto & Fabris] P013). Asymmetric bouncing
models were derived by considering initial wave functions with
non null phase velocity.

In what follows, we analyze the causal structure of the
McVittie spacetime for two different values of the parame-

ter p. In all the calculations, we assume that the background
cosmological fluid is radiation dominated, i.e., w = 1/3.

3 | MCVITTIE IN ASYMMETRIC
BOUNCING COSMOLOGY

3.1 | Trapping horizons and null geodesics

Trapping horizons are defined as the surfaces where null
geodesics change their focusing properties [1994).
Mathematically, this kind of horizon is determined by the
condition
0,00 =0, C))

where 6;, stands for the expansion of ingoing radial null
geodesics while 6, denotes the expansion of outgoing radial
null geodesics, respectively. Regions where 6,,6,,, < 0 are
called regular. In the opposite case, 6,,0,,, > 0, the region is
called anti-trapped if 6,, > 0 and 6., > 0, and trapped if
0, <0Oand @, <O.

We compute the trapping horizons for the line element (),
and Hubble factor given byf}

out

out

3/2

6 a,>* p (=1 +w) (F+0*)+24a," 1 q(0)
H(t)=— >
3 (=1+w) (2 + %) (3 Q" pr(-1+w)+ ab3/2q(t)>
(10)
where,

q(t) = \/<9ab_3+'”172 (=1 +w)* + (17—?) (2+0%) (D)

2See[Novello & Bergliaffal (2008) for a review.

3We shall use geometrized units G = ¢ = 1.
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in the time interval —oco < ¢ < +o0. The condition @) is
equivalent to:

&, R) = H{t)’R* — R+ 2m; = 0. (12)

The properties of the trapping horizons depend on the values
of the parameters my, p, a,, w and ¢. Since we attempt to asses
the effects of the asymmetric bounce on the McVittie solution,
we assume for the sake of simplicity, my = a, = 6 = 1 and
consider separately the cases p = 1 and p = 3.

311 | Casep=1

We show in Figure[I_]the plot of the scale factor given by (7))
for p = 1. We clearly see that the bounce is asymmetric. The
slope in the contracting phase is larger than the slope in the
expanding phase. The bounce occurs for the ¢, = 0.5.

In Figure 2] we show the trapping horizons and the reg-
ular, trapped, and anti-trapped regions of the spacetime. The
black lines indicate the location of the trapping horizons. Very
close to t,, just before and after the bounce, there is a trap-
ping horizon. There are two additional trapping horizons in the
contracting and expanding phase, respectively. In the expand-
ing phase, there is a moment in time 7,; = 4.82 when a single
trapping horizon at R,; = 3m, begins to exist and immedi-
ately after an inner R_ and outer R trapping horizons emerge.
In the contracting region there are also an inner R_ and outer
R, horizons for large negative values. As time increases, R_
becomes larger and R, becomes smaller up to #,; = —5.06
when they fuse into one at Ry = 3m, . In the limit  — oo,
R_ — 2m,. The dot-dashed curve marks the location of the
singularity R = 2my, for ¢ finite.

15¢

FIGURE 1 Plot of the scale factor as a function of time for
p=1Here,my=a,=0=1andw =1/3.

The second root of Eq. (I2), namely R,, is given by

(Faraon} pOT3)
1

——cosy(t) —

R =5 (13)

_r sin y (1)
V3H() ’

where sin 3y (t) = 3\/§m0H (t). For the Hubble factor given
by Eq. (I0), R, — oo whent - o0, and thus R, becomes a

FLRW null infinity (Kaloper et all} Z0T0).

Figure[2]can be divided in three different regions:

e Regular regions (6,,0,,, < 0), painted in white.

e Trapped region (6,0
painted in light red.

> 0, being 6;, < 0 and 6,,, < 0),

out out

o Anti-trapped region (6;,6,,, > 0, being 6, > Oand 6, >
0), painted in light blue.

100"
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FIGURE 2 The black lines denotes the trapping horizons.
The dot-dashed curve corresponds to the singularity. The
white, red light and blue light zones indicate the regular,
trapped, and anti-trapped regions of the spacetime, respec-
tively. Here p=1,my=a, =0 =1and w = 1/3.

We also compute the trajectories of ingoing and outgoing
radial null geodesics by integrating the equation:

‘2_1: = \/1—2m0/R<HRi \/1—2m0/R>,

9

(14)

where the (“4”) corresponds to the ingoing (outgoing)
case. The results, shown in Figures B_]and ] are described
briefly below:
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e Ingoing geodesics expand to the past of the bounce . After
the bounce (¢ > 0), they expand in the anti-trapped region
until they cross the trapping horizon; once in the regular
region of the spacetime (d R/dt);, < 0, they all seem to
tend asymptotically to the surface R_ = 2my, t = o0, as
shown in Figure[3']

e Outgoing geodesics converge in the trapped region. After
the bounce, outgoing null geodesics are always expanding
((dR/d1),, > 0) as depicted in Figure [ ]

out
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FIGURE 3 Radial ingoing null geodesics for McVittie met-
ric in a bouncing cosmological model. The black lines denotes
the trapping horizons and the dot-dashed line indicates the
singularity. Here p=1,my =a, =6 =1 and w = 1/3.

312 | Casep=3

We now analyze the causal structure of the McVittie space-
time for p = 3. As can be seen in Figure[5 ] the slope of the
scale factor after the bounce is much lower than for p = 1
(see Fig.[I)). The bounce occurs at larger positive values, more
specifically at 7, = 1.5.

Inspection of Figure[6 |reveals that the effects of the asym-
metry are more pronounce in the shape of the trapping horizons
in the expanding phase. The most remarkable feature is that
for t+ > 1, the singularity is always cover by the inner trap-
ping horizon. This is not the case for p = 1 as shown in Figure
[27] We also note that in the contracting epoch the shape of the
trapping horizons is almost identical for p = 1 and p = 3. A
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FIGURE 4 Radial outgoing null geodesics for McVittie met-
ric in a bouncing cosmological model. The black lines denotes
the trapping horizons and the dot-dashed line indicates the
singularity. Here p =1, my = a, =0 =1l and w = 1/3.

trapped region is present in the contracting phase, two sepa-
rated anti-trapped regions occur in the expanding phase, and
regular regions cover most of the spacetime for both large
positive and negative values of the time coordinate.

The results of the integration of Equation (T4) for ingoing
and outgoing radial null geodesics are depicted in Figures[7 ]
and[8] respectively.

Ingoing geodesics have smaller and smaller radial coordi-
nate as the bounce is approached. Some of these geodesics end
up in the singularity while some others go through the bounce
and enter in the expanding phase. We can see in Figure[7 |that
all the ingoing geodesics in the regular region (white zone)
seem to tend to the surface R = 2m as t — oo.

Before the bounce, outgoing geodesics are expanding in the
regular region. When they cross the trapping horizon (given by
the condition 6, = 0), they all converge in the trapped zone.
While some geodesics have in their local future the singularity,
some others are able to cross the bounce and expand either in
the regular or in the anti-trapped region of the spacetime for
t>0.

3.2 | Trapping region before the bounce

We have shown that for both p = 1 and p = 3, there exists a
trapped region before the bounce that is bounded from below
by inner (R_) and outer (R,) trapping horizons for which
0.« = 0. As the bounce is approached, both horizons get closer
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FIGURE 5 Plot of the scale factor as a function of time for
p=3.Here,my=a,=0c=1and w=1/3.
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FIGURE 6 The black lines denotes the trapping horizons.
The dot-dashed curve corresponds to the singularity. The
white, red light and blue light zones indicate the regular,
trapped, and anti-trapped regions of the spacetime, respec-
tively. Here p =3, my =a, =0 =1land w = 1/3.

and att = t,; = =5.06 for p = 1 and t,; = —5.09 for p = 3,
they merge: only a trapping horizon exist for R_ = R, = 3m,,.
For t > 1, the singularity becomes naked.

The existence of a trapped region indicates that both ingoing
and outgoing null geodesics are converging in that zone. Null
rays that cross R_ entering the trapping region are unable to
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FIGURE 7 Radial ingoing null geodesics for McVittie metric
in asymmetric bouncing cosmological model. The black lines
denotes the trapping horizons and the dot-dashed line indicates
the singularity. Here p =3, my =a, =0 =1l and w = 1/3.

turn around and escape This horizon, thus, acts as a one way
membrane, hiding the singularity at R = 2m,. This analysis
leads us to conclude that in the time interval —co < 7 < #,; the
solution contains a black hole.

4 | DISCUSSION AND CONCLUSIONS

In this work we analyze the causal structure of McVittie space-
time for an asymmetric bouncing cosmological background.
‘We compute the location of the trapping horizons, and the tra-
jectories of null radial ingoing and outgoing null geodesics
through cosmic time for p = 1 and p = 3. We find that a black
hole is present since the beginning of the contracting phase in
both cases. The inner trapping horizon (R_) increases its radius
as the contraction gathers pace. The range of values for the
radial coordinate of the inner horizon R_ is 2m, < R_ < 3my,.
Ingoing and outgoing null geodesics that cross the surface R_,
enter the trapped zone of the spacetime. Close to the bounce,
att = t,;, inner and outer trapping horizons merge, the black
hole ceases to exist, and the solution exhibits a naked space-
like singularity. Trapping horizons appear again right before
the bounce, and vanish right after it if p = 1. Once the universe
begins to expand inner (R_) and outer (R, ) trapping horizons
again appear. This is not the case when the asymmetry in the
scale factor is stronger, as for p = 3. Right before the bounce,
trapping horizons appear again and persist forever on.
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FIGURE 8 Radial outgoing null geodesics for McVittie met-
ric in a bouncing cosmological model. The black lines denotes
the trapping horizons and the dot-dashed line indicates the
singularity. Here p =3, my =a, =0 =1l and w = 1/3.

It remains to establish whether a black hole is present in
the expanding phase. As previously mentioned, all ingoing
geodesics in the regular region of the spacetime seem to tend
to the surface R_ = 2my,, t = oo. Thus, if we are able to prove
that i) null ingoing geodesics in the regular region cross the sur-
face R_ = 2m,,t — oo at a finite value of the affine parameter,
ii) such surface is regular, i.e. all the squared curvature invari-
ants constructed with the Riemann tensor and its contractions
are finite on it, and iii) once the geodesics transverse the sur-
face R_ = 2my, t = t, they are in a trapped region, then the
surface R_ = 2my, t = oo behaves as an event horizon and
there is also a black hole in the expanding phaseEl

We point out that unlike all other McVittie models analyzed
in the literature, there is no cosmological big singularity in the
metric investigated in this work. In fact, the solution admits
trajectories that never encounter a singularity, that is, they are
geodesically complete. This peculiar feature of the model is
related to the occurrence of the bounce.

The current solution can be improved by taking into account
accretion of cosmological fluid by the central source. A pos-
sible approach to model such problem is considering the Gen-

eralized McVittie metric [20T3). The corresponding

energy-momentum is that of an imperfect fluid that naturally

4Kaloper and collaborators (Kaloper et al. were the first to show that
the analysis of the behavior of ingoing null geodesics in the limit # — oo reveals the
presence of an event horizon in the McVittie spacetime.

incorporates accretion. This is an issue that we shall explore in
a future work.
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