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21 Abstract
22 Species Distribution Modelling (SDM) determines habitat suitability of a species across geographic 

23 areas using macro-climatic variables; however, micro-habitats can buffer or exacerbate the influence of 

24 macro-climatic variables, requiring links between physiology and species persistence. Experimental 

25 approaches linking species physiology to micro-climate are complex, time consuming and expensive. 

26 E.g., what combination of exposure time and temperature is important for a species thermal tolerance 

27 is difficult to judge a priori. We tackled this problem using an active learning approach that utilized 

28 machine learning methods to guide thermal tolerance experimental design for three kissing-bug 

29 species (Hemiptera: Reduviidae: Triatominae), vectors of the parasite causing Chagas disease. As with 

30 other pathogen vectors, triatomines are well known to utilize micro-habitats and the associated shift in 

31 microclimate to enhance survival. Using a limited literature-collected dataset, our approach showed 

32 that temperature followed by exposure time were the strongest predictors of mortality; species played 

33 a minor role, and life stage was the least important. Further, we identified complex but biologically 

34 plausible nonlinear interactions between temperature and exposure time in shaping mortality, 

35 together setting the potential thermal limits of triatomines. The results from this data led to the design 

36 of new experiments with laboratory results that produced novel insights of the effects of temperature 

37 and exposure for the triatomines. These results, in turn, can be used to better model micro-climatic 

38 envelope for the species. Here we demonstrate the power of an active learning approach to explore 

39 experimental space to design laboratory studies testing species thermal limits. Our analytical pipeline 

40 can be easily adapted to other systems and we provide code to allow practitioners to perform similar 

41 analyses. Not only does our approach have the potential to save time and money: it can also increase 
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42 our understanding of the links between species physiology and climate, a topic of increasing ecological 

43 importance.

44 Author summary
45 Species Distribution Modelling determines habitat suitability of a species across geographic areas using 

46 macro-climatic variables; however, micro-habitats can buffer or exacerbate the influence of macro-

47 climatic variables, requiring links between physiology and species persistence. We tackled the problem 

48 of the combination of exposure time and temperature (a combination difficult to judge a priori) in 

49 determining species thermal tolerance, using an active learning approach that utilized machine 

50 learning methods to guide thermal tolerance experimental design for three kissing-bug species, vectors 

51 of the parasite causing Chagas disease. These bugs are found in micro-habitats with associated shifts in 

52 microclimate to enhance survival. Using a limited literature-collected dataset, we showed that 

53 temperature followed by exposure time were the strongest predictors of mortality, that species played 

54 a minor role, that life stage was the least important, and a complex nonlinear interaction between 

55 temperature and exposure time in shaping mortality of kissing bugs. These results led to the design of 

56 new laboratory experiments to assess the effects of temperature and exposure for the triatomines. 

57 These results can be used to better model micro-climatic envelope for species. Our active learning 

58 approach to explore experimental space to design laboratory studies can also be applied to other 

59 environmental conditions or species. 

60

61 Introduction
62 The main environmental requirements for any organism to be in thermodynamic equilibrium over a 

63 reasonable length of time in order to survive are well known for more than a half century [1]. Of these, 
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64 radiation absorbed, wind speed, and air temperature are physiological requirements for a certain body 

65 temperature or temperature range, and are referred to as the ‘climate space’, and constitute the 

66 conditions which animals must fulfil in order to survive [2]. Much effort has gone into applying Species 

67 Distribution Modelling (SDM) to model climate space across different geographic areas to determine 

68 habitat suitability, including species that are disease vectors [3-9]. In general, the SDM methodology 

69 utilizes macro-climatic variables to predict the distribution of a species; however, for many disease 

70 vector species natural and human-made micro-habitats can buffer or exacerbate the influence of the 

71 macro-climatic variables [10,11]. While these models increasingly harness high resolution climatic data 

72 down to ~1km2 (e.g., WorldClim 2 [12]), the links between physiology, disease transmission and vector 

73 survival to micro-climate are opaque. Consequently, the use of these climatic variables leads to some 

74 caveats on the reliability of the suitability estimates produced by the SDM. However, accurately 

75 quantifying micro-climatic relationships and tolerances pose significant problems for most disease 

76 vector species.

77 Mathematical models have helped predict operative temperatures but also show how evaporative 

78 cooling and metabolic heating might cause the body temperature of an organism to deviate from the 

79 operative temperature [13]. However, despite mathematical models have provided important insights 

80 into what factors influence operative temperatures, they are impractical for mapping thermal 

81 environments at a sufficient resolution to understand selective pressures on behavior and physiology 

82 [14,15]. This is because to compute operative temperatures from a mathematical model many 

83 variables must be known (solar radiation, ground reflectivity, air temperature, ground temperature, 

84 and wind speed), which represents an overwhelming task for a large number of locations as needed for 

85 fine-scale mapping [15]. Operative temperatures have been computed for a limited number of 
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86 microclimates, such as full sun and full shade, and for a few animal species [16-18], but a general 

87 methodology is still needed. 

88 Because of their use of a variety of micro-habitats, the trouble of using macroclimatic variables to 

89 predict vector species distributions is particularly serious [19]. This is true for the kissing bugs 

90 (Hemiptera: Reduviidae: Triatominae), a group of species vectors of Trypanosoma cruzi, the parasite 

91 causing Chagas disease in Latin America. This disease is endemic in 21 countries, and it is estimated 

92 that affects between 6 and 8 million individuals (with 25 million people at risk of infection), resulting in 

93 approximately 12,000 deaths per year [20,21]. The triatomines are a subfamily that comprise around 

94 150 species grouped in 18 genera and six tribes [22]. A commonly observed behavior of most of these 

95 species is to enter domestic and peri-domestic structures (“intrusion”), with some of them trying to 

96 colonize the human habitat (“domiciliation”), making the sylvatic species a possible source of infection 

97 by T. cruzi [23]. Due to their generally nocturnal habits and hidden refuges, they are not only 

98 inconspicuous and hard to collect in the field, but also endure extreme values of macro-climatic 

99 variables that would not allow them to survive without the use of micro-habitats [24].

100 For triatomines, as with other disease vector species, there is very limited information available to 

101 adequately link insect physiology to micro-climatic variables. Much more experimental work is 

102 necessary, but those experiments are laborious, costly, and demanding a large number of insects. 

103 Additionally, the experimental design is a complex one for, in general, the micro-climatic variables 

104 (e.g., temperature) need to be included with at least two factors: the value of the micro-climatic 

105 variable itself, and the exposure time (or duration) to each value of the micro-climatic variable. It is 

106 difficult to guess beforehand the limits and number of those two factors, or the impact of each of them 

107 (and their combination) on the demographic parameters, in order to design a laboratory experiment. 
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108 To facilitate the design of such kind of experiments (which, in theory, could involve hundreds or 

109 thousands of combinations) we propose a methodology based upon a machine learning pipeline 

110 approach [25] in order to predict the survival of triatomines by different combinations of micro-

111 climatic temperature values and exposure times. This approach leverages recent advance in machine 

112 learning to construct powerful but interpretable predictive models that can guide what combinations 

113 of variables could be important in shaping a species thermal limit and thus can configure feasible 

114 experimental designs. Importantly these models can quantify complex non-linear interactions between 

115 variables that can be difficult to include a priori in a model. 

116 Finding computational solutions to guide experimental design or ‘active learning’ is not a new idea and 

117 has been used to guide experiments to better understand complex gene regulatory networks [26]. 

118 Active learning is an iterative process in that a model is formed from preliminary data that guides new 

119 experiments that in turn generates novel data that is used to update the original model (Fig 1). For 

120 example, machine learning approaches have been successfully used to guide gene knock-out 

121 experiments where the number of experiments is quadratic to the number of genes (see [26] for a 

122 review on the topic). However, active learning approaches are rarely applied to explore species 

123 thermal limits. We show the utility of the approach to better understand the thermal ecology of an 

124 important group of disease vector species that could easily be adapted to guide ecological experiments 

125 more broadly. 

126

127 Fig 1. Schematic description of the active learning approach used in this study. We have highlighted 

128 the context and purpose of the work, the approach and methods, and an outline of the application of 
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129 the main results. GBM: Gradient boost model, SVM: Support vector machine, RF: Random forests, 

130 BGLM: Bayesian general linear model. *Best model: model with the highest root mean square error 

131 (RMSE).

132

133 Materials and methods
134

135 Available laboratory information for triatomines

136 Data source. The only previous data available were the results from thermal shock experiments 

137 (usually at 40 °C) applied on different stages and adults of several triatomine species, exposed for 1 

138 and 12 hours. In total we were able to find seven bibliographic sources with adequate data for three 

139 species of triatomines (Triatoma infestans, Rhodnius prolixus, and Panstrongyus megistus). See Data 

140 Cases below. 

141 Data preparation. As in most of the cases results were presented as survival values (lx, with values 

142 from 1 to ≥0, which express the proportion of the initial number of individuals alive at day x, and where 

143 1 ≤ x ≤  30, 30 being the number of days of the control period of all experimental insects), we 

144 converted these survival values to mortality (dx, or number of individuals dying in day x, where again x 

145 is from day 1 to day 30 of the control period; we expressed the result of this conversion as dx= (lx - lx-1). 

146 The mortality values were inserted into a file with a database structure, and were considered as the 

147 end points (as percentages), for each combination of temperature, exposure time, and stage (and sex 

148 in the case of adults) predictor variables (hereafter ‘features’ in line with computer science 
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149 terminology), making a total of 228 combinations (Supplementary Material 2). Table 1 represents a 

150 summary of the different cases analyzed. 

151

152 Table 1. Source and characteristics of the original information. 

Species Temperature Exposure Stage N Period Source

Panstrongylus megistus (D) 28, 40 1, 12 3,4,5,Ad 100 30 [27]

Panstrongylus megistus (D) 5, 28 1, 12 5 53, 100 30 [28]

Panstrongylus megistus (D) 35, 40 1, 12 5 53, 100 30 [28]

Panstrongylus megistus (S) 28, 40 1, 12 3,4,5,Ad 100 30 [27]

Rhodnius prolixus 35-44 1, 24 1 10 1 [29]

Triatoma infestans 30, 40 1, 12 3,4,5,Ad 50 30 [30]

Triatoma infestans 35, 45, 50, 55 0.17 E,1,2,3,4,5,Ad 30 45 [31]

Triatoma infestans 30 1, 12 5 NA 30 [32]

153 Summary information of the cases with data available on the effect of various temperatures on the 

154 survival of triatomines obtained from the bibliography, and fed to the machine learning algorithm. For 

155 the species Panstrongylus megistus D and S represent domiciliary and sylvatic origin, respectively; 

156 Temperature is in °C; Exposure is measured in hours; Stage represents the triatomine developmental 

157 stage used in the experiments (E: eggs; 1-5: first to fifth nymphs; Ad: adults); N is the number of 

158 individual replicates per temperature and exposure combination; Period: period of observation (days) 

159 after experimental exposure to determine survival. The complete dataset can be found in the 

160 Supplementary Material 2.
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161 The machine learning pipeline approach

162 We adapted the framework from [25] using our collated feature set to predict percentage mortality as 

163 a regression problem. Initially we checked for correlations between features prior to running our 

164 machine learning pipeline. We compared support vector machine, gradient boosting model (GBM), 

165 Bayesian generalized linear models as well as linear models fitted with ordinary least squares. In each 

166 case we used 10-fold cross validation to compute model performance (root mean square error, RMSE) 

167 and to prevent overfitting the model. The model with the lowest RMSE and thus highest predictive 

168 performance was further interrogated.  We also compared predictive performance by calculating R2, in 

169 this case the correlation between the observed and predicted values [33].  To interpret how each 

170 feature was affecting model performance we computed ranked feature importance using model class 

171 reliance approach [34] and plotted individual responses using individual conditional expectation curves 

172 [35]. Interactions in the model were quantified by calculating Friedman’s H statistic [36] and visualized 

173 plotting multidimensional partial dependency plots. See [25] for more details and 

174 https://github.com/nfj1380/ThermalLimits_ActiveLearning for the code used.

175 Results
176 The machine learning pipeline results

177 The GBM model had the highest predictive power compared to the other algorithms we tested, with 

178 an R2 of 0.8 and RMSE of 18.2. In this model, temperature followed by the number of hours exposed 

179 were the strongest predictors of mortality based on the preliminary experimental results (Fig 2a). 

180 Species played a more minor role in our predictive models with life stage the least important of the 

181 variables included in the model (Fig 2a). When we further interrogated our model, we not only found 

182 some strong non-linear effects of each variable on mortality (Fig 2b-e) but some striking non-linear 
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183 interactions between variables (Fig 3). For example, triatomine mortality was generally stable up until 

184 the 39˚C mark when it rapidly increased before plateauing between 40-44˚C, and this response was an 

185 essential component of the experimental design for the combination of temperature and exposure 

186 time on insect´s survival (see below). However, mortality predictions for some individuals in the 

187 dataset were much lower than others which is evidence that interactions are important in this 

188 predictive model (indicated by the spread of the lines in Fig 1b, see [37]). The relationship between 

189 exposure and mortality was even more variable across individuals showing no clear trend (Fig 2c). 

190 Exposure time, however, had the strongest interactions with the other variables (Fig 3a), with the 

191 relationship between exposure time and temperature being of the strongest predictive importance. 

192 Low mortality was predicted with short exposure times (<7 hours to temperatures between 0-39˚C), 

193 yet any exposure to temperatures above 42-44 ˚C was associated with high mortality, although an 

194 exact threshold was not evident. Our model predicted that temperatures between 10-39˚C to be 

195 optimal for triatomine survival with no effect of exposure time on mortality. Our analysis also revealed 

196 that T. infestans experienced lower mortality overall (Fig 2c), and this may be linked to temperature as 

197 we found lower mortality of this species compared to the others at temperatures >39˚C.

198

199 Fig. 2. Results from the best performing machine learning model. Variable importance plot (a) 

200 and centered individual expectation plot (cICE) plots (b-e) from the best performing machine 

201 learning model (GBM). Y axes represent the marginalized effect of each variable on vector 

202 estimated mortality (%) whilst controlling for the effect. The red line represents the average 

203 effect of the variable of triatomine survival.

204
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205

206 Fig. 3. Interaction between variables as detected from the machine learning model. Plots 

207 showing the overall interactive strength of each variable (a), the top three interactions between 

208 variables based on Friedman’s H (b), followed by 2D partial dependencies of the most 

209 important interactions in our GBM model using Friedman’s H Index (c-d), where 𝑦 is the 

210 estimated mortality (%). Darker red in the heatmap (c) reflect higher predicted mortality. Fig 1 

211 of the Supplementary Material 1 shows the interaction between exposure time and species.

212

213 Machine learning led experimental design

214 The results of our machine learning model revealed that any exposure to temperatures above 42-44 ˚C 

215 was associated with high mortality. Subsequently, we exposed insects to one of three temperatures 

216 (40, 42 and 44 °C) for different exposure times (1, 2, 4, 8 and 12 hours). We used fifth-instar nymphs of 

217 T. infestans provided by the National Chagas Control Service (Córdoba, Argentina). Insects were fed on 

218 live chicken two weeks before experiments, and they were acclimated in the laboratory at 25 ± 0.5°C, 

219 and 12:12 light/dark photoperiod (light on 08:00 am) for one week, because thermotolerance showed 

220 a plastic response in this species [38]. 

221 The insects were placed in a chamber (PTC-1 Peltier Effect Cabinet; Sable Systems International (SSI), 

222 Las Vegas, NV, USA), connected to a temperature controller (Pelt-5 (SSI)) set at 40, 42 or 44°C for each 

223 of the exposure times. A group of insects handled in the same way as the experimental groups, but 

224 without being exposed to high temperature, and kept at 25°C, were used as the control group (C). After 

225 their exposure to the treatment the insects were maintained at the basic laboratory conditions 
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226 described above, for 70 days. Ten insects were used for each replicate; the 40°C treatment was 

227 replicated twice, while the 42 and 44°C treatments were replicated three times. A total of 480 insects 

228 were used. The number of dead and molted insects were recorded each day after the heat treatment. 

229 Molted insects were eliminated from the survival analysis. A survival percentage was calculated as the 

230 ratio of number of live insects over the total number of treated insects (i.e., the “initial” number) for 

231 each replicate and treatment. To determine the effects of heat for different temperatures and 

232 exposure periods on survival, a Cox analysis (using the package survival of the R language [39]) was 

233 performed for each experimental temperature, i.e., 40, 42 and 44 °C. Also, a GLM (Generalized Linear 

234 Model) analysis was carried out to determine the importance of the covariates (the treatment 

235 temperature and exposure times of the laboratory experiments), as well as their interactions, on 

236 mortality; the GLM enables the use of linear models in cases where the response variable has an error 

237 distribution that is non-normal. The GLM fit to the data was then used to predict the insects’ mortality 

238 for various combinations of temperatures and exposure times; those mortality predictions were 

239 converted into age specific survival values (lx) and then used to estimate the life expectancy (days) 

240 after the heat treatment (e0). All these calculations included the 95% confidence intervals and were 

241 carried out in R [40](R Core Team, 2020); see https://github.com/nfj1380/ThermalLimits_ActiveLearning for 

242 the code used.

243 The laboratory experiment results

244 At 40 °C survival did not differ significantly across exposure periods (Log-rank test, χ2 = 5.33, df = 5, p= 

245 0.377) (Table 2). However, survival differed significantly across exposure periods at the other two 

246 temperatures, i.e., 42 °C (Log-rank test, χ2 = 66.92, df = 5, p< 0.001), and 44 °C (Log-rank test, χ2 = 

247 138.25, df = 5, p< 0.001). At 42 °C, the exposure periods of 8 and 12 h showed a lower mean survival 
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248 time than the other exposure times (Table 2). At 44 °C, the mean survival time of 2 and 4 h treatments 

249 were lower than the control and 1 h treatment, and 8 and 12 h showed the lowest mean survival time 

250 from all treatments (Table 2).

251 Table 2. Laboratory experiment results of the effect of temperature on survival of 5th instar T. 

252 infestans. 

Exposure periods (h)

Temp. (°C) Control 1 2 4 8 12

40 64.1 ± 4.3a 67.0 ± nda 65.6 ± 3.6a 69.5 ± nda >70 a 64.7 ± 5.1a

42 65.9 ± 2.2a 64.6 ± 3.1a 54.6 ± 5.4a 63.8 ± 4.3a 37.5 ± 5.8b 20.83 ± 5.5b

44 68.8 ± 1.2a 22.2 ± 5.3a 21.97 ± 5.9b 13.9 ± 4.4b 1 ± 0c 1 ± 0c

253 Survival time (mean ± SE) in days of fifth nymphs of T. infestans under different exposure periods (h) 

254 and temperatures (Temp, °C). Different letters indicate significant differences between the exposure 

255 times of each temperature. nd: the parameter could not be estimated.

256

257 The fit of the mortality data using the survival function (with interaction) of the Cox analysis showed 

258 that both covariates (temperature and exposure times) were highly significant, as well as their 

259 interaction, in determining the mortality level (Concordance= 0.872 (se = 0.015 ), Likelihood ratio test= 

260 295.9  on 3 df,   p≤ 2e-16, Wald test = 276  on 3 df,   p≤ 2e-16, and Score (logrank) test = 447.6  on 3 df,   

261 p≤ 2e-16). Fig 4 shows the result of the survival curve estimation for only one temperature (44 °C) and 

262 three exposure times (2, 4, and 6 hours). The survival curves for all combinations of temperature and 

263 exposure times are given in Section 2 of the Electronic Supplementary Material 1. 
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264

265 Fig 4. Results of Cox analysis of laboratory experiments. The survival curves (lx) predicted by the Cox 

266 analysis for 44 °C temperature and three exposure times (2, 4, and 6 hours).

267 The GLM analysis confirmed this kind of results, except that it showed a much weaker effect of 

268 temperature (NS at the 5% level: p= 0.0552) and a highly significant effect of exposure time and the 

269 interaction of temperature with exposure time (p= 0.00408, and p= 0.00285, respectively); the multiple 

270 adjusted R2 was  0.822, with a p value of 4.274e-06. Fig 5 shows the proportion of insects alive after 70 

271 days of the heat treatment for various simulated combinations of temperatures and exposure times.

272

273 Fig. 5. Results of GLM analysis of laboratory experiments. Proportion of insects alive (lx) after 70 days 

274 of the heat treatment for various simulated combinations of temperatures and exposure times.

275 Another useful parameter to represent the effects of the heat treatments is the expectation of life (ex) 

276 after the day of treatment (x); this parameter is defined as the average number of days of life 

277 remaining to an individual alive at age or time x, and is calculated as 0.5 +
𝑙𝑥+1 +  𝑙𝑥+2 + … + 𝑙𝑤

𝑙𝑥
 , where lx 

278 is the probability of being alive at age or time x, and lw is the same where w refers to the time of death 

279 [41]. Fig 6 shows the number of days expected to be lived by an average insect after each heat 

280 treatment (e0). These e0 estimates were calculated from both the experimental data and the survival 

281 curves predicted by the Cox analysis. It is clearly seen that the variability of the insects’ mortality 

282 response becomes more variable as the temperature increases.

283
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284 Fig. 6. Comparison of observed and expected life expectancies. Life expectancy (e0, in days) after the 

285 day of the heat treatment from both the experimental data and the survival curves predicted by the 

286 Cox analysis. The dashed lines are the 95% confidence intervals. 

287 Discussion
288 We demonstrate the power of an active learning approach to explore experimental space to design 

289 studies that can provide greater understanding of species thermal limits. From a preliminary and very 

290 limited dataset, we were able to identify complex but biologically plausible nonlinear interactions 

291 between temperature and exposure times shaping mortality, and setting potential thermal limits of 

292 triatomine species for SDM (species distribution modelling). This led to successful new experiments 

293 that generated novel insights into this important vector group that can be utilized by species 

294 distribution models based upon micro-climatic information. This approach can not only guide 

295 experimental efforts for the specific study of disease vectors but can also be extended to reduce the 

296 experimental envelope in any systems with multiple interacting variables.

297 The harmful effect on insects´ survival of exposing them to extreme temperatures (close to the upper 

298 lethal temperature) for extended periods of time is not linear, and thus difficult to predict [42]. 

299 Without our active learning approach, researchers would have had to do a much larger number of 

300 experimental combinations to find these non-linear thresholds between exposure and temperature for 

301 each species; not only impractical but unaffordable. Our experimental temperatures of between 40-44 

302 °C and exposure times of 1 to 6 hours at high temperatures are found on T. infestans´ natural habitats 

303 during summer [24]; we extended the recorded exposure times to 8 and 12 hours to provide some 

304 margin for potential global climate change. Similar to [30], our results showed that survival of fifth 

305 nymph of T. infestans was not affected by any of the exposure times tested at 40 °C. However, it could 
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306 affect other physiological traits that were not measured like the germinal cells [43]. In addition, a 

307 survival reduction was observed after 8 or more hours of exposure at 42°C or 4 or more hours of 

308 exposure at 44°C. Similarly, in nymphs of the related species, Pastrongylus megystus, a brief exposure 

309 of 1 h to 40°C did not compromise its survival, but a long period of exposure, i.e., 12 h, showed an 

310 important drop on survival [27,28]. The combined effect of temperature and exposure time on survival 

311 is quite variable, possibly due to thermal tolerance differences across triatomine species, as shown by 

312 [44] for seven species of triatomines. Those species were chosen because of their epidemiological 

313 relevance, and it was observed that thermo-tolerance range increases with increasing latitude mainly 

314 due to better cold tolerances, and limiting their southern distribution [44]. 

315 A sub-lethal temperature acquires a considerable ecological relevance, when an extended time of 

316 exposures to such a temperature turns into lethal [42]. In our experiments this was the case for 42 and 

317 44 °C. These temperatures did not reduce insects´ survival when exposures times were small, e.g., 1 h, 

318 while longer exposure times, i.e., 2 or 8 h at 44 or 42°C respectively, highly decreases survival. There is 

319 little information about the effects of exposure times and temperatures in kissing bugs. There is one 

320 study where a brief exposure (0.17 h) at a high temperature (55 °C) produced 100 % mortality in 

321 nymphs and adults of T. infestans, while lower temperatures presented various effects: at 40 °C there 

322 was an increase of insect´s activity, while 50 °C produced severe damage, like knock-down, proboscis 

323 extension and leg paralysis [31]. Although the exposure times of our experiments were longer, we 

324 observed similar damage, especially knock-down, for almost all exposure times at 44°C, also in T. 

325 infestans (A.A.C. and I.M. personal observations). 

326 Lastly, our methodology opens up further opportunities to model population dynamics based upon the 

327 responses to micro-climatic environments (as [45] have done for in a tephritid fly Bactrocera dorsalis). 
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328 The effects of temperature and exposure on other demographic parameters like development time 

329 and fecundity in order to estimate the thermal effects on the population growth rate are reasonably 

330 understood. Under laboratory conditions [46] found in the triatomine Rhodnius prolixus that daily 

331 temperature fluctuations (DTF) did not affect development time and fertility. However, fecundity was 

332 lower in females reared at DTF than at constant temperature, and males had higher body mass 

333 reduction rate and lower survival in the DTF regime, suggesting higher costs associated to fluctuating 

334 thermal environments [46]. Also, the humidity factor has to be considered when performing SDM, 

335 which interacts with temperature (expressed as the vapor pressure saturation deficit [47]). Using an 

336 active learning approach could further help to understand this interaction and thus, the dryness 

337 dimension of the fundamental niche of small ectotherms such as insects, because of their high surface 

338 area-to-volume ratios, are usually at risk of dehydration in arid environments. Undoubtedly the lower 

339 thermal tolerance has also to be taken into account for a complete bioclimatic analysis of ectotherm 

340 population dynamics. The ultimate goal of all these physiological and SDM modelling efforts is to 

341 predict population density in different areas of the triatomine’s geographical range; population density 

342 of pathogens’ vectors is an important component of transmission risk, so this kind of micro-SDM 

343 modelling is of important epidemiological significance. We hope that our successful results will prompt 

344 experiments with other species in that direction. 

345 Incorporating computational advances and active learning into ecological experimental design decision 

346 making is rare, but this study provides a case study on how this approach can be used in the context of 

347 species thermal ecology. As the world climate shifts even more swiftly, being able to search rapidly 

348 through an experimental space to design better experiments to identify species tolerance thresholds is 

349 increasingly important. Moreover, as ecological systems are inherently complex and ecological 
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350 experiments often costly, an active learning approach has the potential to be of more general use in 

351 various ecological sub-disciplines.
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