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Molecular analyses  20 

Previous palaeogenomic and palaeoproteomic studies 21 

Over the past 25 years there have been a number of efforts to extract and amplify DNA from 22 

sloth fossils1-4, but most have been limited in scope. Results described in ref. 5 were the first to 23 

supply evidence of apparent conflicts between molecular and morphological assessments of 24 

folivoran relationships. This latter study was limited to mitochondrial DNA (12S and 25 

cytochrome b) and included only two other folivorans in addition to tree sloths. In all but one of 26 

their phylogenetic analyses, the tree sloths occupied mutually exclusive tree positions, with 27 

Bradypus variegatus grouping with the nothrotheriid Nothrotheriops shastensis while Choloepus 28 

didactylus grouped with the mylodontid Mylodon darwinii. The Bradypus-Nothrotheriops dyad 29 

was not completely unexpected, inasmuch as morphological evidence had at one time been 30 

interpreted to mean that that the three-toed sloth is specifically related to traditional 31 

Megatherioidea6,7. Rather, it is the pairing of the two-toed sloth with Mylodon that seems 32 

anomalous in this context: if Choloepus is a member of Megalonychidae, as has been frequently 33 

suggested7-9, and if the latter family is phylogenetically part of Megatherioidea, as is also 34 

generally maintained9-11, then both kinds of tree sloths should have clustered with 35 

Nothrotheriops in these early aDNA runs. 36 

Recently, the mylodontoid affinities of Choloepus have been strongly affirmed with molecular 37 

evidence12. In this study, which included mitochondrial and nuclear exon data for species of both 38 

kinds of tree sloths as well as one extinct species (Mylodon darwinii), the two-toed sloth was 39 

unambiguously placed as the latter’s sister taxon. Exon-based divergence estimates, 22 ± 4 Ma 40 

for Choloepus and 28 ± 4 for Bradypus13 are in general agreement with other evaluations (e.g., 41 
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ref. 14). However, because of limitations in taxon representation no direct test could be made of 42 

the supposed relationship between Bradypus and the megatherioid Nothrotheriops detected by 43 

ref. 5. 44 

Clearly, to establish the positions of the extant tree sloths more precisely, sequence information 45 

for the many unrepresented lineages of folivores will be required, especially for the pivotal 46 

family Megalonychidae. To date, no aDNA study has included Megalonyx or any of its allegedly 47 

close relatives in a simultaneous phylogenetic analysis, leaving open the possibility that 48 

Megalonychidae is, in fact, a paraphyletic assemblage which traditionally includes at least one 49 

definite mylodontoid, Choloepus. 50 

Only one published report15 presents protein sequence information on fossil and modern sloths 51 

within a systematic context. In that investigation, collagen sequence data was collected for four 52 

folivorans (extant Choloepus hoffmanni, Bradypus variegatus, and the extinct taxa Lestodon 53 

armatus and Megatherium americanum), with the armadillo Dasypus novemcinctus serving as 54 

outgroup. No fossil megalonychid was included. Although in the phylogenetic analyses bootstrap 55 

and posterior probability scores were high, results were markedly discordant with previous 56 

studies employing similar taxonomic sampling. In all trees, Choloepus and Bradypus were 57 

retrieved as sisters, joining the branch supporting the mylodontid Lestodon with high associated 58 

bootstrap values (92-99). This conflicts with the aDNA results previously mentioned as well as 59 

recent morphological studies8, 9, 16 in which the extant tree sloths do not associate together. The 60 

anomalous results reported by ref. 15 may be partly explained by small sample size and the 61 

limited scope of the proteomic data analysed (COL 1A2 sequences only). 62 

 63 
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Utilization of database searching vs. de novo sequencing 64 

We used PEAKS (v. 7.5) to compile sequences rather that exclusively rely on a MASCOT 65 

database search. PEAKS has the advantage of combining de novo sequencing with a database 66 

search17, 18. This allows for discovery of novel amino acid substitutions that may not occur in the 67 

collagen database. The most frequent substitution is serine/alanine (S/A)19, the only difference 68 

between these amino acids being the presence of an hydroxyl (OH) group in serine. Since 69 

sequences containing hydroxyproline-alanine or proline-serine will be identical in mass, what 70 

this means in practical terms is that PEAKS will not be able to distinguish them. Ancient 71 

proteins introduce additional analytical problems. For example, serine may lose the OH group 72 

due to protein degradation, in which case the resultant peptide sequence will register as alanine. 73 

In order to attempt to overcome such difficulties not only for S/A but for other novel 74 

substitutions as well as, we established several criteria: 75 

1. The number of product ion spectra. A minimum of 2 spectra had to be identified for either 76 

alanine or serine. 77 

2. The presence of b and y ions. If product ion spectra were found for both possible 78 

substitutions, a higher confidence was given to spectra that identified the selected amino acid 79 

using both b and y ions. 80 

3. The location of hydroxyproline. The locations of hydroxyproline are generally conserved in 81 

collagens, therefore if a HyP-A sequence was identified, the chance of this being genuine was 82 

checked against other collagen sequences. 83 

If the existence of a possible substitution was uncertain then it was called as missing sequence 84 

data (cf. “x” in Table S4). This reduced the level of total sequence variation, and therefore 85 
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possible phylogenetic resolution, but it increased confidence in our concatenated sequences. 86 

Currently, instrumental limits on proteomic retrieval mean that some portions of the collagen 87 

sequence are not well covered by spectra. Although we have tried to address this by the use of 88 

two different enzymes, it must be noted that some amino acid calls made on the basis of only 2 89 

product ion spectra may require modification as more sequence information becomes available 90 

for xenarthrans. 91 

  92 

Effect of database limitations on sequence concatenation 93 

Collagen sequence information has been reported15 for two extinct species, Megatherium 94 

americanum and Lestodon armatus. In that study, sequences were modelled using a database of 95 

mammalian collagen sequences that included only one xenarthran, Choloepus, and then only for 96 

COL 1A2. By contrast, in the present study COL 1A1 and COL 1A2 sequences were recovered 97 

from 13 extinct sloth taxa. These were concatenated using a multi-taxon collagen database20 that 98 

included Dasypus novemcinctus (nine-banded armadillo), Cyclopes didactylus (silky anteater), 99 

and Mylodon darwinii, as well as previously-published sequence information for Lestodon 100 

armatus15  101 

As noted in the main text, we sampled the same well-preserved megatheriid specimen 102 

(Megatherium americanum MAPBAR 3965) utilised by ref. 15, but we achieved a much greater 103 

level of coverage (81% vs. 57%). This difference can be attributed, at least in part, to an increase 104 

in the number of xenarthran sequences in collagen databases that can be used to call amino acids, 105 

as the following example shows. There are 9 amino acid differences between the Megatherium 106 

sequence developed for this study and the one previously reported15---a substantial number, in 107 
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view of the highly conserved nature of type 1 collagen21. These differences required further 108 

analysis because of their potential impact on phylogenetic reconstruction. Columns on the left 109 

side of Table S4 present amino acid calls for the 9 sites for which ref. 15 (denoted B) and this 110 

study (denoted TS) differ. It is noticeable that most of them concern sequence positions for 111 

which Megatherium B and Choloepus B were given the same amino acid call. As Choloepus was 112 

the only xenarthran in the database search made by ref. 15, its sequence unavoidably influenced 113 

the one derived for Megatherium B. 114 

Aligning Megatherium B sequence with the larger number of xenarthran sequences used in this 115 

study and testing the result in PAUP produced 30 MPTs (as opposed to 13 MPTs when 116 

Megatherium B sequence was not included). Inspection revealed that the increased number of 117 

MPTs was due to additional instances of Megatherium B grouping with mylodontoids rather than 118 

Megatherium TS. The fact that the sequences employed for the two-toed and three-toed sloths in 119 

ref. 15 were virtually the same introduced other problems in the analysis (e.g., failure to resolve 120 

Megalonyx and Bradypus). This highlights the importance of verified taxonomic representation 121 

in databases used to establish collagen sequences, especially in fossil material. 122 

 123 

Phylogenetic analyses 124 

Divergence time estimation 125 

Apart from the living tree sloths, the only molecular data currently available for divergence 126 

estimation within Folivora come from the same narrow set of taxa employed in aDNA studies5, 127 

12, 13, 22. Morphological phylogenetic treatments generally agree that stem folivorans 128 

differentiated from Vermilingua during the late Palaeogene11, 23. So do some molecular studies14, 129 
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24, although other investigations making different assumptions have claimed that the separation 130 

of the major pilosan taxa may have occurred shortly after the Cretaceous/Palaeogene transition25. 131 

In any case, fossil evidence for putative folivorans of Palaeogene age is very scanty and 132 

provisionally includes taxa that differ markedly from all later sloths, such as late Eocene/early 133 

Oligocene Pseudoglyptodon26, 27. The folivore record does not substantially improve until late in 134 

the early Miocene during the Santacrucian SALMA (South American Land Mammal Age), 18–135 

16 Ma11. Following a major decline thereafter, diversity increased in the late Miocene but was 136 

sharply truncated by a major drop at the end of the Huayquerian (late Miocene), as has recently 137 

been modelled10. 138 

 139 

Backbone constraint 140 

Following procedures outlined in ref. 14, we selected 34 fossil xenarthrans for which relatively 141 

well-constrained stratigraphic dates were available. Most of these can be phylogenetically 142 

constrained on the basis of formal phylogenetic analyses based on morphological data. For cases 143 

where precise dating was unavailable, we used the rank of the South American Land Mammal 144 

Age (SALMA) from which the taxon is known. Compared to the topological constraint used 145 

previously14, our backbone (Fig. S3) is less resolved because many of the clades recovered in our 146 

initial Parsimony and Bayesian topology searches for the present paper indicated a lack of 147 

support for the monophyly of traditionally recognized folivoran clades. Nonetheless, we opted to 148 

include all of the folivoran taxa previously included to maximize fossil sampling and improve 149 

estimation of the parameters of the fossilized birth-death process28-30. For this study we included 150 
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eight additional fossil taxa in order to improve divergence time estimates both within and outside 151 

of Folivora, as follows: 152 

 153 

Vermilingua: 154 

 Taxon: Protamandua rothi. Age: 17.5 - 11.608 Ma. Stratigraphic Context: Santa Cruz Fm, 155 

Patagonia. 156 

Taxon: Palaeomyrmidon incomptus Age: 6.8 - 3.0 Ma. Stratigraphic Context: Araucano Fm, 157 

Argentina 158 

Taxon: Neotamandua conspicua Age: 6.8 - 3.0 Ma. Stratigraphic Context: La Venta Fm, 159 

Colombia; Araucano Fm, Argentina 160 

Comment: See ref. 34 for further information. Because these taxa are constrained to form a 161 

monophyletic clade with our single sampled vermilinguan, Cyclopes, coarse stratigraphic ranges 162 

for these taxa were taken from The Paleobiology Database (https://paleobiodb.org/). 163 

 164 

Folivora: 165 

 Taxon: Paramylodon sp. Age: 4.7 - 3.6 Ma. Stratigraphic Context: Early Blancan NALMA of 166 

Guanajuato, Mexico. Comment: There is some confusion regarding early North American 167 

occurrences of Paramylodon due to uncertainties regarding the taxonomy of this genus and the 168 

South American taxon Glossotherium31. North American records of this mylodontid lineage are 169 

https://paleobiodb.org/
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first recorded in Guanajuato, Central Mexico by the early Blancan32-33, providing a minimum age 170 

for the genus. 171 

 172 

Cingulata 173 

Taxon: Propalaeohoplophorus australis. Age: 17.5 - 16.3 Ma. Stratigraphic Context: Santa 174 

Cruz Fm, Argentina. Comment: Propalaeohoplophorus is one of the oldest and best known 175 

glyptodonts35. Due to uncertainty regarding its relationship to Neogene taxa, however, we did not 176 

constrain it to fall outside of (Glyptodon + Doedicurus), our sampled glyptodonts, but rather 177 

placed the three taxa in an unresolved trichotomy. 178 

Taxon: Stegotherium tasselatum Age: 17.5 - 16.3 Ma. Stratigraphic Context: Santa Cruz Fm, 179 

Argentina. Comment: Stegotherium is robustly resolved as the sister taxon to extant Dasypus in 180 

ref. 35. 181 

Taxon: Kuntinaru boliviensis. Age: 30 - 23 Ma. Stratigraphic Context: Deseaden SALMA 182 

(late Oligocene) of Salla, Bolivia. Comment: Kuntinaru was recovered as a tolypeutine 183 

dasypodid in ref. 36. Its chronostratigraphic position thus provides a minimum age for the 184 

divergence of Dasyus and the two glyptodontines sampled for this study (see above). 185 

Taxon: Riostegotherium yanei. Age: 59.0 - 57.5 Ma. Stratigraphic Context: Itaboraian (late 186 

Paleocene) of Brazil. Comments: Riostegotherium yanei is claimed to be the earliest known 187 

cingulate37, 38, and we treat it as such here to calibrate the age of the crown xenarthran ancestor. 188 

  189 
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Figure S1: Strict consensus of 192 most parsimonious trees (Length = 214, CI = 0.706, RI = 

0.707). Values above nodes represent bootstrap support derived from 10,000 bootstrap 

replicates. 

Figure S2: 50% majority rule consensus tree from Bayesian analysis of collagen sequences plus 

published mitochondrial genomes. Values below nodes are posterior probabilities for the 

descendant clade. Note that Bradypus is rendered paraphyletic with respect to Megalonyx 

jeffersoni but this is likely due to a lack of overlapping data (Megalonyx is represented by 

proteomic data only, while all Bradypus species except B. variegatus are represented by genomic 

data only).  

Figure S3: Backbone topology constraints employed for BEAST analyses under the fossilized 

birth death process. Taxa in large font are those successfully sequenced for collagen; those in 

smaller font lack such data but are included to assist in divergence time estimation. Uncertainty 

regarding the higher-level relationships of Oligo-Miocene taxa that emerge from our topology 

analyses mean that few constraints can be used in comparison with earlier studies14. For further 

information, see SI, Backbone constraint). 
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Figure S4: Time scaled maximum clade credibility tree from BEAST analysis of collagen 

sequences of 16 extant and extinct folivorans plus four non-folivoran outgroups. As in Fig. 4 in 

the main text, branch lengths are the mean values from the retained posterior sample, while blue 

bars represent 95% highest posterior density intervals. Values at nodes are posterior 

probabilities. Vertical shaded bars correspond to South American land mammal ages (SALMAs), 

two of which are emphasized: Deseadan (**), 29–21 Ma, and Santacrucian (*), 17.5–16.3 Ma. 

Figure S5: Time scaled maximum clade credibility tree from BEAST analysis of 16 extant and 

extinct folivoran collagen sequences; non-folivoran xenarthran sequences used in Fig. S4 are 

excluded, and position of root determined by molecular clock. Other conventions as in Fig. S4. 

Figure S6: 50% majority rule consensus tree derived from Bayesian analysis of combined 

proteomic, genomic, and phenomic data. Taxa sampled for molecular data are in bold font. Node 

labels are posterior probabilities. Bradypus and Choloepus are recovered in positions similar to 

ones found in molecular-only analyses, with strong support. By contrast, Antillean sloths and 

Megalonyx, for which no genomic data are available, are recovered here as a monophyletic clade 

within Megatherioidea. 369 

370 

371 
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Table S1: Information on all samples investigated for this study. Blank entries under Age indicate 372 

no data. 373 

 374 

Table S2: Radiocarbon dates for specimens successfully screened for MS/MS (see Table S1)a,b. 375 

 376 

Table S3: Marginal Likelihoods estimated for three clock models for proteomic data alone and 377 

proteomic + genomic data using the path sampling algorithm in BEAST 2.5.1. Marginal 378 

likelihoods were estimated based on 8 steps of 1 million generations, the first 50% discarded as 379 

burn-in and an alpha of 0.3. Also given are pairwise model comparisons, where positive numbers 380 

should be read as support for the row model over the column model. UCLD: Uncorrelated 381 

Lognormal Distribution; RLC: Random Local Clock; Strict: Strict Clock. 382 

 383 

Table S4: Detected amino acid differences between Megatherium sequence reported in ref. 15 384 

(denoted by B) and the sequence concatenated in this study (TS). All South American sloth taxa 385 

analysed in the present study have been included for comparison, as has the data for Choloepus 386 

B from the same publication15. Taxa are color-coded: *Megatherioidea (orange); 387 

*Mylodontoidea (blue); Cingulata (green). Empty (x) cells indicate missing sequence 388 

information. Red letters represent amino acid (AA) matches among taxa for indicated positions. 389 

Absence of any matches between Megatherium B and Megatherium TS is probably due to low 390 

sequence coverage and other limitations of the earlier study15. For additional interpretation, see 391 

SI, Effect of database limitations on sequence concatenation.  392 
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 393 

Table S5: Accession numbers of collagen sequences used in this study (available on the Uniprot 394 

website, https://www.uniprot.org/) 395 

https://www.uniprot.org/
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