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The search for patterns in time series is a very common task when dealing with complex systems.
This is usually accomplished by employing a complexity measure such as entropies and fractal
dimensions. However, such measures usually only capture a single aspect of the system dynamics.
Here, we propose a family of complexity measures for time series based on a generalization of the
complexity-entropy causality plane. By replacing the Shannon entropy by a mono-parametric entropy
(Tsallis q-entropy) and after considering the proper generalization of the statistical complexity
(q-complexity), we build up a parametric curve (the q-complexity-entropy curve) that is used for
characterizing/classifying time series. Based on simple exact results and numerical simulations of
stochastic processes, we show that these curves can distinguish among different long-range, short-
range and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic
time series can be distinguished based on whether these curves are open or closed. We further test
this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and
geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the
automatic classification of time series with long-range correlations and interbeat intervals of healthy
subjects and patients with heart disease.

PACS numbers: 05.45.-a, 05.40.-a, 89.70.Cf, 05.45.Tp

I. INTRODUCTION

The study of complex systems often shares the goal of
analyzing empirical time series aiming to extract patterns
or laws that rule the system dynamics. In order to per-
form this task, it is very common to employ a complexity
measure such as algorithmic complexity [1], entropies [2],
relative entropies [3], fractal dimensions [4], and Lyapunov
exponents [5]. Researchers have actually defined several
complexity measures, a fact directly related to the diffi-
culty of accurately defining the meaning of complexity.
However, the majority of the available measures depends
on specific algorithms and tuning parameters, which usu-
ally creates great difficulties for research reproducibility.

To overcome this problem, Bandt and Pompe [6] have
introduced a complexity measure based on the compar-
ison of neighboring values that can be easily applied to
any time series. The application of this technique (the
permutation entropy) is widely spread over the scientific
community [7–13] mainly because of its simplicity and
ability to distinguish among regular, chaotic and random
time series. Regarding the particular issue of distinguish-
ing between chaotic and stochastic processes, Rosso et
al. [14] have shown that the permutation entropy alone is
not enough for accomplishing this task. They observed,
for instance, that the value of the permutation entropy
calculated for the logistic map at fully developed chaos is
very close to the value obtained for long-range correlated
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noises. Because of that, Rosso et al. [14] have employed
the ideas of Bandt and Pompe together with a diagram
proposed by López-Ruiz et al. [15]. This diagram is com-
posed of the values of a relative entropic measure (the
statistical complexity) versus the Shannon entropy, both
calculated within the framework of Bandt and Pompe.
Rosso et al. have named this diagram as complexity-
entropy causality plane, and by using it they were able to
distinguish between several time series of stochastic and
chaotic nature. The causality plane has also proved its
usefulness in several applications [9, 10, 12, 16–18] and
has been generalized for considering higher dimensional
data [19], different time [20] and spatial resolutions [21].

Here, we propose to extend the causality plane for con-
sidering a mono-parametric entropy in replacement of
the Shannon entropy. In particular, we have considered
the Tsallis q-entropy [22, 23] (that recovers the Shannon
entropy for q = 1) together with the proper general-
ization of the statistical complexity [24] (q-complexity).
The values of the parameter q in the Tsallis entropy give
different weights to the underlying probabilities of the sys-
tem, accessing different dynamical scales and producing
a family of complexity measures that capture some of the
different meanings of complexity. Moreover, the Tsallis
q-entropy has already proved to be useful for enhanc-
ing the performance of computational techniques such as
in optimization problems [25–27] and image threshold-
ing [28, 29] as well as has been previously implemented
for characterizing fractal stochastic processes [30].

Thus, for a given time series, we build up a parametric
curve composed of the values of the q-complexity versus
the q-entropy, which we will call the q-complexity-entropy
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curve. Based on simple exact results, we discuss some
general properties of these curves, and next we present an
exhaustive list of applications based on numerical simula-
tions and empirical data. These applications show that
the q-complexity-entropy curve can capture dynamical
aspects of time series that are not properly identified
only by the point for q = 1, which corresponds to the
complexity-entropy causality plane of Rosso et al.. The
rest of this article is organized as follows. Section 2 is
devoted for reviewing the Bandt and Pompe approach
and the complexity-entropy causality plane of Rosso et
al.. Also in this section, we present our generalization for
considering the Tsallis q-entropy as well as some general
properties of the q-complexity-entropy curve. Section 3
presents our numerical experiments with time series from
the fractional Brownian motion, harmonic noise, and
chaotic maps. In Section 4, we discuss some real world
applications involving time series from laser dynamics,
sunspot numbers, stock prices, human heart rate, and
Earth’s magnetic activity. Section 5 ends this paper with
some concluding remarks.

II. GENERALIZED ENTROPY AND
COMPLEXITY MEASURES WITHIN THE

BANDT AND POMPE FRAMEWORK

We start by reviewing the approach of Bandt and
Pompe [6] for extracting the probabilities related to the
ordinal dynamics of the elements of a time series. For
a given time series {xi}i=1,...,n, we construct (n− d+ 1)
overlapping partitions of length d > 1 represented by

s→ {xs−(d−1), xs−(d−2), . . . , xs} , (1)

where s = d, d + 1, . . . , n. For each s, we evaluate the
permutations πj = {r0, r1, . . . , rd−1} of {0, 1, . . . , d − 1}
defined by the ordering xs−rd−1

≤ xs−rd−2
≤ . . . ≤

xs−r0 , and we associate to each permutation πj (with
j = 1, . . . , d!) the probability

pj(πj) =
the number of s that has type πj

n− d+ 1
. (2)

The components of the probability distribution
P = {pj(πj)}j=1,...,d! represent the odds of finding a seg-
ment of length d > 1 within the time series in a given
order. For instance, for the time series {2, 4, 3, 5}, we can
create tree partitions of size d = 2: (s = 2) → {2, 4},
(s = 3) → {4, 3}, and (s = 4) → {3, 5}. For each one,
we associate the permutations {0, 1}, {1, 0} and {0, 1},
respectively; consequently, the probability distribution
is P = {2/3, 1/3}. Thus, the probability distribution
P = {pj(πj)}j=1,...,d! provides information about the or-
dering dynamics for a given time scale defined by the
value of d, often called the embedding dimension. In the
Bandt and Pompe framework, d is a parameter whose
value must satisfy the condition n � d! in order to ob-
tain reliable statistics for all d ! possible permutations
occurring in the time series.

Given the probability distribution P =
{pj(πj)}j=1,...,d!, Bandt and Pompe proposed to
employ the normalized Shannon entropy

H1(P ) =
S1(P )

S1(U)
, (3)

where S1(P ) =
∑d!
j=1 pj log 1

pj
is the Shannon entropy

and U = {1/d !}j=1,2,...d! is the uniform distribution (so
S1(U) = log d !), as a natural measure of complexity.
By following Bandt and Pompe’s idea together with the
diagram of López-Ruiz et al. [15], Rosso et al. [14] have
proposed to further calculate a second complexity measure
defined by

C1(P ) =
D1(P,U)H1(P )

D∗1
, (4)

where D1(P,U) is a relative entropic measure (the Jensen-
Shannon divergence) between the empirical distribution
P = {pj(πj)}j=1,...,d! and the uniform distribution U =
{1/d!}j=1,...,d!. This relative measure can be defined in
terms of the symmetrized Kullback-Leibler divergence
(K1(P |R) = −

∑
pi log ri/pi, with P and R probability

distributions) and is written as

D1(P,U) =
1

2
K1

(
P

∣∣∣∣P + U

2

)
+

1

2
K1

(
U

∣∣∣∣P + U

2

)
=

[
S1

(
P + U

2

)
− S1(P )

2
− S1(U)

2

]
,

(5)

with P+U
2 = {pj(πj)+(1/d!)

2 }j=1,...,d!; while

D∗1 = max
P

D1(P,U)

= −1

2

[
d ! + 1

d !
log(d ! + 1)− log d !− 2 log 2

]
,

(6)

is a normalization constant (obtained by calculating
D1(P,U) when one component of P is one and all oth-
ers are zero). In spite of the fact that the statistical
complexity C1(P ) is defined by the product of D1(P,U)
and H1(P ), C1(P ) is not a trivial function of H1(P ) in
the sense that, for a given value of H1(P ), there is a
range of possible values for C1(P ) [24]. Because of that
Rosso et al. [14] proposed a representation space com-
posed of the values of C1(P ) versus H1(P ), building up
the complexity-entropy causality plane and finding that
chaotic and stochastic time series occupy different regions
of this diagram.

Despite being successfully applied for studying several
systems, the values of C1(P ) and H1(P ) are not enough
for capturing different scales of the system dynamics as
well as different meanings for complexity. Because of that,
we propose to replace the normalized Shannon entropy
(Eq. 3) and the statistical complexity (Eq. 4) by mono-
parametric generalizations based on the Tsallis q-entropy.
This entropic form is a generalization of the Shannon
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entropy and can be defined as [22, 23]

Sq(P ) =

d!∑
j=1

pj logq
1

pj
, (7)

where q is a real parameter and logq x =
∫ x
1
t−q dt is

the q-logarithm (logq x = x1−q−1
1−q if q 6= 1 and log1 x =

log x for any x > 0) [23]. We will use the convention
0 logq(1/0) = 0 whenever q > 0. It is worth noting that
S1 is the Shannon entropy.

Once defined the q-entropy, we further consider its
normalized version (analogously to the Eq. 3):

Hq(P ) =
Sq(P )

Sq(U)
, (8)

where Sq(U) = logq d! is the maximum value of the q-
entropy [23]. Furthermore, by following the developments
of Martin, Plastino and Rosso [24], we assume the gener-
alized version of the statistical complexity (Eq. 4) – the
q-complexity – to be

Cq(P ) =
Dq(P,U)Hq(P )

D∗q
, (9)

where

Dq(P,U) =
1

2
Kq

(
P

∣∣∣∣P + U

2

)
+

1

2
Kq

(
U

∣∣∣∣P + U

2

)
= −1

2

d!∑
i=1
pi 6=0

pi logq
pi + 1/d!

2pi

− 1

2

d!∑
i=1

1

d!
logq

pi + 1/d!

2/d!

(10)

is a distance between P and U , Kq(P |R) =
−
∑
pi logq ri/pi a generalization of Kullback-Leibler di-

vergence within the Tsallis formalism [24], and

D∗q = max
P

Dq(P,U)

=
22−qd!− (1 + d!)1−q − d!(1 + 1/d!)1−q − d! + 1

(1− q)22−qd!
(11)

is a normalization constant.
Thus, the quantities Hq and Cq are generalizations

of the normalized entropy and complexity within the
symbolic approach of Bandt and Pompe [6], introduced
by Rosso et al. [14], which are included as the particular
case q = 1. Here, we are interested in the parametric
representation of the ordered pairs (Hq(P ), Cq(P )) on
q > 0 for a fixed distribution P . We call this curve the
q-complexity-entropy curve, and we shall see that this
representation has superior capabilities of distinguishing
time series when compared with the point (H1(P ), C1(P ))
in the complexity-entropy causality plane.

Before we proceed to the applications, let us enu-
merate some general properties of the q-complexity-
entropy curves. For a given probability distribution
P = {pj(πj)}j=1,...,d!, let r be the number of non-zero
components of P (that is, the number of permutations
πj that actually occurs in the time series) and γ = r−1

d!−1
(essentially the fraction of occurring permutations among
all d! possible). From the definitions of Hq and Cq, it
is not difficult to prove the following statements (see
Appendix A):

1. If r = 1 then Hq(P ) = 0 and Cq(P ) = 0 for any
q > 0;

2. Hq(P )→ γ and Cq(P )→ γ(1− γ) as q → 0+;

3. If r > 1 then Hq(P ) → 1 and Cq(P ) → 1 − γ as
q →∞.

These general properties of Hq and Cq have the following
consequences for the q-complexity-entropy curves:

1. The q-complexity-entropy curve of a time series that
only displays one permutation πj (that is, for r = 1)
collapses onto the point (0, 0);

2. For a time series that has all possible permutations
πj (that is, r = d! and γ = 1), the q-complexity-
entropy curve is a loop that starts at the point (1, 0)
for q = 0+ and ends at the same point for q →∞;

3. For a time series that does not display all permu-
tations πj , the q-complexity-entropy curve starts
at the point (γ, γ(1 − γ)) for q = 0+ and ends at
the point (1, 1 − γ) for q → ∞. Here 0 < γ < 1,
and the number of occurring permutations r can be
obtained from γ via r = (d!− 1)γ + 1.

We shall see that noisy time series are usually charac-
terized by closed q-complexity-entropy curves, whereas
chaotic time series have open curves (especially for large
embedding dimensions). This last feature is related to
the existence of forbidden ordinal patterns in the chaotic
dynamics that is common in several chaotic maps [31–34],
but that can also appear in stochastic processes depending
on the time series length [35–37].

III. NUMERICAL APPLICATIONS

In this section, we present several applications of the q-
complexity-entropy curve for numerically-generated time
series of stochastic and chaotic nature.

A. Fractional Brownian motion

As a first application, we study time series generated
from the fractional Brownian motion [4]. The fractional
Brownian motion is a stochastic process that has station-
ary, long-range correlated, and Gaussian increments. It is
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usually defined in terms of a parameter h (the so-called
Hurst exponent): for h < 1/2, the fractional Brownian
motion is anti-persistent, meaning that positive incre-
ments are followed by negative increments (or vice versa)
more frequently than by chance; while for h > 1/2, it is
persistent, meaning that positive increments are followed
by positive increments and negative increments are fol-
lowed by negative increments more frequently than by
chance. Also, we have fully persistent motion in the limit
of h→ 1, whereas the usual Brownian motion is recovered
in the limit of h→ 1/2.
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FIG. 1. Dependence of the entropy Hq and complexity Cq

on the parameter q for the fractional Brownian motion. Pan-
els (a) and (b) show the q-complexity-entropy curves with
d = 3 and several values of the Hurst exponent h (h in
(0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), as indicated in the plots).
The values of q are increasing (from q = 0+ to q = 1000 in size
steps of 10−4) in the clockwise direction. Panels (c) and (d)
show the same, but with embedding dimension d = 4. All col-
ored curves represent the average value of Hq and Cq over one
hundred realizations of a fractional Brownian walker with 217

steps. The shaded areas indicate the 95% confidence intervals
estimated via bootstrapping (over one hundred independent
realizations). The dashed lines are the exact results calculated
by using the probabilities of Bandt and Shiha [38] (see also
Appendix B). It is worth noting that all curves form loops
in this representation space, starting at (1, 0) for q = 0+ and
ending at (1, 0) for q →∞.

In order to calculate the q-complexity-entropy curves
associated with the fractional Brownian motion, we nu-
merically generate time series of length 217 following the
procedure of Hosking [39] for different values of the Hurst
exponent h. Figures 1(a) and 1(b) show these curves for
the embedding dimension d = 3 and h in (0.2, 0.3, . . . , 0.9),
while Figs. 1(c) and 1(d) are the same for d = 4. These
plots show the average values (over one hundred realiza-
tions) of the ordered pairs (Hq(P ), Cq(P )), with q from
10−4 (assumed to be q = 0+) to 1000 in steps of 10−4.
We note that all q-complexity-entropy curves are closed,
indicating that time series of length 217 of the fractional

Brownian motion displays all possible permutations πj
for d = 3 and d = 4. The presence of forbidden ordinal
patterns in the fractional Brownian motion was studied
by Rosso et al. [35, 36] and Carpi et al. [37], where they
observed that the number of forbidden ordinal patterns
decreases with the time series length with a rate that
depends on the Hurst exponent h. In particular, Carpi et
al. [37] showed that for d = 4 and very small time se-
ries (around one hundred steps), the fractional Brownian
motion may have a few number of forbidden patterns;
however, this number vanishes for series of length larger
than 500 terms, which agrees with our findings. Also,
for the fractional Brownian motion is possible to obtain
the exact expression for the q-complexity-entropy curves,
because Bandt and Shiha [38] have calculated the exact
form of the probability distribution P = {pj(πj)}j=1,...,d!

for d = 3 and d = 4 (all values of pj(πj) are provided
in the Appendix B). By using these distributions, the
expressions (8) and (9) lead to the exact values for the
ordered pairs (Hq(P ), Cq(P )) for all q. The dashed lines
in Fig. 1 show the exact q-complexity-entropy curves for
the fractional Brownian motion, where we observe an
excellent agreement with the numerical results.

The results of Fig. 1 also reveal that the q-complexity-
entropy curves distinguish the different values of the Hurst
exponent h. We observe that the larger the value of h,
the broader the loop formed by the q-complexity-entropy
curve. We also find that the normalized entropy Hq as a
function of q has a minimum value at q = q∗H and that the
complexity Cq as a function of q has a maximum value
at q = q∗C , both extreme values of q depend on the Hurst
exponent h and also on the embedding dimension d. This
dependence is shown in Fig. 2 for d = 3 and d = 4, where
a good agreement between the exact and the numerical
values of these extreme values is observed. We further
notice that q∗H increases with h up to a maximum and
then starts to decrease [Figs. 2(a) and 2(c)]; whereas q∗C is
a monotonically increasing function of the Hurst exponent
h [Figs. 2(b) and 2(d)].

The extreme values of the normalized q-entropy and
the q-complexity-entropy (Hq∗H

and Cq∗C ) represent the
largest contrast between Hq (as well as Cq) calculated
for the system distribution P = {pj(πj)}j=1,...,d! and the
uniform distribution U = {1/d !}j=1,...d!. In the context
of ecological diversity, the values of Hq∗H

were found to
enhance contrast among ecological communities when
compared with usual diversity indexes [40]. Similarly, the
values of Hq∗H

and Cq∗C may enhance the differentiation
among time series of the fractional Brownian motion with
different Hurst exponents. In order to verify this hypoth-
esis, we test the performance of the values Hq∗H

and Cq∗C
(in comparison with H1 and C1) for classifying time series
of the fractional Brownian motion with different Hurst
exponents. For this, we generate an ensemble with one
hundred time series for each value of the Hurst exponent
h in (0.03, 0.05, . . . , 0.97). Next, we train a k-nearest
neighbors algorithm [41] in a 3-fold cross-validation strat-
egy, considering these 48 different values of h as possible
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FIG. 2. Comparison between the extreme values q∗H and q∗C
obtained from the simulations and the exact results for the
fractional Brownian motion. Panel (a) shows the values of
q = q∗H for which Hq reaches a minimum as a function of the
Hurst exponent h and d = 3. Each dot corresponds to the
average value of q∗H obtained from one hundred realizations
of a fractional Brownian walker with 217 steps. Error bars
stand for 95% confidence intervals estimated via bootstrapping
(over one hundred independent realizations). Panel (b) shows
the values of q = q∗C for which Cq reaches a maximum as a
function of the Hurst exponent h and d = 3. Again, the dots
are the average value calculated from one hundred independent
realizations of a fractional Brownian walker with 217 steps, and
the error bars are 95% confidence intervals. In both plots, the
continuous lines are the exact results. Panels (c) and (d) are
the analogous of (a) and (b) when considering the embedding
dimension d = 4. In all cases, we note an excellent agreement
between the simulations and the exact results.

classes for the algorithm. This machine learning classifier
is one of the simplest algorithms for supervised learn-
ing [41]; it basically assigns a class (here the value of the
Hurst exponent) to an unlabeled point based on the class
of the majority of the nearby points.

Figure 3(a) shows the confusion matrices (that is, the
fractions of time series with a particular Hurst exponent
that are classified with a given Hurst exponent – accuracy)
when considering H1 and C1 (usual causality plane, q = 1
– left panel) and the Hq∗H

and Cq∗C (optimized causality

plane – right panel) for time series with n = 210 terms.
We observe that both matrices have non-zero elements
only around the diagonal, indicating that the misclas-
sified Hurst exponents are labeled with values close to
actual values. We also note that the “diagonal stripe”
of these matrices is narrow for the optimized causality
plane (specially for h > 0.5), showing that the optimized
values enhance the performance of the classification task.
Figure 3(b) shows the same analysis with longer time
series (n = 212), where we note the narrowing of the
“diagonal stripe” of the confusion matrices. This happens
because the variance in the estimated values of Hq and
Cq decreases with the length n of the time series, enhanc-
ing the performance of the classifiers in both scenarios.
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FIG. 3. Predicting the Hurst exponent based on the values of
Hq and Cq via the nearest neighbors algorithm. (a) Confusion
matrices obtained from the nearest neighbors algorithm when
considering the values of Hq and Cq for q = 1 (usual case – left
panel) and the optimized values of Hq∗

H
and Cq∗

C
(optimized

case – right panel) for time series of length n = 210. The rows
of these matrices represent the actual Hurst exponents (the
value employed in the simulation) and the columns represent
the values predicted by the machine learning algorithm. Values
of the Hurst exponents varies from 0.03 to 0.97 in steps of size
0.02. The color code indicates the fraction of occurrences for
each combination of actual and predicted Hurst exponent. In
(b) we show the same analysis for longer times series (n = 212).
We note that in both classification scenarios the predicted
values are always very close to the actual values (that is, the
confusion matrices have “diagonal stripes”). However, we
further notice that the “diagonal stripe” is narrower in the
optimized case (especially for persistent processes). (c) Overall
accuracy (fraction of correctly classified Hurst exponents) for
the two classification scenarios (error bars are the standard-
errors) for different time series length. We notice that the
use of Hq and Cq with q = q∗H and q = q∗C (optimized case)
provides a greater overall accuracy when compared with the
case q = 1, regardless of the length n.

However, we still observe that the accuracy is larger when
employing the optimized values Hq∗H

and Cq∗C . In fact,
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Fig. 3(c) shows that overall accuracy is always enhanced
(regardless of n) when considering the optimized causality
plane in comparison with usual causality plane.

B. Harmonic noise

For another numerical application, we consider times se-
ries generated from the harmonic noise [42]. This stochas-
tic process is a generalization of the Ornstein-Uhlenbeck
process [43] and can be defined by the following system
of Langevin equations [42]

dy

dt
= s

ds

dt
= −Γs− Ω2y +

√
2εΩ2ξ(t) ,

(12)

where ξ(t) is a Gaussian noise with zero mean, 〈ξ(t)〉 = 0,
(here 〈. . . 〉 stands for ensemble average) and uncorrelated,
〈ξ(t)ξ(t′)〉 = δ(t − t′). That is, a harmonic oscillator
driven by a white noise. This noise has an oscillating
correlation function given by [42]

〈y(t)y(t+ τ)〉 =
εΩ2

Γ
exp

(
−Γ

2
τ

)
×
[
cos(ωτ) +

Γ

2ω
sin(ωτ)

]
,

(13)

where

ω =
√

Ω2 − (Γ/2)2 (14)

is the frequency of oscillation. In practical terms, this
noise is a mixture of random and periodic behaviors.
Notice that the Ornstein-Uhlenbeck process is recovered
in the limit Ω → ∞ and Γ → ∞, while the ratio Γ/Ω2

remains fixed (for this case, 〈y(t)y(t+ τ)〉 ∼ exp(−τ)).
In order to produce time series from the harmonic noise,

we integrate the system of equations (12) by using the
Euler method with a step size dt = 10−3 (an approach
that produces a good agreement between the exact corre-
lation function of Eq. 13 and the numerical results) up
to maximum integration time of 1320 and for particular
values of parameters Γ, Ω, and ε. In particular, we first
investigate the role of the frequency ω on the form of the
q-complexity-entropy curve. To do so, we choose ε = 1,
Γ = 0.05, and several values of ω ranging from 1 to 60
(Ω is obtained from Eq. 14). For these parameters, the
shape of the correlation function is similar to an under-
damped simple harmonic motion. Figure 4 shows some
q-complexity-entropy curves for the embedding dimension
d = 3. We note that all curves form loops and the broader
the loop, the smaller the value of ω. Also, the largest con-
trasts between the values of ω occur around the regions of
minimum entropy and maximum complexity (as indicated
by the insets). The curves are strongly overlapped for
very small or very large values of q. We further observe
that values of the complexity for q = 1 (black dots in the
first inset) practically do not change with ω.
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FIG. 4. Dependence of the entropy Hq and complexity Cq

on the parameter q for the harmonic noise: changes with the
frequency parameter ω. Panel (a) shows the q-complexity-
entropy curves with embedding dimension d = 3, Γ = 0.05,
ε = 1, and some values of the parameter ω (shown in the plot).
The values of q are increasing (from q = 0+ to q = 1000 in
size steps of 10−4) in the clockwise direction. The two insets
highlight the regions of the causality plane where the entropy
reaches a minimum (q = q∗H , indicated by cross markers)
and the complexity passes to its maximum value (q = q∗C ,
indicated by asterisk markers). The points (Hq, Cq) for q = 1
are indicated by black dots. Panel (b) shows the dependence
of Hq on q for several values of ω (indicated by the color
code) and the inset highlights the region where the minimums
occur (q = q∗H , indicated by black dots). Panel (c) shows
the dependence of Cq on q for several values of ω (the same
of panel b) and the inset highlights the region where the
maximums occur (q = q∗C , indicated by black dots). Panels (d)
and (e) show the dependence of the extreme values of q (q∗H
and q∗C) on the frequency parameter ω (the markers are the
average values over one hundred realizations of the harmonic
noise with maximum integration time of 1320 and step size of
10−3, and the error bars stand for 95% bootstrap confidence
intervals). We note that q∗H monotonically increases with ω in
a relationship that is approximated by an exponential approach
to the value q∗H = 0.867 (that is, q∗H = 0.867− 0.279e−0.018ω,
as indicated by the continuous line). We further notice that
q∗C decreases with ω and that around ω = 16.5 there is a
discontinuous behavior. The continuous lines in this last plot
are linear approximations to the behavior of q∗C .
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Figures 4(b) and 4(c) depict the individual behavior
of Hq and Cq versus q (now for more values of ω), where
the insets show the form of these curves around their
extreme values (that are indicated by small dots). Finally,
in Figs. 4(d) and 4(e) we study the dependence of the
extreme values q∗H and q∗C on the parameter ω. We find
that q∗H monotonically increases with ω in a relationship
that can be approximated by an exponential approach to
the value q∗H = 0.867. The shape of q∗C is more intriguing
because it suddenly changes around the value ω ≈ 16.5, a
behavior that is similar to a phase transition in a bistable
system.

We further investigate the shape of the q-complexity-
entropy curves in a situation that is closer to a pure
Ornstein-Uhlenbeck process, that is, a process with a
correlation function that decays exponentially. For this,
we fix ω = 10−4 and choose different values for Γ, ranging
from close to zero up to 104 (again ε = 1 and Ω is obtained
from Eq. 14). The small value of ω ensures that the oscil-
lation period of the correlation function (Eq. 13) is much
larger than the integration time. Figure 5(a) shows some
q-complexity-entropy curves for the embedding dimension
d = 3 and different values of Γ ranging from 0.55 to 100.
These curves form loops whose broadness decreases as Γ
increases; in fact, the form of these curves is approaching
a limit loop that is similar to the one observed for the
fractional Brownian motion with h = 1/2. Thus, the
q-complexity-entropy curve can also distinguish among
different time series with short-range correlations. Fig-
ures 5(b) and 5(c) show the individual behavior of Hq and
Cq versus q, where we find that the extreme values q∗H
and q∗C depend on Γ, as illustrated in Figs. 5(d) and 5(e).
For small values of Γ, q∗H logarithmically increases with Γ
up to Γ ≈ 300, where it saturates around q∗H ≈ 1.12. Sim-
ilarly, q∗C logarithmically decreases with Γ up to Γ ≈ 1000,
where it saturates around q∗C ≈ 2.53. These limit values
for q∗H and q∗C are very close to those obtained for the
fractional Brownian motion with h = 0.5 [a random walk,
see Figs. 2(a) and 2(b)].

C. Chaotic maps at fully developed chaos

We now focus on analyzing the shape of the q-
complexity-entropy curves for time series associated with
chaotic processes. To do so, we generate time series
by iterating eight chaotic maps: Burgers, cubic, Ginger-
breadman, Henon, logistic, Ricker, sine, and Tinkerbell.
We set their parameters to ensure a fully chaotic regime
and iterate over 217 + 104 steps, dropping the initial 104

steps for avoiding transient behaviors. Also, for the two-
dimensional maps (Burgers, Gingerbreadman, Henon and
Tinkerbell), we have considered the squared sum of the
two coordinates. The definition of each map and the pa-
rameters employed are given in the Appendix C. Figure 6
shows the q-complexity-entropy curves for each map and
for the embedding dimensions between d = 3 and d = 6.
Differently from our previous results for noises, these
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FIG. 5. Dependence of the entropy Hq and complexity Cq

on the parameter q for the harmonic noise: changes with the
damping coefficient Γ. Panel (a) shows q-complexity-entropy
curves with embedding dimension d = 3, ω = 10−4, ε = 1,
and for some values of the parameter Γ (shown in the plot).
The values of q are increasing (from q = 0+ to q = 1000
in size steps of 10−4) in the clockwise direction. The black
dots indicate the points (Hq, Cq) for q = 1, cross markers for
q = q∗H , and asterisk markers for q = q∗C . Panel (b) shows the
dependence of Hq on q for several values of Γ (indicated by the
color code), where the black dots indicate the values of q = q∗H
that minimize Hq. Panel (c) shows the dependence of Cq on q
for several values of Γ (the same of panel b), where the black
dots indicate the values of q = q∗C that maximize Cq. Panels
(d) and (e) show the dependence of the extreme values of q
(q∗H and q∗C) on the damping parameter Γ (the markers are the
average values over one hundred realizations of the harmonic
noise with maximum integration time of 1320 and step size of
10−3, and the error bars stand for 95% bootstrap confidence
intervals). We note that q∗H logarithmically increases with
Γ up to Γ ≈ 300 (q∗H = 0.73 + 0.07 ∗ ln(Γ), as indicated by
the continuous line), where it saturates around q∗H ≈ 1.12
(continuous line). We further notice that q∗C logarithmically
decreases with Γ up to Γ ≈ 1000 (q∗C = 5.70− 0.47 ∗ ln(Γ), as
indicated by the continuous line), where it saturates around
q∗C ≈ 2.53 (continuous line).
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FIG. 6. Dependence of the entropy Hq and complexity Cq on the parameter q for chaotic maps at fully developed chaos
and stochastic processes. Each plot shows the q-complexity-entropy curve for a chaotic map (first two rows) or a stochastic
process (last two rows) for embedding dimensions d = 3, 4, 5, and 6 (the different colors). The first two rows show the results
for the chaotic maps: Burgers, cubic, Gingerbreadman, Henon, logistic, Ricker, sine and Tinkerbell at fully developed chaos
(see Appendix C for more detail). The third row refers to the fractional Brownian motion (Hurst exponent h is indicated in
the plots) and the last row refers to the harmonic noise (parameters Γ and ω are indicated in the plots). In each panel, the
star markers indicate the points (Hq, Cq) for q = 0+, while the open circles are the same for q →∞. We note that stochastic
processes are mostly characterized by loops for all embedding dimensions, whereas chaotic maps usually form open curves in the
causality plane. We further note that, differently from stochastic processes, Hq of chaotic maps does not exhibit a minimum
value for all embedding dimensions.

curves do not form loops for all embedding dimensions,
showing that there are permutations of πj that never
appear in these time series.

For comparison, we also show in Fig. 6 some q-
complexity-entropy curves for the fractional Brownian
motion and harmonic noise, calculated from time series of
the same length used for the chaotic maps. For the frac-
tional Brownian motion, loops are observed for all values
of d and h; however, for the harmonic noise there are some
open q-complexity-entropy curves (when ω = 10−3 and
Γ = 0.55 or Γ = 1.30), indicating that this noise presents
forbidden permutations, even for time series of length 217.
As reported by Rosso et al. [35, 36] and Carpi et al. [37]
for the fractional Brownian motion, we expect the number

of forbidden permutations to vanish with the length of the
time series, and loops should appear for longer time series.
For instance, we find that the curves for the harmonic
noise shown in Fig. 6 become loops for time series a thou-
sand times longer, which does not happen for the chaotic
maps. Thus, the shape of the q-complexity-entropy curve
(closed or open) can be used as an indicative of chaos
(open curves) or stochasticity (closed curves). Another
characteristic that can distinguish between chaotic and
stochastic time series is the existence of a minimum value
for the normalized entropy Hq. We note that a minimum
value exists in all time series from harmonic and fractional
noise for 3 ≤ d ≤ 6, which does not happen for the chaotic
maps (Hq → 1 monotonically for most d values).
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D. Logistic map

Still on chaotic processes, we investigate the logistic
map in more detail. This map is a quadratic recurrence
equation defined as [44]

yk+1 = a yk(1− yk) , (15)

where a is a parameter whose values of interest are in the
interval 0 ≤ a ≤ 4 (for which 0 ≤ yk ≤ 1). Depending
on a, this map can exhibit simple periodic behavior (e.g.
a = 3.05), stable cycles of period m (e.g. m = 4 for
a = 3.5 and m = 8 for a = 3.55), and chaos (most values
of a > 3.56994567 . . . and a = 4).

This map is particularly interesting for our study be-
cause we can find the exact expression of the q-complexity-
entropy curve when d = 3 and a = 4. Amigó et
al. [31–34] have shown that the list {yk, yk+1, yk+2} al-
ways corresponds to the ordinal pattern {0, 1, 2} when
0 < yk <

1
4 . Similarly, the ordinal pattern {0, 2, 1} occurs

for 1
4 < yk <

5−
√
5

8 , {2, 0, 1} for 5−
√
5

8 < yk <
3
4 , {1, 0, 2}

for 3
4 < yk <

5+
√
5

8 , {1, 2, 0} for 5+
√
5

8 < yk < 1, and the
ordinal pattern {2, 1, 0} never appears. Combining these
results with the fact that the probability distribution of
yk is a beta distribution [45], ρ(y) = [π

√
y(1− y)]−1, we

can find the probability distribution P = {pj(πj)}j=1,...,d!

by integrating the beta distribution over each one of the
previous intervals of yk (for instance, the probability as-

sociated with the pattern {0, 1, 2} is
∫ 1/4

0
ρ(y) dy = 1/3).

These integrals yield P = {1/3, 1/15, 4/15, 2/15, 1/5, 0}
(in the same order that the intervals were presented), from
which we build the exact form of the curve (Hq(P ), Cq(P ))
for d = 3 and a = 4. The left panels of Fig. 7 show a
comparison between the numerical results for a time series
of length 217 (after dropping the initial 104 terms) and
the exact form of the q-complexity-entropy curve, where
an excellent agreement is observed.

We further estimate the q-complexity-entropy curve for
other values of a, as shown in Fig. 7(b) for d = 4. In these
plots, we choose values of a for which the map oscillates
between two values (a = 3.05), four values (a = 3.50),
and for two chaotic regimes: one (a = 3.593) close to
the onset of chaos and another at fully developed chaos
(a = 4). We note that these different regimes of the
logistic map correspond to different curves. However, the
values of H1 and C1 alone are not enough for a complete
discrimination; for instance, these values are practically
the same for a = 3.50 and a = 3.593, while the values for
q ∼ 0 are very different for these two regimes.

IV. EMPIRICAL APPLICATIONS

Another important test for the q-complexity-entropy
curve is related to empirical time series. These time series
usually have some degree of randomness only associated
with the experimental technique employed to study a
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FIG. 7. Dependence of the entropy Hq and complexity Cq

on the parameter q for the logistic map. Panel (a) shows a
comparison between the values Hq and Cq (as well as their
dependence on q) obtained from the simulations and the exact
results for the logistic map with a = 4 and d = 3. Notice that
a practically perfect agreement is found. Panel (b) shows the
q-complexity-entropy curve and the dependence of Hq and Cq

on q for d = 4 and four values of the parameter a: a = 3.05
(oscillating behavior between two values), a = 3.50 (oscillating
behavior among four values), a = 3.593 (chaotic behavior)
and a = 4 (fully developed chaos). We note that the complete
differentiation among these regimes of the logistic map is only
possible when considering different values of q. In particular,
we observe that the points (Hq, Cq) for q = 1 (indicated by
the black dots) are in about the same location for a = 3.50
and a = 3.593.

system, a feature that is well known to hinder the discrim-
ination between experimental chaotic and stochastic sig-
nals [20]. Thus, in order to test the q-complexity-entropy
curve in an experimental scenario, we first consider two
empirical time series of well-known origin: the chaotic
intensity pulsations of a laser [46] and the fluctuations
of crude oil prices. The chaotic time series has length
n = 9093 and is freely available in Ref. [47], whereas the
crude oil prices refer to daily closing spot price of the
West Texas Intermediate from January 2nd, 1986 to July
10th, 2012 (freely available in Ref. [48]). The results are
shown in Fig. 8(a) and 8(b). We observe that the shape
of the curve for the laser intensity is similar to those
reported for chaotic maps, that is, it forms a loop only
for d = 3 (such as the Burgers map), while for higher
embedding dimensions the curve is open. On the other
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FIG. 8. Dependence of the entropy Hq and complexity Cq on
the parameter q for empirical time series. Panel (a) shows the
q-complexity-entropy curve for the chaotic intensity pulsations
of a single-mode far-infrared NH3 laser. Panel (b) show the
curves for crude oil prices (daily closing spot price of the
West Texas Intermediate from January 2nd, 1986 to July 10th,
2012), and panel (c) for the monthly smoothed sunspots index
(from 1749 to 2016). In all panels, the different colors refer to
the embedding dimensions (d = 3, 4, and 5), the star markers
indicate the points (Hq, Cq) for q = 0+, while the open circles
are the same for q → ∞. Also, the gray dots indicate the
points (Hq, Cq) for q = 1, cross markers for q = q∗H , and
asterisk markers for q = q∗C . We note that causality plane for
the laser intensity is similar to those reported for chaotic maps,
while the crude oil prices and sunspot index have a behavior
similar to those reported for noisy time series (see Fig. 6).
(d) Extreme values q∗H and q∗C obtained for each system and
d = 3, 4, and 5 (different bar colors).

hand, the curves for price time series form loops with a
shape that resembles those of the fractional Brownian
motion. We further study a time series of the monthly
smoothed sunspot index, whose stochastic or chaotic na-
ture is still debated [49–55]. By analyzing the 13-month
smoothed monthly sunspot number from 1749 to 2016
(n = 3202, freely available in Ref. [56]), we have built
the q-complexity-entropy curves shown in Fig. 8(c). We
note that the curve is closed for d = 3 and open for
d = 4 and d = 5, showing a minimum value for Hq for
the three values of d; moreover, the shape of the curves
are similar to those of the harmonic noise. Thus, our
results suggest that the sunspot index can be described
by an oscillatory behavior combined with irregularities
of stochastic nature. A similar description was proposed
by Mininni et al. [53, 54], where a Van der Pol oscillator
with a noise term was found to reproduce several features
of the sunspot index. Figure 8(d) shows the values of q
that optimize Hq and Cq (q∗H and q∗C) for each system.
For d = 4 and d = 5, we note that q∗H is substantially
smaller for the laser intensities than the values observed

for the two other systems (which are very similar). This
agrees with the results observed in Fig. 6, where we ver-
ified that Hq does not have a minimum value for all
embedding dimensions in the case of chaotic maps (which
corresponds to q∗H → 0). The price dynamics present the
smallest values of q∗C , followed by the laser intensities and
the sunspots index (respectively), indicating that q∗H and
q∗C are associated to different dynamical scales of these
systems.

Next, we test if the q-complexity-entropy curve can im-
prove the discrimination of physiological signals of healthy
subjects and patients with congestive heart failure. In
particular, we investigate time series of the interbeat
intervals from 46 healthy subjects (age = 65.9 ± 4.0,
n = 106235± 10900) and 15 patients (age = 69.7± 6.4,
n = 109031± 12826) with severe congestive heart failure
(NYHA class III). All time series are made freely available
by the PhysioNet web page [57, 58]. Figure 9(a) shows
the average curves of all healthy subjects and patients,
where loops are found for both conditions. However, the
loop is broader for patients than for healthy subjects,
which is compatible with the fact that the Hurst expo-
nents of these time series are usually larger for patients
than for healthy subjects [59]. We also verify whether the
values of Hq∗H

and Cq∗C , in comparison with H1 and C1,
can enhance the differentiation among time series from
healthy subjects and patients in a classification task. To
do so, we proceed as in the fractional Brownian motion
case, that is, we train a k-nearest neighbors algorithm
in a 3-fold cross-validation strategy. Our results show
that optimized values provide a greater accuracy when
compared with the usual values for q = 1 (≈80% against
≈76%), as shown in Fig. 9.

Finally, as a last application, we consider a time series
related to the Earth’s magnetic activity: the disturbance
storm time index (DST). This index reflects the average
change in the Earth’s magnetic field based on measure-
ments of the equatorial ring current from a station net-
work located along the equator on the Earth’s surface.
The injection of energetic ions from the solar wind into
the ring current produces a magnetic field that (at the
equator) is opposite to the Earth’s field, often resulting
in a sharp decreasing of the DST index and defining a
geomagnetic storm [60]. Figure 10(a) shows the evolu-
tion of the DST index (hourly resolution) from January
1st, 1989 to May 24th, 1989 based on data freely avail-
able by the World Data Center for Geomagnetism [61].
During this period, a great geomagnetic storm occurred
(the March 13th, 1989 geomagnetic storm [62]), making
the DST as lower as −600nT. In order to verify if the
q-complexity-entropy curve can distinguish between the
different regimes present in the DST index, we segment
the data of Fig. 10(a) into time series of 18 days (n = 432)
and calculate the curves for each segment with d = 3.
Figure 10(b) shows that all curves are characterized by
loops of different broadness. In particular, the period just
after the beginning of the storm is characterized by the
broadest loop, whereas the next data segment has the
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FIG. 9. Distinguishing between the interbeat intervals of
healthy subjects and patients with congestive heart failure
based on the values of Hq and Cq via the nearest neighbors
algorithm. Panel (a) shows the causality plane (for the embed-
ding dimension d = 3) evaluated from heart rate time series
of 15 patients (age = 69.7± 6.4) with severe congestive heart
failure (NYHA class III, gray curve) and from the time series
of 46 healthy subjects (age = 65.9 ± 4.0, green curve). The
continuous lines are the average values of Hq and Cq over all
subjects in each group and the shaded areas are the standard
error of the mean values. Panel (b) shows the accuracy of the
nearest neighbors algorithm (fraction of correctly classified
subjects) when employing the optimized values of Hq and Cq

(q = q∗H and q = q∗C , blue bar) and when using the values of
Hq and Cq for q = 1 (usual case, red bar). The error bars
are 95% confidence intervals calculated via cross-validation.
We notice that the optimized values of Hq and Cq provide a
greater accuracy when compared with the usual case (≈80%
against ≈76%).

narrowest loop. We further note that, after the storm,
the curve width is progressively restored to a shape simi-
lar to the one observed before the storm, reflecting the
recovering dynamics of a geomagnetic storm [60]. We find
that the values of q that optimize Hq (q∗H) are close to 1
[Fig. 10(c), upper panel] and that they are not efficient
for identifying the geomagnetic storm. However, the val-
ues of q that optimize Cq (q∗C) are very different from
1 [Fig. 10(c), bottom panel] and capable of identifying
the geomagnetic storm (notice that q∗C ≈ 2.85 during the
geomagnetic storm, and q∗C < 2.75 in all other periods).
We also study the q-complexity-entropy curves for shuf-
fled versions of each time series segment, as shown in
Fig. 10(d). After shuffling, the loops are very narrow, and
no significant differences among the curves are observed.
It is worth noting that the fluctuations in the values of
Cq are no much larger than 10−3. Assuming that the
fluctuations in the original time series would have the
same magnitude, this result suggests that the difference
observed in Fig. 10(b) is statistically significant.

V. SUMMARY AND CONCLUSIONS

We have proposed an extension to the complexity-
entropy causality plane of Rosso et al. [14] by considering
a mono-parametric generalization of the Shannon entropy
(Tsallis q-entropy, Hq) and of the statistical complexity
(q-complexity, Cq). Our approach for characterizing time
series is based on the parametric representation of the
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FIG. 10. Dependence of the entropy Hq and complexity Cq

on the parameter q for the Earth’s magnetic activity: changes
during a geomagnetic storm. Panel (a) shows the hourly time
series of the disturbance storm time index (DST, a measure
of the Earth magnetic activity) from January 1st, 1989 to
May 24th, 1989 (144 days). Within this period a severe
geomagnetic storm struck Earth on March 13 1898, when the
DST dropped to about −600nT. The time series is segmented
in 8 periods (indicated by different colors) of 18 days and the
period containing the geomagnetic storm is plotted in black.
Panel (b) shows the q-complexity-entropy curves evaluated
for each 18-days period for the embedding dimension d = 3.
The gray dots indicate the points (Hq, Cq) for q = 1, cross
markers for q = q∗H , and asterisk markers for q = q∗C . We
notice that during the geomagnetic storm the q-complexity-
entropy curve have the smallest value for the entropy Hq

and largest value for the complexity Cq (that is, a broader
loop). It is also worth mentioning that the period just after
the storm is characterized by the shortest loop. (c) Extreme
values q∗H and q∗C obtained for time series segment. (d) The
q-complexity-entropy curves evaluated shuffled versions of each
18-days period. The continuous lines are the average value
of curves over 100 realizations and the shaded areas indicate
95% bootstrap confidence intervals. The color code employed
in each plot is the same used for the DST time series.

ordered pairs (Hq(P ), Cq(P )) on q > 0, which we have
called the q-complexity-entropy curve. In a series of ap-
plications involving numerically-generated and empirical
time series, we have shown that the q-complexity-entropy
curves can be very useful for characterizing and classi-
fying time series, outperforming the original approach
in several cases. In particular, the optimized version of
the complexity-entropy causality plane (when using the
values of H∗q and C∗q ) showed to be more efficient for
classifying time series from the fractional Brownian mo-
tion and for distinguishing between healthy subjects and
patients with congestive heart failure. These curves were
also able to distinguish among different periodic behaviors
of the logistic map as well as different parameters of the
harmonic noise. Regarding the issue of distinguishing
between chaotic and stochastic processes, we have shown
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that the q-complexity-entropy curves related to stochastic
processes are usually characterized by loops, while chaotic
processes display open curves, a feature that is associated
with the existence of forbidden ordinal patterns in the
time series.

Thus, we believe the q-complexity-entropy curves can
be employed in a wide range of applications as a tool for
characterizing time series. Naturally, other generaliza-
tions of the Shannon entropy could be employed in place
of the Tsallis q-entropy, eventually leading to an efficient
tool. One of these possibilities is the Rényi α-entropy [63].
For this case, it is possible to show that the normalized
Rényi α-entropy (the analogous of Eq. 8) is a monoton-
ically decreasing function of the entropic parameter α;
therefore, all α-complexity-entropy curves will be open
and the distinction between chaos and noise based on the
formation of open or closed curves is not possible. This
fact does not eliminate other features of the α-complexity-
entropy curves of being used for distinguishing chaos and
noise as well as for classifying/characterizing time series.
For instance, in a preliminary study we have observed that
concavity properties of the α-complexity-entropy curves
can also be used for this task. However, a detailed study
of other entropic forms and a comparison among them is
outside the scope of the present work.
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Appendix A: Limiting expressions for Hq and Cq

when q → 0+ and q →∞

Theorem. Let P = {pj}j=1,...,d! be a probability distri-
bution, r be the number of non-zero components of P and
γ = r−1

d!−1 . The following statements are true:

(1) if r = 1 then Hq(P ) = 0 and Cq(P ) = 0 for any
q > 0;

(2) Hq(P )→ γ as q → 0+;

(3) Cq(P )→ γ(1− γ) as q → 0+;

(4) if r > 1 then Hq(P )→ 1 as q →∞;

(5) if r > 1 then Cq(P )→ 1− γ as q →∞.

Proof. (1) This follows immediately from the definition
of Hq and Cq, given in Eqs. (8) and (9).

(2) For any x > 0, it is clear that logq x → x − 1 as

q → 0+. Using this fact in Eq. (8), we obtain

lim
q→0+

Hq(P ) =
1

d!− 1

d!∑
i=1
pi 6=0

pi

(
1

pi
− 1

)

=
r − 1

d!− 1
.

(A1)

(3) It follows immediately from Eq. (11) that
D∗q → d!−1

4d! as q → 0+. From Eq. (10) we have

lim
q→0+

Dq(P,U) = −1

2

d!∑
i=1
pi 6=0

pi

(
pi + 1/d!

2pi
− 1

)

− 1

2

d!∑
i=1

1

d!

(
pi + 1/d!

2/d!
− 1

)

= −1

4

d!∑
i=1
pi 6=0

(
1

d!
− pi

)
− 1

4

d!∑
i=1

(
pi −

1

d!

)

=
1

4

(
1− r

d!

)
.

(A2)

Using these results and item (2), we obtain from Eq. (9)
that

lim
q→0+

Cq(P ) =

(
4d!

d!− 1

)(
d!− r

4d!

)(
r − 1

d!− 1

)
=

(
1− r − 1

d!− 1

)(
r − 1

d!− 1

)
.

(A3)

(4) For q > 1, Eq. (8) can be written as

Hq(P ) =

d!∑
i=1

pi − pqi
1− (d!)1−q

. (A4)

Then, if r > 1, Hq(P )→
∑d !
i=1 pi = 1 as q →∞.

(5) We have from Eq. (11) that

D∗q =
Kq

(1− q)22−q
, (A5)

where

Kq =
22−qd!− (1 + d!)1−q − d!(1 + 1/d!)1−q − d! + 1

d!
.

(A6)
We note immediately that Kq → (1 − d!)/d! as q → ∞.
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We have from Eq. (10) that, for q > 1,

Dq(P,U)

D∗q
= −21−q

Kq

 d!∑
i=1
pi 6=0

pi

(
1

2
+

1

2pid!

)1−q

+

d!∑
i=1

1

d!

(
pid!

2
+

1

2

)1−q

− 2


= − 1

Kq

 d!∑
i=1
pi 6=0

pi

(
1 +

1

pid!

)1−q

+

d!∑
i=1

1

d!
(pid! + 1)1−q − 22−q

 .

(A7)

Hence, for r > 1,

lim
q→∞

Dq(P,U)

D∗q
=

(
d!

d!− 1

)(
d!− r
d!

)
= 1− r − 1

d!− 1
.

(A8)

Therefore, using these results and item (4) on Eq. (9),
Cq(P )→ 1− γ as q →∞ whenever r > 1.

Appendix B: Ordinal probabilities for the fractional
Brownian motion

By following the results of Bandt and Shiha [38], we
can write the ordinal probabilities (for the embedding
dimension d = 3) of the fractional Brownian motion with
Hurst exponent h as:

p({0, 1, 2}) =
α

2
,

p({0, 2, 1}) =
1− α

4
,

p({1, 0, 2}) =
1− α

4
,

p({2, 0, 1}) =
1− α

4
,

p({1, 2, 0}) =
1− α

4
,

p({2, 1, 0}) =
α

2
,

where

α =
2

π
arcsin(2h−1) . (B1)

Similarly, for the embedding dimension d = 4, we
have [38]:

p({0, 1, 2, 3}) =
1

8
+

1

4π
(arcsinα1 + 2 arcsinα2) ,

p({0, 1, 3, 2}) =
1

8
+

1

4π
(arcsinα7 − arcsinα1 − arcsinα5) ,

p({0, 2, 1, 3}) =
1

8
+

1

4π
(arcsinα4 − 2 arcsinα5) ,

p({0, 2, 3, 1}) =
1

8
+

1

4π
(arcsinα3 + arcsinα8 − arcsinα5) ,

p({0, 3, 1, 2}) =
1

8
+

1

4π
(arcsinα7 − arcsinα4 − arcsinα5) ,

p({0, 3, 2, 1}) =
1

8
+

1

4π
(arcsinα6 − arcsinα8 + arcsinα2) ,

p({1, 0, 2, 3}) = p({0, 1, 3, 2}),

p({1, 0, 3, 2}) =
1

8
+

1

4π
(2 arcsinα6 + arcsinα1) ,

p({1, 2, 0, 3}) = p({0, 3, 1, 2}),
p({1, 2, 3, 0}) = p({0, 3, 2, 1}),
p({1, 3, 0, 2}) = p({0, 2, 3, 1}),
p({1, 3, 2, 0}) = p({0, 2, 3, 1}),
p({2, 0, 1, 3}) = p({0, 2, 3, 1}),
p({2, 0, 3, 1}) = p({0, 3, 2, 1}),
p({2, 1, 0, 3}) = p({0, 3, 2, 1}),
p({2, 1, 3, 0}) = p({0, 3, 1, 2}),
p({2, 3, 0, 1}) = p({1, 0, 3, 2}),
p({2, 3, 1, 0}) = p({0, 1, 3, 2}),
p({3, 0, 1, 2}) = p({0, 3, 2, 1}),
p({3, 0, 2, 1}) = p({0, 3, 1, 2}),
p({3, 1, 0, 2}) = p({0, 2, 3, 1}),
p({3, 1, 2, 0}) = p({0, 2, 1, 3}),
p({3, 2, 0, 1}) = p({0, 1, 3, 2}),
p({3, 2, 1, 0}) = p({0, 1, 2, 3}),

where

α1 =
1 + 32h − 22h+1

2
,

α2 = 22h−1 − 1,

α3 =
1− 32h − 22h

2× 6h
,

α4 =
32h − 1

22h+1
,

α5 = 2h−1,

α6 =
22h − 32h − 1

2× 3h
,

α7 =
32h − 22h − 1

2h+1
,

α8 =
22h − 1

3h
.
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By using these values, we find the exact form of the
distribution P = {p(πj)}j=1,...,d! and the q-complexity-
entropy curve (Hq(P ), Cq(P )).

Appendix C: Definition of the eight chaotic maps
employed in our study

The Burgers map is defined as

xk+1 = axk − y2k
yk+1 = byk + xkyk

,

and we have chosen a = 0.75 and b = 1.75. The time
series that we have analyzed is (xk + yk)2 with x0 = −0.1
and y0 = 0.1.

The cubic map is defined as

xk+1 = axk(1− x2k) ,

and we have chosen a = 3 and x0 = 0.1.
The Gingerbreadman map is defined as

xk+1 = 1− yk + |xk|
yk+1 = yk

,

and we have chosen x0 = 0.5 and y0 = 3.7. The time
series that we have analyzed is (xk + yk)2.

The logistic map is defined as

xk+1 = axk(1− xk) ,

and we have chosen a = 4 and x0 = 0.1.

The Hénon map is defined as

xk+1 = 1− ax2k + yk

yk+1 = bxk
,

and we have chosen a = 1.4 and b = 0.3. The time series
that we have analyzed is (xk + yk)2 with x0 = 0 and
y0 = 0.9.

The Ricker map is defined as

xk+1 = axk e
−xk ,

and we have chosen a = 20 and x0 = 0.1.

The sine map is defined as

xk+1 = a sin(πxk) ,

and we have chosen a = 1 and x0 = 0.1.

The Tinkerbell map is defined as

xk+1 = x2k − y2k + axk + byk

yk+1 = 2xkyk + cxk + dyk
,

and we have chosen a = 0.9, b = −0.6, c = 2.0, and d =
0.5. The time series that we have analyzed is (xk + yk)2

with x0 = −0.1 and y0 = 0.1.
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[34] J. M. Amigó, Permutation Complexity in Dynamical Sys-
tems (Springer-Verlag, Berlin, 2010), 2010).

[35] O. A. Rosso, L. C. Carpi, P. M. Saco, M. G. Ravetti,
H. A. Larrondo, and A. Plastino, Eur. Phys. J. B 85,
419 (2012).

[36] O. A. Rosso, L. C. Carpi, P. M. Saco, M. G. Ravetti,
A. Plastino, and H. A. Larrondo, Physica A 391, 42
(2012).

[37] L. C. Carpi, P. M. Saco, and O. A. Rosso, Physica A
389, 2020 (2010).

[38] C. Bandt and F. Shiha, Journal of Time Series Analysis
28, 646 (2007).

[39] J. R. M. Hosking, Water Resources Research 20, 1898
(1984).

[40] R. S. Mendes, L. R. Evangelista, S. M. Thomaz, A. A.
Agostinho, and L. C. Gomes, Ecography 31, 450 (2008).

[41] V. K. Pang-Ning Tan, Michael Steinbach, Introduction to
Data Mining (Freeman, Harlow, 2014).

[42] C. Z. L. Schimansky-Geier, Z. Physik B - Condensed
Matter 79, 451 (1990).

[43] C. Gardiner, Handbook of stochastic methods for physics,
chemistry, and the natural sciences, 3rd ed., Springer
series in synergetics (Springer-Verlag, Berlin, 2004).

[44] R. M. May, Nature 261, 459 (1976).
[45] M. V. Jakobson, Commun. Math. Phys. 81, 39 (1981).
[46] U. Hubner, N. B. Abraham, and C. O. Weiss, Phys. Rev.

A 40, 6354 (1989).

[47] “Time series A of the Santa Fe time series compe-
tition,” https://rdrr.io/cran/TSPred/man/SantaFe.A.

html, accessed: 2017-01-16.
[48] “U.S. Energy Information Administration,” http://www.

eia.gov/, accessed: 2017-01-16.
[49] M. Carbonell, R. Oliver, and J. L. Ballester, Astron.

Astrophys. 274, 497 (1993).
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