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We study and characterize local density fluctuations of ordered and disordered hyperuniform point distribu-
tions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean
geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some
systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina,
actually occur on curved surfaces. Here we will focus on the local particle number variance and its dependence on
the size of the sampling window (which we take to be a spherical cap) for regular and uniform point distributions,
as well as for equilibrium configurations of fluid particles interacting through Lennard-Jones, dipole-dipole, and
charge-charge potentials. We show that the scaling of the local number variance as a function of the window size
enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical surfaces.
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I. INTRODUCTION

Since the fundamental work of Torquato and Stillinger
in the early 2000s [1], hyperuniformity has been the focus
of a large collection of works of relevance in the fields of
physics (e.g. jammed packings [2,3], driven nonequilibrium
granular and colloidal systems [4–6], sedimenting particle
suspensions [7], sand piles and other avalanche models [8,9],
and dynamical processes in ultracold atoms [10]), in materials
science (photonic band-gap materials [11–13], dense disor-
dered transparent dispersions [14], composites with desirable
transport, dielectric and fracture properties [15–18], polymer-
grafted nanoparticle systems [19], and “perfect” glasses [20]),
and in biological systems (photoreceptor mosaics in avian
retina [21] and immune system receptors [22]). The defining
characteristic of these hyperuniform systems is the anomalous
suppression of density (particle number or volume) variances
at long wavelengths. In Euclidean space this implies that the
structure factor S(Q) ≡ 1 + ρh̃(Q) tends to zero as the wave
number Q ≡ |Q| → 0 [1]:

lim
Q→0

S(Q) = 0. (1)

Here h̃(Q) is the Fourier transform of the total correlation
function h(r) = g2(r) − 1, g2(r) is the pair correlation func-
tion, and ρ is the number density.

Hyperuniformity in most of the systems described above
is a large-scale structural property defined in a Euclidean
space [23]. However, generally speaking, one can also transfer
the concept to consider point configurations in non-Euclidean
spaces, such as points on the sphere or torus. A particular
case of relevance in this connection is the avian photoreceptor

cells that are distributed on the retina [21], which is a curved
surface. Obviously, to a first approximation, if the average
near-neighbor distance between the receptors is small com-
pared to the intrinsic curvature of the retina, one can reduce
the problem to that of a particle distribution on a flat surface.
However, this may not necessarily be the case in all instances,
and hence curvature effects must be considered. The extension
of the concept of hyperuniformity to sequences of finite point
sets on the sphere was introduced in the very recent works
of Brauchart and coworkers [24,25], where the problem is
addressed from a formal mathematical perspective and con-
nected to the more general problem of spherical designs.
Point pattern designs on spherical surfaces are key in the de-
velopment of optimal quasi-Monte Carlo (QMC) integration
schemes [26]. These have been extensively used to construct
efficient quadratures to evaluate illumination integrals, which
are essential in the rendering of photorealistic images [27].
Brauchart and coworkers [24] have shown that these optimal
QMC design sequences are hyperuniform. In Ref. [26] it was
shown that good candidates to build QMC spherical designs
could be devised from sets of points minimizing Coulomb
or logarithmic (i.e., two-dimensional Coulomb) pairwise in-
teractions. We will see here how this finding is reflected by
our own results. Very recently, Božič and Čopar [28] have
addressed the problem of hyperuniformity on the sphere and
its connection with the spherical structure factor.

On the other hand, from a materials science perspective,
the realization of particle designs on curved surfaces at the
microscopic level has been experimentally achieved by means
of self-assembly of colloidal particles on oil-glycerol inter-
faces [29]. This opens an avenue to experimentally devise
and manipulate hyperuniform systems on curved surfaces at
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will. Bearing in mind the relevance of hyperuniformity for
the accurate representation of images (both in bird retina [21]
and in artificial image rendering [27]), the potential impact
of these experimental achievements on the design of artificial
photoreceptor devices mimicking the acute visual system of
birds is beneficial.

In order to further our understanding of hyperuniform
systems in curved spaces, in this paper we have addressed
the characterization of the local particle number variances on
a collection of point and particle distributions on spherical
surfaces. Our analysis encompasses both the canonical ensem-
ble setting (fixed number of points) and the grand canonical
ensemble (fluctuating number of points around some average
value). On the other hand, one can resort to the use of the
spherical structure factor as introduced by Brauchart et al. [24]
and Franzini et al. [30]. In a recently published work, Božič
and Čopar [28] suggest the presence of gaps at low multipole
moments in this quantity as a signature of hyperuniformity.
In this work, and in order to stress the direct connection with
the characteristics of hyperuniformity in Euclidean space, we
will focus on the density and number variances. Obviously, in
the limit of infinite sphere radius with number density fixed,
the properties of the system will approximate those of the
Euclidean case, and Eq. (1) will be again useful as a signature
of hyperuniformity. This large connection between curved and
Euclidean geometries was already exploited by Caillol et al.
[31] to remove the effects of periodic boundary conditions
in molecular simulations and cope with the long range of
Coulombic interactions without resorting to the use of Ewald
summations or similar techniques.

In practice, here we will analyze the scaling of the local
particle number variance defined as

σ 2
n (a) = hn(a)2i − hn(a)i2, (2)

where a denotes the base radius of the sampling spherical cap.
This quantity is directly related to the sampling surface, s, as
illustrated in Fig. 1. Also, in (2) n(a) is the number of particles
contained in the sampling window. The h·i in Eq. (2) denotes
an ensemble average on the spherical surface, as described
in greater detail below. In practice, in this work we will be
dealing with point distributions composed of finite sets of N
points placed on the surface of a sphere of radius R and total
area A = 4πR2. From the work of Brauchart et al. [24], we

FIG. 1. Spherical cap sampling region (white) of arc length x,
area s, and base radius a, where the number variance is calculated.

know that for uncorrelated points the local number variance
scales with the surface of the sampling window, σ 2

n (a) ∼ s(a).
In contrast, in hyperuniform systems, when ρ−1/2 ¿ a < R,
σ 2

n (a)/s → 0.
In Sec. II we will introduce explicit expressions connect-

ing the number variance with structural properties, such as
the pair correlation function. In order to properly describe
hyperuniformity on the curved sphere, in Sec. III we first
analyze the behavior of the number variance of regular point
patterns on the spherical surface, namely, a triangular grid and
a Fibonacci lattice. Since translationally and orientationally
ordered point patterns such as those of crystals in Euclidean
space (or orientationally ordered, such as quasicrystals) are
known to be hyperuniform, one should clearly expect the same
to happen on the spherical surface. As reference nonhyper-
uniform point patterns, we investigate in Sec. IV uncorrelated
point processes in both the canonical ensemble (uniform point
distributions) and grand canonical ensembles (Poisson point
distributions). In Sec. V we study the behavior of fluid parti-
cles confined on the spherical surface and interacting via po-
tentials with different ranges, from short-range Lennard-Jones
interactions to dipolar-like (i.e., ∼r−3) and three-dimensional
Coulomb (plasma-like) (i.e., ∼1/r) interactions. To that aim
we have performed canonical Monte Carlo simulations for
various sphere sizes and a fixed surface density. We will see
the correspondence between the hyperuniform and the nonhy-
peruniform reference systems on the spherical surface and in
Euclidean space, and then we will see how the interactions
and the size of the sphere play a role in the build up of
disordered hyperuniform states on this non-Euclidean space.
We make concluding remarks and discuss future prospects in
Sec. VI.

II. EXPLICIT FORMULAS FOR THE NUMBER VARIANCE
ON A SPHERE

To begin, consider a single configuration of a fixed number
of points, N , on the 2-sphere S2, i.e., surface of a three-
dimensional sphere of radius R, as depicted in Fig. 1. It is
assumed that both N and R2 are large and of comparable
magnitude to one another. Let a = √

h(2R − h) 6 R and h
denote the base radius and the height of a spherical cap,
respectively. The surface area of a spherical cap is s(a) =
2πRh = 2πR2[1 −

p
1 − (a/R)2], where we will be consid-

ering only the upper hemisphere, 0 6 φ 6 π/2, to avoid
ambiguity. The number density of the points on the sphere is
given by ρ ≡ N/(4πR2), and n(x0; a) is the number of points
contained within a spherical-cap window centered at position
x0 on the sphere. Let the window uniformly sample the space
for sufficiently small a, i.e., s(a) is much smaller than 2πR2.
Following Torquato and Stillinger [1] for the formulation in
Euclidean space, the number variance associated with a single
configuration on the sphere is given by

n(a)2 − n(a)
2 = ρs(a)

·
1 − ρs(a)

+ 1

N

NX
i 6= j

α2(xi j ; a)

¸
, (3)
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where X denotes a statistical average of a random variable X
over uniformly distributed sampling windows on 4πR2S2 and
α2(x; a) is the intersection area of two spherical caps whose
centers are separated by a geodesic distance x, divided by the
area of a cap. In analogy with the situation in Euclidean spaces
[1], one can use formula (3) to find the particular point pattern
that minimizes the variance at a fixed value of a, i.e., the
ground state for the “potential energy” function represented
by the pairwise sum in Eq. (3).

Now imagine that we generate many realizations of a large
particle number N on the surface of the sphere so that the
density is fixed and then consider the thermodynamic limit.
The canonical ensemble-averaged number variance, σ 2

n (a),
follows immediately from Eqs. (2) and (3) by converting a
summation to an integral involving g2(r):

σ 2
n (a) = ρs(a)

·
1 − ρs(a) + ρ

µ
1 − 1

N

¶

×
Z

4πR2S2
g2(x)α2(x; a) dx

¸
, (4)

where g2(x) is the geodesic pair correlation correlation func-
tion. Similarly, the corresponding ensemble-averaged expres-
sion for the local number variance in the grand canonical
ensemble is also easily obtained from (2) and (3). We find

σ 2
n (a)=hρis(a)

·
1− hρis(a)+ hρi

Z
4πR2S2

g2(x)α2(x; a) dx
¸
.

(5)

In the grand canonical ensemble, the number density of
points fluctuates about some average value hρi. Notice that
formula (5) for the grand canonical ensemble is the one that
most closely matches the local number variance formula in
Euclidean spaces [1]. The reason for this is that in Euclidean
space, hyperuniformity requires sampling large windows in
infinite point sets; see Ref. [23] for further discussion on this
point. It is noteworthy that when approaching the thermody-
namic limit, results from Eqs. (4) and (5) are approximately
the same for windows much smaller than the entire sphere
surface (ρ−1/2 ¿ a ¿ R).

Brauchart et al. [26] rigorously studied the behavior of
the number variance in the canonical ensemble in the large-N
limit. For “uncorrelated” point patterns [i.e., g2(x) = 1 for any
x] in the canonical ensemble, from Eq. (4) one has

σ 2
n (a) = ρs(a)

·
1 − s(a)

4πR2

¸
, (6)

where we have used the identity
R

4πR2S2 α2(x; a) dx = s(a)
and N = 4πR2ρ. Similarly, from Eq. (5) in the grand canon-
ical ensemble, the number variance of “uncorrelated” point
patterns satisfies

σ 2
n (a) = hρis(a), (7)

because the second term and the integral in the square brack-
ets of Eq. (5) exactly cancel each other. We call a point

process1 on S2 in the canonical ensemble hyperuniform if as
a increases in the scaling regime 1/

√
ρ ¿ a < R (1/

√hρi ¿
a < R in the grand canonical):

σ 2
n (a)

s(a)
→ 0. (8)

In our particular case, from Brauchart et al. [25], the
normalized intersection area is given by

α2(ψ ; φ) = 1 − 1

π sin2 φ/2

·
arcsin

µ
sin ψ/2

sin φ

¶

− arcsin

µ
tan ψ/2

tan φ

¶
cos φ

¸
if ψ 6 2φ (9)

and zero otherwise, where ψ = x/R is the angle between the
vectors pointing to the center of the two intersecting spherical
caps. It can be shown that in the limit of R → ∞, Eqs. (4)
and (9) reduce to the expressions found in Ref. [1] for the
Euclidean case in two dimensions.

III. NUMBER VARIANCE OF REGULAR POINT
PATTERNS ON A SPHERICAL SURFACE

In this and the ensuing sections, we perform our analysis
of the local particle number variance defined in Eq. (2) using
a spherical cap as illustrated in Fig. 1.

First, we focus on the determination of the number variance
associated with highly regular point patterns on the sphere,
e.g., triangular lattices and Fibonacci lattices. Dealing with
a regular point pattern implies that the spatial configuration
of the points will be kept fixed. For this reason, and in order
to perform an adequate sampling of the number variance, a
sufficiently large number of centers of the sampling spherical
cap must be chosen randomly on the surface (in our case
around 10 000). In contrast, in the next sections (uncorrelated
point patterns and fluid particles on a spherical surface), we
will be able to average over multiple point configurations
corresponding to the same density, ρ or hρi.

It is important to note that building a two-dimensional
lattice on an spherical surface is a nontrivial problem, which is
certainly very useful in the field of astronomical observation.
Here we will resort to the icosahedron method proposed
by Tegmark [32] as an alternative for pixelizing the celes-
tial sphere. The resulting point distribution is illustrated in
Fig. 2(a). Note that this is an approximate triangular grid since
the algorithm maps the triangular faces of an icosahedron in
which the sphere is inscribed onto the surface of the sphere,
and then distorts the points to give all pixels approximately
the same area.

Another alternative that yields equal area for all grid points
are the Fibonacci grids. Swinbank and Purser have proposed
an efficient algorithm to produce this very regular grid on a
spherical surface [33]. The corresponding illustration of the
Fibonacci pattern is shown in Fig. 2(b). These procedures are

1A point process in Euclidean or compact spaces is a collection
of point configurations that are specified by certain probability
measures (see Ref. [23]).
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(a)

(b)

(c)

FIG. 2. Regular point distributions on a spherical surface: (a) Triangular lattice on a sphere, (b) Fibonacci distribution with 1000 points.
(c) Plots of the scaled local number variance, σ 2

n (a)/(ρs), vs aρ1/2 as a signature of hyperuniformity [see Eq. (8)]. The inset illustrates the
linear dependence of the number variance with the radius of the base of the sampling spherical cap (or the perimeter of the sampling window).

similar in spirit to the quasi-Monte Carlo approach for numer-
ical integration on spherical surfaces discussed by Brauchart
et al. [24]. In the latter instance, one must choose a set of
points that minimizes the error of numerical integration, and
this in turn leads to pixels of similar size on the sphere’s
surface. In Ref. [24] it was shown that this corresponds to a
hyperuniform point distribution. The minimization constraint
makes the approach deterministic, retaining nonetheless some
Monte Carlo (i.e., stochastic) character. In contrast, the result
of our two tessellation techniques would be the spherical ge-
ometry equivalent of regular grid integration sets in Euclidean
spaces.

The σ 2
n (a)/(ρs) of the two regular point patterns is pre-

sented in Fig. 2(c). One observes clearly that these quantities
decrease with a (in accordance with definition of Eq. (8)
for hyperuniform systems). Obviously, a vanishing value is
not to be reached due to the finite size of our systems. In
the inset, in both instances one readily appreciates that the
number variance scales linearly with the a, σ 2

n (a) ∝ a, and
hence also with the perimeter of the sampling area. This
will precisely correspond to the linear dependence on the
radius of the sampling window in perfectly ordered lattices
in a flat two-dimensional space, as shown in Ref. [1]. In our
study we have found that no simple scaling can be derived
using the arc length, x, of the sampling spherical cap. The
marked oscillations observed in σ 2

n are a direct consequence
of the ordering of the point patterns which is due to strong
oscillations in g2(x) [cf. Eq. (4)], which is consistent with the
previous observations in the behavior of the number variance
of ordered point patterns in Euclidean spaces [1]. This quan-
tity enters σ 2

n through Eq. (4). We have thus identified the
signatures of hyperuniformity on regular point patterns on the
sphere.

IV. VARIANCES OF UNCORRELATED POINT
DISTRIBUTIONS

In this section, we focus on the determination of the
local number variances for uncorrelated point distributions,
which serve as ideal reference nonhyperuniform systems. In
the canonical ensemble, we consider uniform point patterns,
N points uniformly distributed on the sphere. In the grand
canonical ensemble, we consider Poisson point patterns, i.e.,
point configurations chosen from the Poisson distribution
with the mean hNi. Details on the algorithms to determine
both types of point patterns can be found in the Appendix.
Typical uniform and Poisson point patterns on the sphere are
illustrated in Figs. 3(a) and 3(b), respectively.

Concerning the local number variance of point patterns
following a random uniform distribution, we find that the
analysis of σ 2

n (a) for a wide range of particle numbers and
sphere radius yields the simple relation σ 2

n (a)/(ρs) = 1 −
s/(4πR2), in agreement with Eq. (6). This can be expressed
in terms of a/R to give σ 2

n (a)/(ρs) = 1
2 [1 +

p
1 − (a/R)2]

when s(a) < 2πR2. Our results follow precisely this behavior,
as clearly illustrated in the upper panel of Fig. 3(c). This
result is in accordance with the known number variance of
a uniform distribution on a plane for a finite system [24].
Note that clearly lima→∞ σ 2

n (a)/(ρs) 6= 0, hence the system
is not hyperuniform, as should be expected. From the above
formulas it can be shown that σ 2

n (a) ∝ a2.
Let us now focus on the Poisson point distribution on a

spherical surface, whose generation is not a straightforward
process. Here point patterns are generated by an algorithm
devised by Baddeley [34], which is described in the Appendix.
A characteristic Poisson configuration on the spherical surface
is illustrated in Fig. 3(b). Note that the configurations so
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(a)

(b)

(c)

FIG. 3. Uncorrelated point patterns on a sphere in both the grand canonical (a) Poisson distribution (R = 1, hNi = 750) and canonical
(b) uniform distribution ensembles. (c) Plots of the scaled number variance σ 2

n (a)/ρs in terms of a for the uniform (lower) and Poisson point
patterns (upper). In agreement with Eqs. (4) and (5), the number variance of the Poisson point pattern can be seen to follow approximately
Eq. (7), whereas the variance for the uniform point pattern follows σ 2

n (a)/(ρs) = [1 + p
1 − (a/R)2]/2 [Eq. (6)].

generated will be characterized by an average surface density,
hρi, and in contrast with the previously discussed uniform
distribution, we will not have a system with a fixed number
of points, N . Instead we will have a collection of systems
that have the average density, hρi. As mentioned before, to
some extent, this formulation recalls the relation between
grand canonical and canonical ensembles. We now observe
that σ 2

n (a)/(hρis) ∼ 1 as expected from an uncorrelated point
process [cf. Eq. (7)], and it is a known result for the Poisson
point distribution on a plane as well [34].

In summary, when considering systems with a fixed num-
ber of points, N, in analogy with the definitions for Euclidean
spaces, a scaling σ 2

n (a) ∝ a2 will be associated with a nonhy-
peruniform point distribution. In the particular case of Poisson
patterns σ 2

n (a) ∝ s will be the sought signature.
In this way, we have defined what will be our refer-

ence results for scaling of the local number variance on the
spherical surface for configurations with a fixed number of
points. We will see within the scaling regime ρ−1/2 ¿ a < R,
intermediate situations between linear and quadratic scaling
will also be possible, such that

σ 2
n (a) ∝ aδ with 1 < δ < 2. (10)

From Eq. (8), these values of δ will also correspond to hyper-
uniform configurations so that the scaled variance σ 2

n (a)/(ρs)
decreases as a decreases. A summary of the systems consid-
ered up to this point is collected in Table I together with those
of fluid configurations on the spherical surface.

V. NUMBER VARIANCES IN FLUIDS OF INTERACTING
PARTICLES

In this section, we present some results of Monte Carlo
simulations in a canonical ensemble (with a prescribed par-
ticle number N , system area A, and temperature T ) for par-
ticles on a spherical surface interacting with the potential

TABLE I. Summary of the scaling behavior of the number
variance with the geometric parameters of the sampling window
for uncorrelated, regular point patterns, and fluid configurations on
the sphere. In the latter instance, results for two different radii are
presented.

Point pattern Scaling

Poisson distribution σ 2
n (a) ∝ s = (1 − p

1 − (a/R)2)2πR2

Uniform distribution σ 2
n (a) ∝ a2 = s(1 − s/(4πR2))/π

Triangular lattice σ 2
n (a) ∝ a

Fibonacci lattice σ 2
n (a) ∝ a

R = 15
LJ fluid σ 2

n (a) ∝ a2

Udd (α = 1) σ 2
n (a) ∝ a2

Udd||(α = 1) fluid σ 2
n (a) ∝ a1.8

Udc (γ = 1) fluid σ 2
n (a) ∝ a1.7

Ucc (β = 1) fluid σ 2
n (a) ∝ a1.4

R = 5
Udd||(α = 1) fluid σ 2

n (a) ∝ a1.7

Udd||(α = 3) fluid σ 2
n (a) ∝ a1.3

Udd||(α = 6) fluid σ 2
n (a) ∝ a1.1
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functions summarized below in Eqs. (11) and (12a)–(12d).
The simulation starts when N particles are randomly placed
on a sphere surface of radius R. We then perform 5 × 105

translational attempts along random directions on the surface
in order to equilibrate the system. Averages are calculated
over 105 statistically independent configurations. Sampling of
the number variance is performed using only three different
coordinate origins in orthogonal directions. Here we will
analyze the effect of different interactions on the local particle
number variances. Bearing in mind the results of the previous
section, we will be able to see how the interaction tunes the
hyperuniform character of the fluid structure.

The net pair interaction between particles i and j has
a short-range dispersive and repulsive component of the
Lennard-Jones (LJ) form:

ULJ (r) = 4²

"µ
dLJ

r

¶12

−
µ

dLJ

r

¶6
#
, (11)

where r is the Euclidean distance between particles i and j,
and not the arc length. The Lennard Jones parameters, ² and
dLJ , are defined as units of energy and length, respectively.
We set the reduced temperature to T ∗ = kBT/² = 5.2 (kB

being Boltzmann’s constant), which is well above the critical
temperature for a LJ fluid. To the LJ interaction we will add
dipolar-like, charge-dipole, and charge-charge contributions.
To simplify the problem, dipoles are kept perpendicular to
the surface, as if under the influence of an electric field
whose source is at the center of the sphere. We will also
consider the case of a simple 1/r3 repulsion (equivalent to
that of completely parallel dipoles on a plane), and for the
charge-dipole interaction we will also consider that dipoles
are orthogonal to the line joining the particle centers. This is
a crude approximation to the case of dipoles perpendicular to
the surface. The explicit form of the interactions used is

Udd (r, Esi, Es j ) = ULJ (r)+ α

r3

·
(Esi · Es j ) − 3(Esi · Er)(Es j · Er)

r2

¸
,(12a)

Udd||(r) = ULJ (r) + α

r3
, (12b)

Udc(r) = ULJ (r) + γ

r2
, (12c)

Ucc(r) = ULJ (r) + β

r
, (12d)

where γ , β = 1 and α will be set to unity in most cases, except
when analyzing the effect of the repulsion strength on the
number variance and pattern formation, and Esi (Es j) is the unit
vector denoting the orientation of dipole i ( j).

We have first determined the local number variance for
particle configurations on a sphere of radius R = 15. Results
are presented in Fig. 4. In the inset two reference curves
have been added, one representing the linear dependence
on the sampling window radius, a (hyperuniform scaling in
ordered configurations) and another for the quadratic depen-
dence (regular disordered nonhyperuniform systems). Note
that here we have plotted a normalized variance σ 2∗

n (a), scaled
with the value of σ 2

n (a = R) (obtained for each realization).
One immediately observes that as the range of the potential
increases, the scaling becomes hyperuniform, i.e., σ 2

n (a) ∝ aδ

FIG. 4. Plots of the scaled particle number variance,
σ 2

n (a)/[ρs(a)], vs aρ1/2, for configurations of particles interacting
with various potentials (as shown in the legend), on a sphere
of radius R = 15 and for a density ρ = 0.5. One can appreciate
that curves are grouped following the range of the interaction,
LJ (upper curve, nonhyperuniform), dipole-dipole and dipole
charge, and charge-charge (both hyperuniform). In the inset the
normalized number variance is plotted as a function of a to illustrate
the deviation from the linear behavior (hyperuniform scaling for
regular configurations) as the range of the interaction decreases, to
finally reach almost quadratic scaling (nonhyperuniform) for the LJ
interaction. We note that the precipitous drop of the scaled number
variance σ 2

n (a)/[ρs(a)] for very small values of a will occur for any
correlated system, whether hyperuniform or not, in both curved and
flat spaces.

with δ < 2, and δ decreasing as the interaction range in-
creases. In fact, for the Coulomb-like interaction we have δ ≈
1.4. This interaction gives strictly δ = 1 for planar surfaces
[35]. The pure LJ fluid, as in the Euclidean case, displays
no hyperuniformity and conforms quadratic scaling as the
uniform random point patterns. In the main graph of Fig. 4 we
have plotted σ 2

n /(ρs), and we find again here that as the range
of the interaction increases this quantity tends to vanish as a
grows. The results for the LJ are qualitatively similar to those
of the uniform random distribution depicted in Fig. 3(c), in
accordance with the quadratic scaling illustrated in the inset.
Values of the exponent δ obtained from fits of σ 2

n (a) ∝ aδ

are collected in Table I, together with results obtained for
R = 5 and the same density with varying interaction strength.
Interestingly, one can observe that dipoles perpendicular to
the spherical surface display a quadratic scaling identical to
that of the LJ fluid, i.e., δ = 2. This is due to the fact that the
angular part of the interaction changes, including becoming
attractive when the sign changes, as the dipoles move apart
due to the curvature of the sphere. Due to this, the long-range
component of the interaction is not purely repulsive anymore,
a requirement that must be fulfilled in disordered systems
that exhibit hyperuniformity for equilibrium states at finite
temperature [36]. This situation is in marked contrast with
that of dipoles orthogonal to a plane, where the interaction
is always purely repulsive and long-ranged, i.e. exactly the
interaction defined by Eq. (12b), Udd||(r). We see in Fig. 4 that
for this long-range interaction the scaling begins to deviate
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FIG. 5. Scaled number variance, σ 2
n (a)/(ρs), vs the radius of the

sampling surface, aρ1/2, for a system of particles with parallel dipole-
dipole interactions Eq. (12b) in terms of the α parameter. Particles
lie on a sphere of radius R = 5, with a reduced density ρ = 0.5. The
system becomes more hyperuniform as the strength of the interaction
(α) increases.

from that of the LJ (quadratic), with an exponent δ = 1.8 (see
Table I).

It has to be pointed out that in Fig. 4 we have omitted
the results for a < 1, a region where one should see that
lima→0 σ 2

n (a)/(ρs) = 1. When a < 1, the sampling window
is smaller than the particle size, which implies that one cannot
expect to obtain a statistically significant value for the vari-
ance along a finite simulation run, particularly as a → 0. This
limitation applies more drastically to the results presented in
Fig. 5, since they correspond to a smaller sample size.

Now, instead of tuning the interaction range by changing
the functional form of the long-range contribution to the
potential as done above, we can modify its intensity (which
is in part equivalent to lowering the temperature). Here we
have chosen to vary the α parameter in Udd|| [Eq. (12b)] from
1 to 6 for R = 5 and ρ = 0.5. The effect of this change on the
local number variance is visible in the plot of Fig. 5. One can
clearly observe that as the strength of the interaction increases

the degree of hyperuniformity grows. This should not be sur-
prising, since for a finite system increasing α is to some extent
equivalent to an increase in the range of interaction. For α = 6
we are back to the linear scaling (strong hyperuniformity), as
evidenced by the value δ = 1.1 in the scaling of Table I. One
can also appreciate the characteristic oscillations of a regular
pattern. This pattern formation is readily seen in the snapshots
of Fig. 6. One sees there that for the largest interaction
strength the particles are almost ordered in a triangular lattice.
This is mostly an energetic effect (even if entropy is also
maximized), by which the particles adopt a configuration that
maximizes the interparticle distances, thus minimizing the
repulsive energy. With this quasi-ordered state we are back to
the purely linear dependence of the local number variance of
the triangular and Fibonacci lattices. These low-temperature
(or high-α) states recall the point patterns that minimize
the Coulomb energy, which according to Ref. [26] provide
suitable spherical designs for QMC integration.

Finally, another feature that must be commented upon is
the visible decrease of the slope of the curves of the local
number variance in Figs. 4 and 5 and also in Fig. 8 (becoming
more negative as the interaction becomes weak) that can be
appreciated as a/R → 1. This is the result of performing
the calculations for a finite-sized sample in the canonical
ensemble, which is contributed from the following term in
Eq. (4):

− ρ

N

Z
g2(x)α2(x, a) dx. (13)

This term becomes more negative and has a larger contri-
bution to σ 2

n (a) as a/R → 1. This feature is also evident
in the upper panel of Fig. 3(c). This case is particularly
meaningful since now the term (13) reduces to −s(a)/(4πR2).
This contribution is absent in the grand canonical case. Com-
paring the upper and lower panels of Fig. 3(c) (canonical vs
grand canonical ensemble), one can immediately grasp the
implications of using a given ensemble well away from the
thermodynamic limit.

All other intermediate disordered situations are also hype-
runiform, but interestingly none of them (and neither does
the pure Coulomb repulsion) exhibits the scaling σ 2

n (a) ∼ a
at positive temperatures. This is in contrast with the situation
found for plasmas in Euclidean space [35,36] which produce
structural hyperuniform configurations with linear scaling at
any finite temperature.

FIG. 6. Illustration of simulated systems for representative states of different repulsion strength when the long-range interaction is Udd|| [cf.
Eq. (12b)]. For illustrative purposes, samples presented here are smaller than the samples that we use to compute the local number variances.
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FIG. 7. Effect of the interaction strength on the pair correlation
for a fluid with dipole-dipole-like interactions on a sphere of radius
R = 5 and with surface density ρ = 0.5. Here x is the geodesic
distance between two particles.

The structuring of the fluid as a consequence of the increas-
ing interaction strength is clearly reflected by the pair corre-
lation function depicted in Fig. 7. Here the build up of strong
short-range order is seen in the marked oscillations of g2(r)
for α = 6. This short-range order is, however, highly distorted
for distances beyond the second coordination shell due to
thermal fluctuations. These changes on the pair correlation
function induced by the increase on the interaction strength
are also reflected on the evolution of the number variance with
the size of the sampling window through Eq. (4) in Fig. 8.
The results qualitatively agree with those of Fig. 5 computed
by direct MC sampling of the particle number variance. One
observes how the results for σ 2

n (a)/ρs computed from Eq. (4)
fall below the uniform limit value (=1) and decrease as the
repulsive strength increases, albeit with the results for α =
1 slightly closer to those of the LJ fluid. This behavior is

FIG. 8. Scaled number variance σ 2
n (a)/ρs vs aρ1/2 as calculated

from the pair correlation functions from Eq. (4) for the LJ and
dipolar-like interactions with increasing repulsive strength (ρ = 0.5,
R = 5). The strong oscillations in g2(x) seen in Fig. 7 are reflected in
the curve for α = 6.

in accordance with the qualitative behavior observed in the
curves of Figs. 4 and 5. For small sampling window sizes,
the agreement becomes quantitative. On the other hand as
a grows, the integrated value of σ 2

n (a) increasingly deviates
from the MC results because this integral is appreciably
affected by statistical uncertainties in the tail of g2(r).

VI. CONCLUSIONS

In summary, we presented derivations of formulas for
the local number variance of point patterns on the sphere
in both the canonical and grand canonical ensembles. We
demonstrated that uncorrelated point patterns in these two
ensembles are definitely not hyperuniform and their corre-
sponding variance behaviors can dramatically differ for large
windows. We also showed that the local number variance
exhibits two distinct types of hyperuniform scalings in the
canonical ensemble: regular point patterns have a scaling
σ 2

n (a) ∼ a, and some correlated disordered point patterns have
σ 2

n (a) ∼ aδ (1 < δ < 2), which correspond to class I and class
III in Euclidean spaces [23], respectively. There are also
certain hyperuniform point patterns that correspond to class II
in Euclidean space [23], e.g., determinantal point patterns in
the so-called harmonic ensemble [25], although they were not
classified that way in Ref. [25]. The identification and classi-
fication of hyperuniform point configurations on the sphere
and other compact spaces (such as cylinders, ellipsoids, or
tori) represent a largely open area for future research. We also
plan to study the effect of interactions that favor the formation
of quasicrystal-like structures, in particular those that present
highly directional bonding interactions, as found in patchy
colloids.
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APPENDIX: GENERATING UNCORRELATED POINT
PATTERNS

1. Uniform point patterns

The generation of a uniform point configuration is a trivial
problem in Euclidean spaces using pseudorandom numbers.
On a spherical surface S2, however, one must be a bit more
careful. The simplest approach is to generate a uniform distri-
bution of points inside a cube inscribing the sphere, discarding
those points outside the sphere, and then performing an or-
thogonal projection of the inner points onto the surface [37].
Alternatively one can choose three pseudorandom numbers
following a Gaussian distribution centered in the sphere of
radius, R, and project the resulting points in space onto the

022107-8



HYPERUNIFORMITY ON SPHERICAL SURFACES PHYSICAL REVIEW E 100, 022107 (2019)

spherical surface. Other approaches can also be found in
Ref. [38].

2. Poisson point patterns

We recall that a random variable whose values are the non-
negative integers has a Poisson distribution with parameter
λ > 0 whenever P[X = k] = e−λλk/k! for k = 1, 2, . . .. It is
often abbreviated by saying that X has a Poiss(λ) distribution.
Note that λ corresponds specifically to hρi in the main text.
Some basic properties are the following:

(1) If X follows a Poisson distribution with an intensity λ

[i.e., X ∼ Poiss(λ)], then E (X ) = Var(X ) = λ.
(2) If X1, . . . , Xn are independent random variables

having Poiss(λ1), . . . , Poiss(λn) distributions, respec-
tively, then X1 + · · · + Xn has a Poiss(λ1 + · · · + λn)
distribution.

Let S be a sphere. For each region A ⊆ S we denote its
area by μ(A). Suppose that we have a random distribution
of points on the sphere. For each region A ⊆ S we denote

N (A) the random variable “number of points in A.” We
have a random spatial point process with parameter c > 0
whenever

(1) For each A, N (A) has a Poiss[cμ(A)/μ(S)] distribu-
tion.

(2) If A1, . . . , An are mutually disjoint regions, then
N (A1), . . . , N (An) are independent random variables.

We recall that each point in the sphere has two angular
spherical coordinates θ and φ. In order to generate a set of
points distributed according to a Poisson spatial process on
the sphere with parameter c we have developed an algorithm
based in an usual idea in this subject:

(1) We subdivide the sphere into small, mutually disjoint
“spherical rectangles” R1, . . . , Rm so that the angular coordi-
nates (θ, φ) of every point in Rj satisfy inequalities of the
form θ j1 < θ 6 θ j2 and φ j1 < φ 6 φ j2.

(2) For each Rj we generate a random number k j ac-
cording to a Poiss[cμ(Rj )/μ(S)] distribution and k j points
uniformly distributed in Rj are generated.
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