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Abstract

This work revisits the dynamic behaviour of stirred continuous reactors in which a single bioreaction with unknown
kinetics occurs. Conditions on the feeding strategy to avoid washing out the biomass and falling in batch operation
are obtained. These conditions derive in a closed positively invariant region including the desired operating point. It is
stated that no closed orbits may exist in this region and, furthermore, that no fixed point exists but on one of its borders.
Therefore, global stability is achieved by finding a feeding law that fulfills the aforementioned invariant conditions and
gives a single equilibrium for a first-order dynamics. These results are useful to determine the stability properties of
different control laws and, more importantly, to design new ones. Differing from previous results, the main advantages
of the proposed approach are its simplicity and that input saturation does not affect stability results. The potentiality
of the developed tools is illustrated by means of classical and novel feeding laws.
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1. Introduction

A continuous bioreactor is a vessel where a biochemical
reaction takes place while fresh medium is continuously
supplied and an effluent stream is withdrawn to keep vol-
ume constant. We focus on continuous stirred-tank biore-
actors in which biomass is suspended in the liquid medium
and the composition of the effluent is supposed to be the
same as in the vessel.
This type of bioreactors has been widely used in indus-

try during the last decades with several purposes: either
to produce chemical compounds, to cultivate biomass, for
extraction of intracellular products and in bioremediation.
They are also receiving a renewed interest in research.

Since microbial growth occurs in an unchanging environ-
ment, continuous bioreactors are a source for large volumes
of uniform cells or protein. This is fundamental for low
noise characterisation of engineered microorganisms and
biological circuits in synthetic biology [5, 26, 28].
Continuous bioreactors are long term processes along

which set-points, control objectives, dynamic behaviour
and environmental conditions may change. For instance,
in research applications it is interesting to grow cultures
under different conditions in order to properly charac-
terise the microorganisms and find optimum productivity
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[20, 31].Therefore, global stability is essential for their suc-
cessful control. To make most profit of the process, it is
also convenient to minimise the transient between consec-
utive steady state operating points.

The control of continuous bioprocesses have been ad-
dressed using different design tools. Linear control theory
has been applied in [11]. Exact feedback linearisation has
been exploited, for instance, in [2, 21, 23], but input flow
saturation impacts directly on the controller stability and
performance. Lyapunov theory has been also used both
for stability analysis and control design [27, 18, 17]. In
[27], Lyapunov functions are used to determine domains
of attraction of stable equilibria for open-loop processes in
which the dilution rate is constant. In [18], sampled mea-
surement of substrate concentration is used for feedback
control but requires a model of the growth kinetics. In
[14], the control of an age-structured continuous bioreac-
tor modelled by a partial differential equation is addressed,
but the effect of substrate on growth rate is not considered.
In [17] globally stable feedback laws are designed, being the
feedback gain dynamically adapted in such a way that con-
trol never saturates. In this control, speed of convergence
is not an issue, so it is not set by controller tuning. There
are other global control approaches [24], but they often do
not explicitly consider the constraints on the input flow.

It is proposed here a simple and systematic methodol-
ogy to design globally stabilising controllers for continuous
bioreactors involving a pure culture growing on one lim-
iting substrate. The trade-off between convergence speed
and global stability becomes clear. One of the main ad-
vantages of the proposed approach is that input flow satu-
ration does not affect stability, so the designer should not
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care about it. From a bioengineering viewpoint, this paper
offers a mathematical analysis to re-think and understand
trade-offs and limitations of empirical feeding laws.
As in previous papers in the literature [2, 17], we derive

our results from a mass balance model of a continuous
bioprocess in which a single bioreaction occurs. Since no
particular expression for the reaction kinetics is consid-
ered, this model is suitable to describe the growth of a
broad variety of microorganisms. The method presented
here is also a basis for analysing and designing controllers
for more complex bioreactions.

2. Operating modes and dynamic model

2.1. Modes of operation

In industry, continuous reactors are often operated as
chemostats, that is the pump feeds fresh medium into
the vessel at a constant rate. Chemostats reach their
steady state when the dilution of the culture equals the
microbial growth. Thus, the experimenter manipulates
the specific growth rate of microorganisms by setting the
set-point of the feeding pump. Chemostats suffer from
some limitations, however. In fact, they are not reliable
to regulate specific growth rates close to maximum since
an unexpected or unmodelled growth inhibition may lead
to biomass wash-out. Additionally, the culture might be
lost during transient from one steady state to another one
unless set-point changes are made slow enough. Finally,
multiplicity occurs when, as usual, the growth is inhibited
by a nutrient in excess.
As alternatives to chemostats, different closed-loop

strategies have been developed. For instance, nutristats
regulate substrate concentration at a given set-point. This
operating mode avoids multiplicity and allows driving the
biochemical reaction to maximum specific growth rate con-
ditions. This operation is restricted to those processes in
which the nutrient can be reliably measured on-line in low
concentrations like in [15, 25]. On the other hand, tur-
bidostats regulate cell density at a prescribed value [16, 8].
Cell density is continuously monitored using a spectropho-
tometer/turbidometer to measure the optical density for
control purposes [4], or other methods based on dielectric
permittivity [10]. Other operating methods use on-line
measurement of other variables such as pH, dissolved oxy-
gen (DO), oxygen uptake rate (OUR), oxygen transfer rate
(OTR), chemical oxygen demand (COD) to indirectly reg-
ulate a key variable of the biochemical reaction [19, 29].
In all these modes of operation, the dilution rate is ma-

nipulated to drive the process towards the desired oper-
ating point. Typically, set-point step and ramp changes
are implemented to study the effects of the specific growth
rate on the production rate and other issues. However,
arbitrary set-points for both biomass and substrate con-
centrations cannot be achieved by only manipulating the
dilution rate because of reaction constraints. To overcome
them, a piece-wise constant inlet substrate concentration

profile is often implemented, limited by maximal biomass
concentration or OTR constraints. The switching times
are chosen separated enough, so that the process is mostly
operated in steady-state. A time of five generations of
microorganisms in the new macroscopical steady-state is
considered enough to assure internal steady-state in the
cell metabolism.

2.2. Mass balance dynamic model

In this paper, we consider continuous bioprocesses in
which a single species of microorganisms grows in a per-
fectly stirred vessel. It is assumed that the growth is lim-
ited by a single carbon and energy source (CES) whereas
other required nutrients are in excess or suitably regulated.
It is important to remark that no particular model for the
kinetics of the reaction is considered. In fact, bioreactions
obeying different types of kinetics are comprised: mono-
tonic kinetics like Monod, Teissier and Moser, inhibitory
kinetics by excessive substrate like Haldane, inhibitory ki-
netics by excessive biomass like Contois, etc. [3]. There-
fore, the results presented below apply to a very wide range
of bioprocesses. Further, the extension to even more gen-
eral processes involving dual substrates will be briefly dis-
cussed too.

Let us consider the bioreaction mass balance model:

Ẋ = µX −D(t)X X ∈ ℜ+ (1a)

Ṡ = −yµX +D(t)(Sin(t)− S) S ∈ ℜ+ (1b)

where X and S are the biomass and substrate concentra-
tions in the reactor, respectively, µ is the specific growth
rate, D is the manipulated dilution rate, y is the substrate-
to-biomass yield and Sin(t) is the substrate concentration
in the inlet flow. In the mass balance model (1), endoge-
nous metabolism and cell maintenance are neglected.

Mass balance model (1) fulfills the dynamic restriction

Ż = D(Sin(t)− Z) (2)

where Z = yX +S is the amount of CES per volume that
was supplied into the reactor and is currently part of the
cells or diluted in the liquid medium.

Assumption 2.1. Let µ(X,S, q) be a globally Lipschitz
function satisfying µ(X, 0, ·) ≡ 0, µ(X,S, ·) > 0 ∀S > 0

where q ∈ Q gathers uncertain parameters and other vari-
ables (DO, temperature, pH , etc.) affecting the kinetics.

Note that assumption 2.1 is not restrictive from the bio-
process viewpoint since it is verified by most of the kinetic
models used in biotechnology.

Assumption 2.2. Let Sin(t) be positive and piece-wise
constant. That is, given a set of instants {tj} that parti-
tions the process time into intervals Ij = [tj , tj+1) and a
set of positive constants {Sin

j }, then Sin(t) = Sin
j ∀ t ∈ Ij .
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Recall that the metabolic steady-state is achieved some
time after the transient in the reactor media vanishes.
Therefore, time intervals Ij are supposed to be much
longer than the settling time of the closed-loop responses.

Assumption 2.3. The dilution rate is nonnegative and
bounded 0 ≤ D(t) ≤ D̄ ∀t.

In continuous mode, D(t) ≥ d ∀ t ≥ 0, for some suffi-
ciently small d > 0. Note however that this constraint can
be conveniently relaxed as follows:

Definition 2.1. We will say that a bioprocess operates in
continuous mode when, for each time interval Ij, there
exists 0 ≤ TCj << (tj+1 − tj) such that D(t) ≥ d ∀ t ≥
tj + TCj, for some sufficiently small d > 0.

This definition includes processes in which the control sat-
urates at D = 0 during some time periods along the tran-
sient response.
Let us normalise the concentrations w.r.t. the piece-wise

constant inlet substrate concentration Sin(t):

x :=
yX

Sin
s :=

S

Sin
z :=

Z

Sin
(3)

After applying this normalisation and some abuse of no-
tation, the mass balance model is rewritten as:

ẋ = µ(x, s, q)x −D(t)x x ∈ ℜ+ (4a)

ṡ = −µ(x, s, q)x +D(t)(1 − s) s ∈ ℜ+ (4b)

ż = D(t)(1 − z) z ∈ ℜ+ (4c)

where the state jumps at the switching instants tj :

(x(tj), s(tj), z(tj)) =
Sin
j−1

Sin
j

lim
t→t

−

j

(x(t), s(t), z(t)) (5)

Note that (4) is a non-minimal realisation of (1) since
the state lives on subspace L = {(x, s, z)|z = x+ s}.

3. Invariance, equilibria and stability of continu-
ous bioprocesses

3.1. Invariance

Under assumption 2.3, the set [0,maxt S
in(t)] is an in-

variant set for Z. Furthermore, since both X and S satisfy
(2) and are nonnegative under assumptions 2.1–2.3, then
they are bounded by S, yX ∈ [0,maxt S

in(t)]. Therefore,

IR =







(x, s, z) ∈

[

0,
maxj S

in
j

minj Sin
j

]3

∩ L







(6)

in the normalised state space is positively invariant. Fur-
thermore, concentrations evolve in such a way that z
is piece-wise monotonous in IR, i.e. it is either non-
decreasing or non-increasing for every time interval Ij .

Figure 1: Invariant region IR0 of (4) for initial conditions on z0 < 1
(left) and z0 > 1 (right). Invariant wash-out subregion X̄ , equilib-
rium subregion Z and batch subregion S̄.

Since the time-dependent switching is supposed to occur
at low frequency and the state jumps within the invariant
region IR, it suffices to study the response of (4) for an
arbitrary time period Ij and an arbitrary initial condition
in IR. Consequently, from now on we will omit subscript
j unless necessary.

Let us define the arbitrary initial state P 0 :=
(x0, s0, z0) ∈ IR. Then, the following set of IR is also
positively invariant:

IR0 = {(x, s, z) ∈ IR|z ∈ 〈z0, 1〉} (7)

where the notation 〈z0, 1〉 := [min{z0, 1},max{z0, 1}] was
used. By simple inspection of (4), invariant sets exist on
IR0 independently of the feeding law. They are:

X̄ = {(x, s, z) ∈ IR0|x = 0} (8a)

Z = {(x, s, z) ∈ IR0|z = 1} (8b)

X̄ means biomass wash-out, whereas Z is the reaction in-
variant [30]. These invariant sets are depicted in Fig. 1.

3.2. Equilibria

Let us analyse first the equilibria of the autonomous
system (4) with D = 0, i.e. in batch operation mode. By
simple inspection of (4) we realise that z is constant in
batch mode. Also, every point in X̄ is an unstable fixed
point. Analogously, every point in

S̄ = {(x, s, z) ∈ IR0|s = 0} (9)

is a marginally stable fixed point. Furthermore, note all
trajectories initiated in IR0 with x0 > 0 converge toward
S̄ at constant z. Since z is constant during the batch,
no closed orbit exists on IR0. Consequently all orbits
not originated in a (non-isolated) fixed point of the au-
tonomous system are straight lines pointing to S̄ at con-
stant z. Note also that convergence to S̄ is asymptotic.

Let us see now possible equilibria of (4) in continuous
operation mode.
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Assumption 3.1. Let the dilution rate be a globally Lip-
schitz time invariant feedback law D(x, s) satisfying as-
sumption 2.3.

Result 3.1. There are no closed orbits nor fixed points of
system (4) in the interior of IR0.

IR0 is a closed positively invariant set. Since the system
is planar on L and z is monotonous, neither strange at-
tractors nor limit cycles can exist.
It is easy to see also that any fixed point is on the border

of IR0. On the one side, in continuous mode (D > 0), all
orbits originated in IR0, even those starting in X̄ and S̄,
will converge to Z. Since the system dynamics on Z can be
described by a first-order differential equation, then only
fixed points can exist on it. On the other, in batch mode
(D = 0), all orbits originated in the interior of IR0 will
converge to a point in S̄ while X̄ and S̄ are sets of non-
isolated equilibria. Therefore, also in batch mode, only
fixed points on the border of IR0 exists.
The desired operating point P ∗ = (x∗, s∗, 1) of the pro-

cess is, of course, on Z, which with some abuse of notation
can be written also as P ∗ = (x∗, 1−x∗) or P ∗ = (1−s∗, s∗).

3.3. Stability of a continuous bioreactor

Batch operation must be avoided, otherwise the state
will not converge to Z but to S̄. In continuous mode,
convergence to the wash-out equilibrium Pw = (0, 1, 1)
must be avoided. This point will be a stable node or a
saddle, depending on the feedback control law. Of course,
(semi-)global stabilisation of P ∗ requires Pw to be a saddle
point attracting only the orbits originated in the invariant
set X̄ . However, this design specification is not enough
in practice since unmodelled causes such as mortality can
result in biomass was-out. It is therefore desired biomass
concentration not to fall below too low concentrations.
In the following, we derive conditions for X̄ and S̄ to

repel orbits originated in the interior of IR0.
It is quite obvious from (4a) that if D(x, s) ≤

µ(x, s, q)∀z ∈ 〈z0, 1〉, ∀q ∈ Q, for some x < x∗, then

RX = {(x, s, z) ∈ IR0|x ≥ x} (10)

is positively invariant. If we accept x small enough, by
continuity we simply have to check that X̄ is locally non-
attractive.

Wash-out avoidance condition (WAC)

If the dilution rate verifies

lim
x→0+

D(x, s)− µ(0, s, ·) < −ǫ ∀s ∈ 〈z0, 1〉 (11)

ǫ ≥ 0, then a positively invariant region RX exists for some
sufficiently small x. Note that a feeding law satisfying (11)
avoids also convergence to the wash-out operating point
Pw, i.e. makes Pw a saddle point.

Strong batch avoidance condition (sBAC)

There are no equilibrium points on S̄ iff

D(x, 0) > ǫ ∀x ∈ 〈z0, 1〉 (12)

This condition can be very restrictive and, indeed, is not
satisfied by some classical feeding laws. Assuming s0 > 0,
we can relax it by requiring S̄ to be repelling.

Weak batch avoidance condition (wBAC)

S̄ is locally non-attractive if D(x, s) verifies

lim
s→0+

D(x, s)

µ(x, s, ·)
− x > ǫ ∀x ∈ 〈z0, 1〉 (13)

By continuity, if D(x, s) fulfills (12) or (13), then there

exists s sufficiently small such D(x, s) ≥ xµ(x,s,q)
1−s

∀z ∈

〈z0, 1〉, ∀q ∈ Q, and, consequently the region

RS = {(x, s, z) ∈ IR0|s ≥ s} (14)

is positively invariant. Let us call

IR∗ = RX ∩RS ⊂ IR0 (15)

Obviously, if the wash-out and batch invariance conditions
hold, then IR∗ will be positively invariant.

Result 3.2. If D(x, s) satisfies conditions (11), (13) and

µ(x, s, q)|(x+s=1) − D(x, s)|(x+s=1) = 0 (16)

has a single solution (x∗, s∗) ∈ (0, 1)×(0, 1), then all orbits
originated in IR∗ globally converge to P ∗ = (x∗, s∗, 1).

This result follows from the invariance of IR∗ and result
3.1. Since no equilibrium can exist in IR∗ outside Z, it
suffices to verify the existence of a single equilibrium on
IR∗ ∩Z. In other words, it suffices to verify the existence
of a single equilibrium for the first-order x−dynamics (4a)
with D(x, 1− x) or, analogously, for the s−dynamics (4b)
with D(1− s, s). Note that all equilibria of the first-order
x− and s−dynamics on Z in IR∗∩Z are also roots of (16).
Recall that the wash-out equilibrium Pw = (0, 1, 1), that is
always solution of the first-order x− and s−dynamics on
Z for any bounded D, is outside IR∗. The same happens
with the batch equilibrium Pb = (1, 0, 1).
Remark: Result 3.2 applies to IR∗ = RX when the

sBAC (12) holds instead of the wBAC (13).
Note: ǫ = 0 in (11)–(13) gives nominal conditions for in-

variance of IR∗, whereas ǫ > 0 provides robustness against
model uncertainties, delayed measurement and sampled
control.

3.4. Control design procedure

Based on the previous results, we can summarise the
procedure to design a globally stabilising feedback control
law as follows.

4



• Design D(x, s) satisfying Assumption 3.1 that locally
stabilises the desired operating point P ∗ = (x∗, s∗).

• Shape D(x, s) so that:

- the WAC (11) holds,

- the BAC (13) or (12) holds,

- (16) has a single solution (x∗, s∗) ∈ (0, 1)×(0, 1).

Recall that saturation of the control action D does not
affect global stability.

4. (Semi-)global stability properties of locally sta-
ble feedback laws

We will illustrate now how the previous results can be
used to determine the (semi-)global stability features of
feeding laws, as well as to design (semi-)globally stable
ones. We start our analysis with the classical open-loop
control law to illustrate how the invariance conditions are
to be checked and their relations with stability.

4.1. Open-loop control (Chemostats)

In chemostats, the dilution rate is fixed at the desired
specific growth rate:

D∗ = µ∗ (17)

Chemostat dynamics have been widely studied from dif-
ferent approaches. Particularly, the Lyapunov-based re-
sults presented in [27] for open-loop bioreactors are very
useful to check stability and domains of attraction in
chemostats. The stability problem is addressed here but
using the invariant tools developed in this paper. The pur-
pose is not to find new results about chemostats stability
but to adopt it as starting point to investigate stability
of closed-loop controlled bioreactors. Additionally, some
mathematical insight into chemostat limitations is given.
For D∗ = µ∗, the nominal strong batch avoidance con-

dition (12) and the wash-out avoidance condition (11) be-
come

sBAC : µ∗ > 0 ∀x ∈ 〈z0, 1〉 (18a)

WAC : µ∗ < µ(0, s, ·) ∀s ∈ 〈z0, 1〉 (18b)

It is immediate to see that (18a) is fulfilled, so there are
not equilibrium points on S̄. Conversely, the (18b) is not
always satisfied even for the simplest kinetics. In fact,
depending on µ∗ and the kinetic function, the biomass
may be washed out or not.
The first-order dynamics on the reaction invariantZ can

be obtained by evaluating the right hand side of (4a) or
(4b) at z = 1 and replacing D(t) with D∗. For instance,

ṡ = −(µ(1− s, s, q)− µ∗)(1− s) (19)

As predicted in Result 3.2, the substrate equilibria are
s = 1, that corresponds to Pw and is outside IR∗, and the
roots of (16).

Figure 2: Chemostat, D∗ in eq. (17). (a) Specific growth rate µ(1−

s, s, q) and equilibria for different set-points µ∗, (b-d) State portraits
for different set-points; ∗: set-point, ⋄: undesired stable equilibrium,
2: unstable equilibrium.

The kinetics with slight inhibition of Fig. 2a is very
useful to illustrate the different behaviours observed in
chemostats and how the developed tools apply. The state
portraits for different set-points µ∗ are showed in the re-
maining boxes of Fig. 2

The most undesired situation occurs when the maximum
specific growth rate is overestimated (as µ∗

1 in Fig. 2a).
This happens when neglecting some limiting effect such as
substrate inhibition, low DO concentration and pH out of
range. In this case (Fig. 2b), the WAC (18b) is violated
all along s ∈ 〈z0, 1〉. It can be seen that (19) presents a
globally stable equilibrium at Pw . On the other hand, the
most favourable situation is when (19) exhibits a single
equilibrium in the interior of Z (s∗2 for the set-point µ∗

2).
Some illustrative state trajectories from different z0 are
plotted in Fig. 2c. Now Pw is a saddle while P ∗ is globally
stable. It should be noted that set-points s∗ > z0 violate
(18b) all along [z0, s∗]. Although X̄ is theoretically not
reachable in finite time, practical wash-out may occur for
low initial conditions.

Another situation happens when the kinetics exhibits
multiplicity as for µ∗

3. In this case a new fixed point at
Pu = (1 − su3 , s

u
3 , 1) between P ∗ and Pw appears. Pu is

locally unstable, whereas Pw is now stable. This is closely
connected with the WAC. In fact, (18b) is violated for all
s > su3 and biomass wash-out occurs. As a result, P ∗ is
stable but not globally stable. This situation is illustrated
with some state trajectories in Fig. 2d.

Many often, continuous bioreactors are operated under
high productivity conditions, i.e. the broth is fed with
a high substrate concentration (Sin) flow while dilution
D drives µ close to µmax in the range of multiple equi-
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libria. This analysis confirms that stability is critical in
chemostats operated under such conditions. In fact, high
inhibition is usually present, the domain of attraction of
the set-point is constrained to its vicinity and biomass
wash-out is prone to occur. That is why, in practice, the
dilution is slowly increased from zero to its desired value.
Contrarily, in those cases in which productivity is not an
issue, globally attractive operating points are possible.

4.2. Reaction rate proportional control

Sometimes, the reaction rate (µx) can be indirectly
known by measuring on-line output gases or other chem-
ical variables [17]. Also, it can be estimated using cell
density sensors, that will be briefly described in next sub-
section. In such cases, a family of controllers of the form
D(x, s) = γ(µx) can be implemented, where γ can be con-
stant or adapted along the transient response. Let us con-
sider γ = 1/x∗, with x∗ being the desired biomass concen-
tration set-point:

D0(x, s) =
1

x∗
(xµ) (20)

Weak batch and wash-out avoidance conditions become

wBAC :
1

x∗
> 1 ∀x ∈ 〈z0, 1〉 (21a)

WAC : 0 < µ(0, s, ·) ∀s ∈ 〈z0, 1〉 (21b)

Clearly, the sBAC (12) is not fulfilled. Then, an initial
condition s0 > 0, as it is usual in practice, is thus re-
quired. Conversely, the wBAC (21a) is always fulfilled
since x∗ < 1. Similarly, (21b) is trivially satisfied all along
X̄ . This is the main advantage of this control structure:
both Pb and Pw are unstable equilibria on Z, whereas there
exists a unique stable equilibrium P ∗ = (x∗, 1− x∗, 1) for
any growth kinetic function. Hence, this controller semi-
globally stabilises P ∗ independently of its position on Z.
Replacing D(t) in (4a)–(4b) with (20) yields

ẋ = D0(x, s)(x
∗ − x) (22a)

ṡ = D0(x, s)(s
∗ − s) (22b)

The concentration dynamics are decoupled one of each
other and converge to their steady state values at the same
rate, so the orbits starting in IR∗ are straight lines (see
Fig. 3). The main drawback of this controller is that con-
centrations evolve slowly when any of the concentrations
is low because D becomes too low also.

4.3. Cell density proportional control

Several sensors have been developed to measure cell con-
centration on-line. They are commonly based on optical
density and cell capacitance measurement [4, 10, 22]. If
biomass concentration is measured, a lot of control strate-
gies can be implemented. The simplest one is:

D1(x) =
µ∗

x∗
x (23)

Figure 3: Reaction rate proportional control, D0 in eq. (20). State
portrait; ∗: set-point, ⋄: invariant points.

Strong batch and wash-out avoidance conditions become

sBAC :
µ∗

x∗
x > 0 ∀x ∈ 〈z0, 1〉 (24a)

WAC : 0 < µ(0, s, ·) ∀s ∈ 〈z0, 1〉 (24b)

It is quite obvious that this controller fulfills both con-
ditions for any P ∗. In contrast with the previous one,
S̄ is not invariant, so the control can start from s0 = 0.
That is, now Pb is not a fixed point, whereas Pw is again
a saddle. These conditions, however, do not suffice to
guarantee P ∗ is globally stable. In fact, substrate in-
hibition often leads to multiple equilibria. According to
(16), the equilibria will be determined by the intersections
and eventual tangent points between µ(1−s, s, q) and line
D1(1 − s) = 1−s

1−s∗
µ∗. There will be a single and globally

stable equilibrium P ∗ only in the case of monotonous or
slightly inhibited kinetics µ(1− s, s, q) on Z .

4.4. Specific growth rate error feedback control

D1(x) in (23) can be rewritten as D1(x) = D0(x, s) +
x
x∗
(µ∗ − µ), putting in evidence the implicit feedback of

the error in µ. This feedback has a stabilising effect on
the s−dynamics that makes its convergence to s∗ faster.
Several specific growth rate observers based on on-line

cell density measurement have been developed in the lit-
erature and tested experimentally [1, 6]. Therefore, if x
is measured a wide family of controllers feeding back the
error in either µ or x can be designed and implemented.
It is immediate to generalise the specific growth rate

error feedback as follows:

Dµ1(x, s) = D0(x, s) + k
x

x∗
(µ∗ − µ) (25)

Strong batch and wash-out avoidance conditions become

sBAC : kµ∗
x

x∗
> 0 ∀x ∈ 〈z0, 1〉 (26a)

WAC : 0 < µ(0, s, ·) ∀s ∈ 〈z0, 1〉 (26b)

It is quite obvious that (26a)–(26b) hold for any P ∗ and
any k. Then, global stability is determined by the local
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Figure 4: Growth error feedback control (a) eq. (25) and (b) eq. (27).
Top: kinetics and equilibria for an arbitrary gain k. Bottom: State
portrait; ∗: set-point, ⋄: undesired stable equilibrium, 2: unstable
equilibrium.

behaviour onZ. As for (23), multiple equilibria usually ap-
pear because of substrate inhibition in µ(1− s, s, q). Any-
way, for monotonic and slightly inhibited kinetics, a single
and globally stable equilibrium P ∗ is still possible.
Fig. 4a repeats the kinetics of Fig. 2a. The equilibrium

points in IR∗ ∩Z are determined by the intersections and
eventual tangent points between µ(1−s, s, q) and Dµ1(1−
s, s) for a given gain k. Note that the line labelled with
k = 1 corresponds to control (23) previously discussed.
For this particular kinetics, (23) gives a single equilibrium.
Instead, control (25) gives three equilibria, two stable (P ∗

and P h) and one unstable (Pu).
A drawback of feedback law (25) is that the s−dynamics

is slow when x0 is low. To overcome this shortcoming, the
proportionality of the feedback term to biomass concen-
tration should be removed. For instance,

Dµ2(x, s) = D0(x, s) + k(µ∗ − µ) (27)

Now, the batch and wash-out invariance conditions be-
come

sBAC : kµ∗ > 0 ∀x ∈ 〈z0, 1〉 (28a)

WAC : kµ∗ < (k + 1)µ(0, s, ·) ∀s ∈ 〈z0, 1〉 (28b)

Whereas (28a) holds for any P ∗ and any k, (28b) is fulfilled
only for small enough µ∗. In the limit, as k → ∞ , the
WAC (28b) coincides with that of the chemostat (18b).
Fig. 4b shows the equilibria resulting from the intersec-

tion of µ(1 − s, s, q) with Dµ2(1 − s, s). Two cases are
drawn: k = 1 and k > 1. Control (27) gives two equilib-
ria for these particular kinetics and feedback gain k > 1, a
stable node (P ∗) and an unstable one (Pu). Since Pw does

not fulfill the WAC (28b), then it is a stable equilibrium
that will attract some orbits. This is observed in the state
portrait at the bottom of Fig. 4b. This lost of stability is
the cost paid by accelerating the response from low s0.
Note that specific growth rate error feedback is prone to

multiplicity and even instability. The risk of these undesir-
able behaviours increases with the feedback gain and the
set-point. Although neither (25) nor (27) (semi-)globally
stabilise the process in the presence of strong inhibition,
the population may be lost when using the latter control
while the former never washes out the biomass.

4.5. Turbidostats

Let us address now the problem of regulating biomass
concentration at a given set-point x∗. Consider

Dx1(x, s) = D0(x, s) + k
µ∗

x∗
(x− x∗) (29)

Strong batch and wash-out avoidance conditions become

sBAC : k
µ∗

x∗
(x− x∗) > 0 ∀x ∈ 〈z0, 1〉 (30a)

WAC : − kµ∗ < µ(0, s, ·) ∀s ∈ 〈z0, 1〉 (30b)

The WAC holds trivially for k > 0. Dx1(x, 0) > 0 when-
ever x∗ < z0. That is, x∗ should be low enough to avoid
falling in batch mode from some P 0. This is the main
shortcoming of this feedback strategy. In fact, a set of
non-isolated stable equilibria [z0, x∗] on S̄ that will attract
some orbits exists whenever z0 < x∗.
ReplacingD(x, s) in (16) with (29) yield after some triv-

ial algebra

x− x∗

x∗
(µ(x, 1 − x, q) + kµ∗) = 0 (31)

which has a single root x∗.
So, the process exhibits a single equilibrium P ∗ =

(x∗, 1 − x∗, 1) in IR∗ ∩ Z, while Pw is unstable. Sum-
marising, P ∗ is globally stable for those set-points satisfy-
ing x∗ < z0, whereas the process falls in batch operation
from some initial conditions on z0 < x∗.
Fig. 5a displays the state portrait for control (29). It is

seen that the control saturates at zero in all trajectories
starting at x0 << x∗. Saturation is transitory for the
initial conditions on z02 and z03 but is permanent for an
initial condition on z01 .
Keeping in mind (30a), the feedback law can be easily

redesigned to guarantee global convergence for any set-
point including x∗ > z0. For instance, if the dilution rate
is computed as follows

Dx2(x, s) = D0(x, s) +
k

µ∗x∗
µ2(x− x∗) (32)

then

wBAC :
1

x∗
> 1 ∀x ∈ 〈z0, 1〉 (33a)

WAC : − kµ(0, s, ·) < µ∗ ∀s ∈ 〈z0, 1〉 (33b)
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Figure 5: Turbidostat, (a) eq. (29) and (b) eq. (32). State portraits;
∗: set-point, ⋄: undesired stable equilibrium.

Now, an initial condition s0 > 0 is required. However,
(33a)-(33b) are trivially satisfied for any P ∗, indepen-
dently of its position on Z. Therefore, both Pb and Pw are
unstable equilibria on Z. Like before, it can be checked
that Dx2(x, 1 − x) gives a single root for (16), so there
exists a unique stable equilibrium point P ∗. Hence, this
controller semi-globally stabilises any P ∗.
Fig. 5b depicts the state portrait for control (32) from

the same initial conditions as in Fig. 5a. It is seen that
the control saturates at zero in all trajectories starting at
x0 << x∗ but saturation is transitory in all cases. In fact,
all state trajectories finally converge to P ∗.

4.6. Nutristats

In some bioprocesses, substrate concentration can be re-
liably measured on-line [15, 25]. Therefore, the process can
be driven to a substrate concentration set-point by feeding
back the substrate concentration error. Like turbidostats,
nutristats have the advantage that a unique equilibrium
on IR∗ ∩ Z is achieved even in the presence of inhibition.
Note that substrate concentration measurement allows

estimating the substrate consumption rate (µx) by means
of observers [12]. So, controllers similar to (25) and (27)
can also be implemented. Consider, as starting point, a
substrate concentration error feedback strategy of the form

Ds1(x, s) = D0(x, s) + k
µ∗

s∗
(s∗ − s) (34)

Strong batch and wash-out avoidance conditions become

sBAC : kµ∗ > 0 ∀x ∈ 〈z0, 1〉 (35a)

WAC : kµ∗

(

1−
s

s∗

)

< µ(0, s, ·) ∀s ∈ 〈z0, 1〉 (35b)

The sBAC holds trivially for any k > 0 and any set-point
s∗. Instead, the WAC is trivially satisfied whenever z0 >
s∗. Otherwise, it is satisfied only for a set of set-points
determined by k and the kinetics. Replacing D(x, s) in
(16) with (34) and solving for s yield

(s− s∗)

(

µ(x, 1 − x, q)

1− s∗
+ k

µ∗

s∗

)

= 0 (36)

Figure 6: Substrate concentration error feedback control (a) eq. (34)
and (b) eq. (37) (Nutristat). State portraits; o: initial state, ∗: set-
point.

It is obvious from (36) that the process exhibits a single
equilibrium P ∗ = (1 − s∗, s∗, 1) in Z, besides Pw. Note
also that Pw is always unstable and P ∗ is always stable.

Fig. 6a shows a state portrait for control (34). Global
convergence to P ∗ is observed. However, the risk of
biomass wash-out is clear. Particularly, observe how the
trajectory starting on z01 << s∗ approaches X̄ .

The fedback law can be redesigned to fulfill the WAC
for any set-point s∗. For instance, if D is

Ds2(x, s) = D0(x, s)

(

1 + k
1

s∗
(s∗ − s)

)

(37)

then

wBAC :
1

x∗
(1 + k) > 1 ∀x ∈ 〈z0, 1〉 (38a)

WAC : 0 < µ(0, s, ·) ∀s ∈ 〈z0, 1〉 (38b)

Now, an initial condition s0 > 0 is required. On the other
hand, conditions (38a)-(38b) are trivially satisfied for any
P ∗, independently of its position on Z. Therefore, both
Pb and Pw are unstable equilibria on Z. The uniqueness of
solution of (16) can be checked as before, so there exists
only one stable equilibrium point P ∗. Hence, this con-
troller semi-globally stabilises any P ∗.

Fig. 6b depicts the state portrait for control (37) from
the same initial conditions as in Fig. 6a. It is seen now
that the risk of biomass wash-out from initial conditions
on z0 << s∗ is eliminated.

5. Discussion

Table 1 is a summary of the control laws analysed in the
paper. The feedback laws written in terms of the original
concentrations are found in the first column. (Semi-)global
stability (GS), strong or weak batch avoidance condition
(s/wBAC) and wash-out avoidance condition (WAC) ful-
fillment are indicated in the remaining columns. Symbol
X (×) should be read “holds for any” (respectively, “fails
for some”) kinetics, set-point and/or initial condition.
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Dilution GS (s/w)BAC WAC

Chemostat D∗ = µ∗ × s X ×

Reaction rate proportional D0 = µX
X∗

X w X X

Cell density proportional D1 = µ∗ X
X∗

× s X X

Specific growth rate error feedback Dµ1 = µX
X∗

+ kX
X∗

(µ∗ − µ) × s X X

Dµ2 = µX
X∗

+ k(µ∗ − µ) × s X ×

Turbidostat Dx1 = µX
X∗

+ k µ∗

X∗
(X −X∗) X × X

Dx2 = µX
X∗

+ k µ2

µ∗X∗
(X −X∗) X w X X

Nutristat Ds1 = (yµX)
Sin
j

−S∗
+ k µ∗

S∗
(S∗ − S) X s X ×

Ds2 = (yµX)
Sin
j

−S∗

(

1 + k
S∗

(S∗ − S)
)

X w X X

Table 1: Summary of feeding laws and properties.

Application to other control laws. The feedback laws
treated in this paper are designed using D0 := µX

X∗
=

yµX
Sin

−S∗
as a basis. However, any other type of continuous

feedback satisfying assumptions 2.3–3.1 can be designed
or analysed. For instance, the tools developed here can be
used to reshape feedback linearisation control laws in the
vicinities of X̄ and S̄ in order to avoid biomass washout
and batch mode operation, respectively.

Application in adaptive control. The main source of un-
certainty in the mass balance model is the kinetics. This
uncertainty can produce appreciable state errors when the
feedback law requires complete characterisation of the op-
erating point (for instance, X∗ and µ∗). The yield y is
another source of error because it usually varies with time
and with the operating point. Also, the inlet substrate
concentration Sin is not always well characterised. They
are well known the difficulties to globally stabilise bioreac-
tors by means of PI-like controllers [7]. Adaptive control,
where some controller gain is adapted between certain lim-
its using integral action, is an attractive option [17]. The
results presented here are also useful to shape the adap-
tation law, particularly the limits of the adaptation span.
For instance, recall the control D(x, s) = γ(µx) of section
4.2. Suppose γ is continuously adapted instead of being
constant and equal to 1/x∗. It is immediate from (21a)
that a lower limit γ > 1 is required to fulfill the BAC and
therefore required to semi-globally stabilise the reactor.

Extension to other kinetic models. Some kinetic models
do not hold Assumption 2.1. For instance, there are ki-
netic functions satisfying µ(·, S, ·) = 0 ∀S > Sm that fit
well for very toxic substrates when in excess [13]. Biomass
is washed out if the control drives the process to such
high substrate concentration levels, so the problem is crit-

ical when Sin(t) > Sm. To avoid biomass wash-out,
the control should verify an additional condition, which
essentially consists in the non-attractiveness of the set
Sm = {(x, s, z) ∈ IR0|s = sm} from the left:

lim
s→sm−

D(x, s)

µ(x, s, ·)
(1−sm) < x ∀x ∈ 〈z0−sm, 1−sm〉 (39)

Extension to other types of bioprocesses. The results of
this paper can be also applied to more complex bioreac-
tions. For instance, consider a dual substrate bioreaction
with additive kinetics. Its mass balance model can be writ-
ten after suitable normalisation as

ẋ = µ(x, s1, s2)x−D(x, s1, s2)x (40a)

ṡ1 = −µ1(x, s1)x−D(x, s1, s2)s1 + a1D(x, s1, s2) (40b)

ṡ2 = −µ2(x, s2)x−D(x, s1, s2)s2 + a2D(x, s1, s2) (40c)

ż = D(x, s1, s2)(1 − z) (40d)

with µ(x, s1, s2) = µ1(x, s1) + µ2(x, s2), a1 + a2 = 1 and
z = x+ s1 + s2.
The extension of the washout avoidance condition (8a)

to the dual substrate case is straightforward:

lim
x→0+

D(x, s1, s2) < µ(x, s1, s2) ∀s1 + s2 ∈ 〈z0, 1〉 (41)

The strong (12) and weak (13) batch avoidance conditions
can also be extended to the dual substrate case:

D(x, 0, 0) > 0 ∀x ∈ 〈z0, 1〉 (42)

lim
s1,s2→0+

D(x, s1, s2)

µ(x, s1, s2)
> x ∀x ∈ 〈z0, 1〉 (43)

Based on these results, the (semi-)global stabilisation
of dual substrate continuous processes can be investigated
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with a similar procedure as before. Additional conditions
should be established to avoid biomass growing on only
one of the substrates instead of on both of them. Further,
the dynamics on the reaction invariant z = 1 is now of
order two, so more complex behaviour may appear.

6. Conclusions

It was proved that global stability features of the biore-
action (4) can be determined by checking the invariance of
the strictly positive quadrant in the state space and find-
ing the roots of a nonlinear equation. This approach offers
mathematical tools to understand and re-think trade-offs
and limitations of empirical control laws so common in
biotechnology. Also, and more importantly, it provides
a simple and systematic procedure to design and redesign
globally stabilising control laws without the need of search-
ing for Lyapunov functions and domains of attraction.
A distinctive property of the proposed approach is that

feedback law saturation does not modify the stability re-
sults. In other words, if the invariant conditions on the
border of the operating region are fulfilled, then stability
is guaranteed no matter if the dilution saturates or not.
Although the proposed approach was developed for state

feedback control where a pure culture grows on a sin-
gle substrate, the results can be extended to more gen-
eral bioreactions and controllers. In fact, the invariant
conditions can be exploited to shape the adaptation law
in adaptive control. Also, the control design procedure
can be extended to stabilise more complex bioreactions
such those involving two substrates with additive dynam-
ics. The development of similar design tools for fixed-bed
[17] and perfusion [9] bioprocesses in which the dynamic
restriction (2) does not hold is also an interesting open
problem.
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[6] H. De Battista, J. Picó, F. Garelli, and A. Vignoni. Specific
growth rate estimation in (fed-)batch bioreactors using second-
order sliding observers. J. Process Control, 21:1049–1055, 2011.
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