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AhR: aromatic hydrocarbon receptor

Ach: Acetylcholine

AT1: angiotensin II type1 receptor 

BP: Systolic blood pressure 

DII: deiodinase II

eNOS: endothelial nitric oxidide synthase 

ERα: estrogen receptor alpha 

HCB: Hexachlorobenzene 

NA: noradrenalin 

NO: nitric oxidide

TCDD: 2,3,7,8-tetrachlorodibenzo-p-dioxin 

TH: thyroid hormones 

VSMC: vascular smooth muscle cells 
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22 ABSTRACT 

23 Hexachlorobenzene (HCB) is a dioxin-like environmental pollutant, widely distributed in the 

24 environment. New research links exposure to high levels of persistent organic environmental 

25 toxicants to cardiovascular disease, however little is known about the effect of HCB on 

26 vascular function and on blood pressure. The purpose of the present study was to evaluate 

27 biochemical and cardiovascular changes resulting from subchronic HCB exposure. Adult 

28 female Sprague-Dawley rats were treated with vehicle or HCB (5 or 500 mg/kg b.w) for 45 

29 days. Systolic blood pressure (BP), recorded by tail cuff plethysmography, was significantly 

30 increased at 35, 40 and 45 days of 500 mg/kg HCB-treatment. HCB (500 mg/kg) increased 

31 arterial thickness, while both 5 and 500 mg/kg HCB decreased proliferating cell nuclear 

32 antigen (PCNA) protein levels and cellular nuclei in abdominal aortas indicating a 

33 hypertrophic process. Also, aortas from both groups of HCB-treated rats presented higher 

34 sensitivity to noradrenalin (NA) and a significant decrease in maximum contractile response. 

35 Arteries from 500 mg/kg HCB-treated rats showed a significant increase in the levels of 

36 transforming growth factor-β1 (TGF-β1) mRNA and angiotensin II type1 receptor (AT1), and 

37 a significant decrease in estrogen receptor alpha (ERα), endothelial nitric oxidide synthase 

38 (eNOS) protein expression and deiodinase II (DII) mRNA levels. In conclusion, we have 

39 demonstrated for the first time that subchronic HCB administration significantly increases BP 

40 and alters associated cardiovascular parameters in rats. In addition, HCB alters the expression 

41 of key vascular tissue molecules involved in BP regulation, such as TGF-β1, AT1, ERα, 

42 eNOS and DII. 

43

44 Keywords: hexachlorobenzene, hypertension, aorta, TGF-β1, ER, deiodinase II.
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46 1. INTRODUCTION

47 Hypertension occurs in one out of three adults in urban populations and represents a 

48 significant risk factor for life-threatening cardiovascular disease (Mills et al. 2016). 

49 Nevertheless, and despite intensive research, only around 5% of cases have an identifiable 

50 cause (Carretero and Oparil, 2000). The etiology of hypertension is very heterogeneous and 

51 could involve exposure to environmental pollution as a risk factor (EPA, Environmental 

52 Protection Agency USA, 2002; Huang et al., 2006). 

53 Dioxins are among the most harmful environmental toxins for humans. The Public Health 

54 Statement for Dioxins (1998), reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 

55 increases blood pressure (BP) and induces cardiac hypertrophy in laboratory animals (Kopf et 

56 al., 2008).

57 Hexachlorobenzene (HCB) is a widely distributed dioxin-like environmental pollutant. It has 

58 been used as a fungicide, and it is still released into the environment as a by-product in 

59 several industrial processes. It is very persistent and bioaccumulative, and belongs to the 

60 group of persistent organic pollutants (Xu et al., 2013). Chronic exposure of laboratory 

61 animals to HCB elicits a number of toxic effects including neurological symptoms, 

62 immunological disorders and endocrine disruption (ATSDR, 2002). However, its impact on 

63 the cardiovascular system has not yet been evaluated.

64 It has been reported that HCB alters the expression of molecules involved in BP regulation in 

65 several tissues, e.g. it affects the levels of growth factors, interleukins and cytokines such as 

66 transforming growth factor-β1 (TGF-β1) (Giribaldi et al., 2011), which, in particular, has 

67 been associated to hypertension (Derhaschnig et al., 2002). This growth factor also alters 

68 estrogen receptor alpha (ERα) levels in several types of cells (Li et al., 2008; Peña et al., 

69 2012). This receptor is in turn involved in BP regulation, increasing the production of 
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70 molecules like nitric oxidide (NO) with a relaxing action on vascular smooth muscle cells 

71 (VSMC) (Jobe et al., 2013; Pedram et al., 2002).

72 BP can be altered by an imbalance between relaxation and contraction processes. In this 

73 sense, TGF-β1 has been also reported to regulate the expression of angiotensin II type1 

74 receptor (AT1), the receptor by which angiotensin II acts as vasoconstrictor (Chaudhary and 

75 Chaudhary, 2017).

76 In addition, HCB is known to affect thyroid hormones (TH) homeostasis. In particular, 

77 modifications have been reported in the activity and expression of hepatic deiodinase DI and 

78 DII enzymes, respectively (Alvarez et al., 2005; Kleiman de Pisarev et al., 1990). TH have 

79 multiple effects on the cardiovascular system, including alterations in cardiovascular 

80 hemodynamics and the relaxation of coronary artery vascular smooth muscle cells (VSMC) 

81 (Gomberg-Maitland and Frishman, 1998). 

82 Despite the evidence discussed above in different tissues, little is known about HCB effect on 

83 the expression of TGF-β1, ER, endothelial NO synthase (eNOS), AT1 and DII in the 

84 vascular system. In this context, the aim of this study was to determine whether subchronic 

85 exposure of laboratory animals to HCB alters BP, focusing on its possible effects on vascular 

86 hemodynamics and the expression of key molecules involved in BP regulation.

87 2. MATERIALS AND METHODS

88 2.1. Chemicals 

89 HCB (>99% purity) was purchased from Sigma-Aldrich Co. The reagents used for cDNA 

90 synthesis, reverse transcriptase, molecular weight markers, random primers, desoxi-nucleotide 

91 triphosphate (dNTPs), and Taq enzyme polymerase, were purchased from Biodynamics SRL 

92 (Buenos Aires, Argentina). Specific primers for TGF-β1 and glyceraldehyde 3-phosphate 
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93 dehydrogenase (GPDH) were purchased from Invitrogen Life Technology (Carlsbad, CA). 

94 Polyvinylidene difluoride membranes (PVDF), goat anti-mouse IgG, and anti-rabbit IgG were 

95 purchased from Bio-Rad Laboratories Inc. CP-BU plates were purchased from Agfa, 

96 (Gevaert, Argentina S.A). Anti-β-actin immunoglobulin and anti-proliferating cell nuclear 

97 antigen (PCNA) from Sigma-Aldrich Co., monoclonal anti-TGF-β1, anti-AT1 and anti-eNOS 

98 from Abcam Inc.. All reagents present purification degree of 96% and molecular biology 

99 grade.

100

101 2.2. Animals

102 All procedures involving animals were approved by the Institutional Committee of Animal 

103 Care and Use, at the University of Buenos Aires (CICUAL, School of Medicine) and 

104 conducted according to the principles of the Guide for the Care and Use of Laboratory 

105 Animals (NIH Publications No. 80-23, revised 1996).

106 Sprague-Dawley rats were maintained on a 12 h/12 h light/dark cycle in a temperature- (21 ± 

107 2 °C) and humidity-controlled (65 ± 5%) environment. Animals had access to food (Purina 

108 chow) and tap water ad libitum.

109

110 2.3. Animals and treatment

111 Female rats (160 g at the onset of the experiment) were gavage-administered HCB (5 or 500 

112 mg/kg) as a suspension in water, containing Tween 20 (0.5 ml/100 ml), 5 days a week for 45 

113 days. Control animals received equal volumes of vehicle by the same route. Six rats per group 

114 were used.

115
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116 2.4. Blood pressure 

117 To reduce ambient variability in BP measurement, the animals were acclimatized to handling 

118 to reduce stress.

119 Systolic BP was measured between 11 and 12 h a.m., in rats treated with vehicle or HCB for 

120 30, 35, 40, and 45 days, by anaesthesia-free tail cuff plethysmography. The average of at least 

121 3 readings per session was recorded. A pneumatic pulse transducer positioned on the ventral 

122 surface of the tail, distal to the occlusion cuff, detected the return of the pulse following a 

123 slow deflation of the cuff using a programmed electro-sphygmomanometer PE-300 (Narco 

124 Bio-Systems, Austin, Texas). Pulses were recorded on a Physiograph MK-IIIS (Narco Bio-

125 Systems, Austin, Texas). 

126

127 2.5. Sample handling

128 Rats were sacrificed under anesthesia with an i.p. solution of sodium pentobarbital and 

129 sodium diphenylhydantoin (Euthanyl®) (100 mg/kg b.w.). Blood samples were obtained by 

130 ventricular puncture and plasma was separated. The aortic tissue was removed for further 

131 processing.

132

133 2.6. Western blotting

134 Total cellular protein lysates were electrophoresed in 10–12% SDS-polyacrylamide gel (SDS-

135 PAGE), and then transferred to PVDF in a semidry transfer cell at 18 V for 1.5 h. Membranes 

136 were blocked for 1 h at 4 °C with 5% non-fat dry milk – 2.5% bovine serum albumin (BSA) 

137 in TBST buffer (10 mM Tris–HCl, pH 8.0, 0.5% Tween 20, 150 mM NaCl). Membranes were 
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138 incubated overnight at 4 °C with the specific primary antibody (1:500 anti-β-actin 

139 immunoglobulin (Sigma-Aldrich Co), 1:500 anti-proliferating cell nuclear antigen (PCNA) 

140 (Sigma-Aldrich Co.), 1:500 monoclonal anti-TGF-β1 (Abcam Inc), 1:250 anti-AT1 (Abcam 

141 Inc) and 1:500 anti-eNOS (Abcam Inc)) and then washed five times with TBST, and the 

142 suitable peroxidase-conjugated anti-specific antibodies were used for protein detection. After 

143 washing, blots were developed using and ECL detection kit (Amersham Biosciences, Inc., 

144 UK). The quantitative analysis of the integrated optical density (IOD) of bands was done 

145 using the Image Quant 5.2. Inc. software. 

146

147 2.7. Semiquantitative RT-PCR

148 Total RNA from arteries was extracted using Trizol reagent following the manufacturer’s 

149 instructions (Life Technologies, Inc.-BRL, Grand Island, NY). The reverse transcription and 

150 PCR analyses were made using 2 or 4 μg of total RNA. The cDNAs generated were further 

151 amplified by PCR under optimized conditions using the primer pairs listed below.

152 TGF-β1: 

153 Forward: 5'-CTGCTGGCAATAGCTTCCTA-3' 

154 Reverse: 5'-CGAGCCTTAGTTGGACAGGAT-3'

155 D II: 

156 Forward: 5′-ACTCGGTCATTCTGCTCAAG-3′

157 Reverse: 5′-TTCAAAGGCTACCCCATAAG-3′ 

158 GPDH (glyceraldehyde 3-phosphate dehydrogenase):

159 Forward: 5'-ACCCAG AAG ACT GTG GAT GG-3'

160 Reverse: 5'-CAC ATT GGG GGT AGG AAC AC-3 
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161 The number of cycles used was optimized for each mRNA to fall within the linear range of 

162 PCR amplification. 

163 PCR products were resolved on a 1.5% (wt/vol.) agarose gel. The gel images were acquired 

164 with the GelPro analyzer (IPS, North Reading, MA). The levels of mRNA were quantified 

165 using a computer-assisted image analyzer (ImageQuant 5.2) and the PCR results for each 

166 sample were normalized with GPDH mRNA as an internal control.

167

168 2.8. Thyroid hormone assay

169 Serum concentration of thyroid hormones were analyzed by RIA as previously described 

170 (Obregon et al., 1981).

171

172 2.9. Vessel preparation and isometric tension recording

173 The abdominal aortas were carefully dissected, free of connective tissue, immersed in Krebs 

174 solution (KS: 130 mM NaCl, 4.7 mM KCl, 1.17 mM Na2HPO4, 1.16 mM MgSO4, 24.0 mM 

175 HCO3Na, 2.5 mM CaCl2, and 6 mM glucose), and cut into 3–4 mm wide rings. The ring 

176 vessel was gently suspended between two stainless steel wires in a water-jacketed organ bath 

177 kept at 37 C and filled with a KS, bubbled with a mixture of 5% CO2 and 95% O2, pH 7.4. 

178 The lower wire was fixed to a vertical plastic rod immersed in the organ bath, while the upper 

179 one was rigidly attached to a force transducer (Letica TRI-201). After the ring was suspended 

180 in the organ bath, a passive force of 2 g was imposed and the preparation was stabilized for 1 

181 h, being washed every 20 min. The signals from the force transducers were amplified and 

182 driven into an analog–digital board (DT16EZ, Data Translation, Marlboro, MA, USA) 
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183 mounted in a computer. On-line recordings and files for later processing were obtained with 

184 the software Labtech Notebook Pro (Laboratory Technology, Wilmington, MA, USA).

185 To assess the contractile response of the abdominal aorta, cumulative doses (10-9 to 4x10-6 M) 

186 of noradrenaline (NA) were added to the organ bath sequentially. To avoid variations due to 

187 differences in ring size, the measured maximal contractile force for every NA concentration, 

188 was normalized to the wet tissue weight and expressed in grams of developed force divided 

189 by grams of wet tissue (gF/gW). 

190 KS with a potassium solution was used to elicit maximal contractions by depolarization of the 

191 VSMC. The solution was prepared increasing KCl to 80 mM in the KS; NaCl was lowered to 

192 keep normal osmolarity.

193 The Acetylcholine (Ach) relaxation was studied on, aorta precontracted with NA. At the 

194 contraction plateau, the effect of cumulative concentrations (10-8 -10-5) M of Ach was tested. 

195 Maximal relaxant effect was expressed as percent of the maximal contraction obtained with 

196 NA.

197 2.10. Immunohistochemistry

198 After antigen retrieval with 0.01 M citrate buffer, pH 6, endogenous peroxidase 

199 activity was blocked by incubation with 3% hydrogen peroxide in 60% methanol. Non-

200 specific binding sites were blocked with 5% BSA. Sections were incubated overnight at 4 °C 

201 with 1:200 rabbit polyclonal anti-ERα antibody (Santa Cruz Biotechnology, Inc.) or 1:200 

202 rabbit polyclonal anti-AhR antibody (Santa Cruz Biotechnology, Inc.). After several washes, 

203 sections were incubated with secondary antibody biotinylated anti-rabbit IgG (Vector 

204 Laboratories Inc., Burlingame, CA, USA) for 2 h at room temperature.
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205 To reveal the sites of antigen/antibody binding, an avidin-horseradish peroxidase 

206 complex (Vector Laboratories, Burlingame, CA, USA) and the chromogen 3,3’-

207 diaminobenzidine tetrahydrochloride (DAB; Sigma, St. Louis, MO, USA) were used. 

208 For control staining, some sections were incubated with PBS instead of primary 

209 antibody and no immunoreactivity was detected. Sections were dehydrated in ethanol, cleared 

210 in xylene and mounted in Canada balsam, and then photographed using Nikon Eclipse 80i 

211 microscope and Visiopharm Integrator System software.

212

213 2.11. Histological evaluations

214 Abdominal aorta samples (5 mm width) and ventricles from control and HCB-treated rats 

215 were fixed with 4% paraformaldehyde. Samples were dehydrated, and embedded in paraffin, 

216 serially sectioned in transversal orientation, and stained with Masson Trichrome. Planimetry 

217 was performed using a Nikon Eclipse E400 microscope and image analysis software (Image J, 

218 National Institute of Health, Bethesda, MD). Sections were magnified and digitalized. Vessel 

219 thickness and right and left ventricle cavities were then measured.

220 Arterial wall thickness and of ventricle areas were analysed in 10 slices of the same sample 

221 and, at least, 5 measurements of each photograph were done.

222

223 2.12. Creatinine analysis

224 Serum creatinine was measured using the enzymatic method Creatinina enzimatica AA 

225 (Wiener Lab.) according to the manufacturer instructions.

226
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227 2.13. Statistical analysis

228 Data were analyzed by one-way analysis of variance followed by post hoc tests (Bonferroni 

229 multiple comparison t-test) in order to evaluate selected pairs of groups. p < 0.05 was 

230 considered significant. SPSS™ version 15.0 software was used to analyze data.

231

232 3. RESULTS

233 3.1. Blood pressure 

234 As dioxin TCDD induces hypertension in rats and HCB is considered a dioxin-like 

235 environmental pollutant, we evaluated whether HCB could induce alterations in BP in HCB 

236 (5 and 500 mg/kg)-treated rats, for 30, 35, 40 and 45 days (Figure 1).

237 When animals were treated with the lower dose, 5 mg/kg HCB, BP remain unchanged, but, 

238 when animals were treated with the highest dose, 500 mg/kg HCB, BP showed a significant 

239 increase at 35 days of HCB treatment which remained until 45 days (Figure 1). Similar BP 

240 increase by HCB treatment was observed in a model using male rats (data not shown).

241 Of note, no differences in neither mortality rate nor rat body weigh was observed between 

242 groups (227.6  2.7, 230.3  14.0, 222.0  8.3 g for control, 5 mg/kg HCB and 500 mg/kg 

243 HCB respectively).

244

245 3.2. Arterial remodeling 

246 It is well known that increased peripheral vascular resistance to blood flow, largely 

247 due to vascular remodeling, induces hypertension. In order to investigate whether the effect of 

248 HCB on BP can be attributed to this phenomenon, intima-media layer thickness was measured 
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249 in abdominal aortae. Representative cross-sections of the aortic wall are shown in Figure 2A. 

250 Image analyses showed a significant increase (34.6%, p≤ 0.01) in the intima-media layer 

251 thickness only in 500 mg/kg HCB-treated rats after 45 days of treatment, as compared to 

252 control rats (Figure 2B). 

253

254 3.3. PCNA protein level and VSMC number in abdominal aorta 

255 Considering the effect of HCB on abdominal aorta wall thickness, we analyzed PCNA protein 

256 expression as an index of cell proliferation and found a decrease in aortae from both 5 and 

257 500 mg/kg HCB-treated rats (40.9%, p<0.01 and 36.6%, p<0.01, respectively) (Figure 2C and 

258 D). In addition, the number of cell nuclei per area in the arterial wall was analyzed. A 29.7% 

259 (p<0.05) decrease was observed at the highest dose of HCB (Figure 2E). Worth pointing out, 

260 5 mg/kg HCB-treatment decreased the cell number, even though statistical significance was 

261 not reached.

262

263 3.4. Heart remodeling 

264 Hypertension also causes compensatory structural changes in the heart. For this reason, we 

265 analysed the ratio between the left ventricle area, including the interventricular septum, and 

266 the left ventricular cavity (Figure 3A). No changes were observed between control and HCB-

267 treated rats, which indicates the absence of adaptive mechanisms (Figure 3B). 

268 In addition, the ventricle weights were analyzed and no significant differences between 

269 groups were observed (3.35  0.02, 3.49  0.23 and 3.56  0.10 mg of ventricles/g of rat for 

270 control, 5 mg/kg HCB and 500 mg/kg HCB, respectively).

271 3.5. Kidney function
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272 Hypertension also impacts kidney function, damaging kidney blood vessels and reducing their 

273 ability to work properly. Therefore, we evaluated kidney function by determining creatinine 

274 concentration in serum of HCB-treated and control rats. Our results show that creatinine 

275 levels remain unchanged from control levels, regardless of HCB dose used (Figure 3C).

276

277 3.6. Vascular reactivity

278 With the aim to evaluate arterial function, the contractile response of rings of abdominal aorta 

279 to NA was evaluated. In both groups of HCB-treated rats, the aortic contractile response 

280 presents higher sensitivity to NA, evidenced by a significant reduction (41.3%, p<0.01 and 

281 64.8%, p<0.001; respectively) in the half maximal effective concentration (EC50).

282 In turn, the maximal contractile response to NA was significantly decreased in arteries from 

283 both HCB-treated groups compared to control group. Interestingly, 5 mg/kg HCB was more 

284 effective than 500 mg/kg HCB, to induce a decrease in the maximal contractile response, 

285 (52.4%, p<0.001 and 28.6 %, p<0.05 respectively) (Figure 4).

286 We also evaluated the effect of Ach on arterial relaxation after NA contraction. It was 

287 observed a significant (p< 0.05) diminution in the maximal percentage of relaxation in arteries 

288 rings of both 5 and 500 mg/kg HCB-treated rats compared to control (22.93  2.82%, 11.4  

289 2.81% and 12.8  1.6% for control, 5 mg/kg HCB and 500 mg/kg HCB, respectively)

290

291 3.7. Key molecules involved in blood pressure regulation

292 TGF-β1
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293 As abundant evidence shows that TGF-β1 is involved in the pathogenesis of hypertension 

294 (Ohta et al., 1994), we analyzed its arterial expression by semiquantitative RT-PCR (Figure 

295 5). Rats treated with 500 mg/kg HCB showed a significant increase in TGF-β1 mRNA levels 

296 (35%, p < 0.05). Worth pointing out, treatment with 5 mg/kg HCB exhibited an increasing –

297 though statistically non-significant– tendency in growth factor expression.

298 ER

299 An increase in BP could be the consequence of arterial function alterations. The arterial 

300 function is finely controlled by contraction and relaxation processes of VSMC. In this sense, a 

301 direct relationship has been widely established between vasodilation and ER expression 

302 (Reslan et al., 2013). Therefore, and given that HCB has been shown to alter ERα protein 

303 content in mammary gland (Li et al., 2008; Pena et al., 2012), we evaluated ER expression 

304 in aortae from both groups of HCB-treated rats. Immunohistochemistry shows that ER 

305 expression decreased in 500 mg/kg HCB-treated rats (Figure 6A). Similarly, Western blot 

306 analysis showed that ER protein content was significantly decreased (23.6%, p < 0.05) by 

307 500 mg/kg HCB, whereas it was unaffected in arteries from HCB (5 mg/kg)-treated rats 

308 (Figure 6B).

309 eNOS

310 It is well known that estradiol has vessel relaxation effects through the release of several 

311 factors. Among them, NO is generated by an increase in eNOS activity, in turn produced by 

312 protein induction through ER. For this reason, we evaluated eNOS expression in arteries 

313 from HCB-treated rats. As shown in Figure 6D and E, a significant dose-dependent decrease 

314 of 25 (p < 0.05) and 40% (p < 0.01) eNOS expression was observed in arteries of rats treated 

315 with 5 and 500 mg/kg HCB, respectively.

316 AT1
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317 One of the main mechanisms involved in arterial vasoconstriction is an increment in AT1 

318 expression. Therefore, we evaluated whether HCB also modifies the expression of this 

319 receptor. As indicated in Figure 6F and G, a significant increase in AT1 (48.2%, p < 0.05) 

320 was observed in arteries from rats treated with 500 mg/kg HCB. 

321 TH

322 TH are involved in the regulation of contraction and relaxation mechanisms. HCB is a 

323 hormonal disruptor which impacts TH homeostasis. For this reason, studies were carried out 

324 on possible TH alterations in aortic arteries from HCB-treated rats (Table 1). Results rendered 

325 no changes in T3, or TSH levels in serum of rats treated with either dose of HCB. However, 

326 T4 levels were significantly lower in rats with 500 mg/kg HCB (50.9%, ** p< 0.01).

327 Since DII is crucial in the regulation of local T3 concentrations, HCB effect on abdominal 

328 aortae DII mRNA expression (the deiodinase isoform expressed in arteries) was evaluated by 

329 semiquantitative RT-PCR. Our results demonstrate that a significant dose-dependent decrease 

330 of 31.5 (p < 0.05) and 55.4% (p < 0.01) in DII mRNA was observed in arteries of rats treated 

331 with 5 and 500 mg/kg HCB, respectively (Table 1).

332 3.8. AhR activation 

333 As a dioxin-like toxicant, HCB exerts both AhR-dependent and independent effects. We 

334 studied arterial AhR activation by analysis of its translocation to the nucleus by 

335 immunohistochemestry in rats treated with 5 and 500 mg/kg HCB (Figure 6 panel H).

336 AhR activity in arteries from 5 mg/kg HCB-treated rats showed an increasing tendency 

337 although not statically significant, whereas, a statistically greater expression in the nuclear 

338 zone in 500 mg/kg HCB treated rats was observed (Figure 6 panel I).

339
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340 4. DISCUSSION

341 Even when several studies have informed about the effect of HCB on different tissues, data on 

342 its influence on the cardiovascular system are scarcely documented (Sjoberg Lind et al., 

343 2013). In this context, the present work constitutes an original initial approach to the analysis 

344 of the effect of HCB on the cardiovascular system and unveils some of the molecular 

345 mechanisms involved. 

346 The effect of HCB on BP regulation was evaluated using two different gavage-administered 

347 doses of HCB during 45 days. The criteria used for dose selection were based on TH levels. 

348 The lower dose (5 mg/kg) does not alter TH levels but the highest dose (500 mg/kg) generates 

349 hypothyroxinemia (Kleiman de Pisarev et al., 1990). According to previous reports, the 

350 administration of 500 mg/kg HCB for 30 days results in an HCB serum concentration of 6 

351 ng/ml, which is equivalent to HCB serum of a widely exposed population (4.1 – 10.6 ng/ml) 

352 (Ohta et al., 1994). For this reason, our findings show a new pathological aspect to take into 

353 account in the evaluation of human populations with high HCB exposure.

354 Worth pointing out, the high discrepancy observed between the HCB administered and the 

355 serum concentrations responds to the fact that only 2-5% HCB is absorbed when administered 

356 as an aqueous suspension (Koss and Koransky, 1975).

357 We observed an increase in systolic BP in rats exposed to the high dose of HCB, which 

358 allowed us to classify this toxic as a hypertensor. Worth pointing out, this increase in systolic 

359 BP was evident as late as 35 days of HCB treatment, suggesting an indirect effect of the toxic 

360 on vessels. Of note, our results are in line with those reported by Kopf et al., who 

361 demonstrated that dioxin TCDD induces hypertension in vivo and in vitro models (Kopf et al., 

362 2008) and also in agreement with previous work by Dalton et al. which did not show 

363 significant increases in BP until day 23–29 of TCDD treatment (Dalton et al., 2001).
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364 The persistent increment in vascular resistance is the main hemodynamic characteristic of 

365 hypertension (Intengan and Schiffrin, 2000). This can be produced by functional 

366 vasoconstriction or structural vessel wall thickening as a consequence of hypertrophy, 

367 hyperplasia or both phenomena together. In this work, 500 mg/kg HCB-administered rats 

368 exhibited wall thickening and a decrease in PCNA expression in abdominal aorta. In 

369 agreement, the number of aorta nuclei was decreased in HCB-treated rats. Although we have 

370 not studied the arterial extracellular matrix content, these results suggest that wall thickening 

371 may be due to the hypertrophic effect of HBC on VSMC and not to hyperplasic growth.

372 Hypertension is also known to participate in heart remodeling. Sjoberg et al., (2013) showed 

373 that long exposure to HCB is related to increased wall thickness of the left ventricle and 

374 concentric left ventricular remodeling (Sjoberg Lind et al., 2013) . However, in this work, no 

375 compensatory structural changes were observed in the hearts of HCB-treated rats. It is 

376 possible that this absence of heart remodeling responds to the relatively short duration of the 

377 hypertensive state.

378 In turn, kidney plays a key role in and is affected by BP regulation, as high BP can damage 

379 kidney blood vessels, reducing their ability to work properly. In this work a conserved kidney 

380 function was observed in HCB-treated rats. These results are in line with previous studies 

381 covering less than 7 weeks of intoxication (Andrews et al., 1988; Richter et al., 1981) 

382 although an increase in kidney weight was reported in longer HCB exposure (Andrews et al., 

383 1989; Den Besten et al., 1993; Smith et al., 1985). Furthermore, HCB nephrotoxicity is a sex-

384 dependent phenomenon, as it is observed in male but not female rats (Smith et al., 1985; 

385 Arnold et al., 1985).

386 Alterations in arterial function, finely controlled by contraction and relaxation processes of 

387 VSMC, can trigger an increase in BP. In this work, these alterations were observed in 

388 abdominal aorta from HCB-treated animals, reflected by an increase in NA sensitivity and a 
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389 decrease in maximal response to NA. An increase in NA sensitivity could contribute to 

390 vascular resistance when the sympathetic neurotransmitter is released and, in this way, 

391 increase BP in HCB treated animals. The decrease in maximal response to NA could indicate 

392 a imbalance in molecules with relaxing or contractile actions or a toxic effect of HCB on the 

393 contractile machinery of VSMC. It is worth highlighting that this decrease was sharper in 

394 arteries from 5 mg/kg than 500 mg/kg HCB-administered rats, suggesting that HCB could act 

395 by different mechanisms depending on the dose used. In addition, the fact that BP is not 

396 modified at 5 mg/kg HCB despite the lower capacity of contraction by NA could be explained 

397 by compensatory responses that lead to BP normalization. In contrast, the increase in BP in 

398 the 500 mg/kg HCB group may be explained by structural changes in the arterial wall 

399 interfering with such compensatory mechanisms.

400 Among the components of the vascular wall, the endothelium plays an important role in 

401 vascular remodeling as a reaction to disruptive stimuli. Shear stress induced by blood flow on 

402 endothelial cells can result in structural and functional modifications affecting the production 

403 or release of several vasoactive factors, as well as a response to these factors (Urschel et al., 

404 2012). In this sense, endothelial cells produce TGF-β1, among others, which exerts its effect 

405 on VSMC (Simionescu et al., 2005).

406 In previous work we demonstrated an increase in TGF-β1 expression in liver from HCB-

407 treated rats which correlated with a imbalance between cell proliferation and apoptosis 

408 (Giribaldi et al., 2011). In this work, an increment in TGF-β1 was observed in abdominal 

409 aortae from HCB-treated rats, which could constitute an adaptive endothelial homeostatic 

410 response to structural alterations in order to regulate cell proliferation. The increase in TGF-

411 β1 could also explain, in part, the reduction observed in aortic cell proliferation in the 500 

412 mg/kg HCB group. This is in line with results reported by Sato et al., (1995) showing a role 
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413 for TGF-β1 in the control of VSMC growth. TGF-β1 inhibits serum-induced proliferation of 

414 rat aortic VSMC and concurrently induces cellular hypertrophy (Sato et al., 1995). 

415 In this study, a significant reduction was observed in ER expression in abdominal arteries of 

416 high-dose HCB-treated rats, in line with previous results indicating that HCB alters ERα 

417 protein content in mammary gland (Li et al., 2008; Pena et al., 2012). Of note, it has also been 

418 demonstrated that TGF-β1 diminishes the expression of ERα in several tissues (Petrel and 

419 Brueggemeier, 2003). Moreover, we have recently reported that an increase in TGF-β1 

420 expression in the intimal layer of coronary arteries correlates with a decrease in ER 

421 expression (Castilla et al., 2014). Also, TGF-β1 has been shown to produce increased 

422 proteasome-dependent degradation of ERα in cancer cell lines (Petrel and Brueggemeier, 

423 2003). ER is a relevant molecule in the mechanism of arterial relaxation and it is involved in 

424 the protective effect of estrogens on the endothelium (Arnal et al., 2007; Jobe et al., 2013). 

425 Estradiol increases eNOS activity through ER by both Akt-mediated phosphorylation and 

426 protein induction. This results in the generation and release of NO (Chambliss et al., 2000; 

427 Rosenfeld et al, 2003, Jobe, S.O. 2013), which in turn relaxes VSMC, thus producing vessel 

428 relaxation. Accordingly, in this work, a decrease was also observed in eNOS expression in 

429 HCB treated rats. The decrease in NO levels in HCB-treated rats was also indirectly 

430 corroborated by the Ach relaxation tests, since it acts through NO production.

431 In addition, an increase in arterial AT1 expression, the receptor by which angiotensin II acts 

432 as a vasoconstrictor, was observed in HCB-treated rats, in agreement with results reported in 

433 previous work in hypertensive rats (Romero-Nava et al., 2016). Worth highlighting, TGF-β1 

434 was also shown to enhance AT1 gene expression in several tissues such as lung fibroblasts 

435 (Renzoni et al., 2004), adrenal cells (Lebrathon et al., 1994.), and trophoblasts (Tower et al., 

436 2005.) but to decrease AT1 levels in VSMCs (Zhang et al., 2012), which indicates the 

437 importance of the physiological cell microenvironment in the final expression pattern.
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438 Altogether, these findings could partly explain the decrease in NA-induced vessel contraction 

439 observed in arteries from 500 mg/kg HCB-treated rats. Further studies should be conducted to 

440 clarify the mechanisms underlying the lower contraction observed at low doses of toxic in 

441 aorta rings. Likewise, such alterations observed in vitro assays at 5 mg/kg HCB did not 

442 correlate with a BP increase in the in vivo model.

443 Furthermore, and given that HCB is a hormonal disruptor, analyses were conducted on TH 

444 concentration, of strong impact on vascular resistance and contraction. Yoneda et al. (1998) 

445 have demonstrated that a single T3 or T4 injection promotes fast vasodilation in rat coronary 

446 arteries. In contrast, the loss of vasodilation has been associated with an increase in systemic 

447 vascular resistance, as observed in hypothyroidism (Duntas and Biondi, 2011; Klein and 

448 Ojamaa, 2001). In this work, we also observe that HCB generates hypothyroxinemia, which 

449 agrees with our previous report (Kleiman de Pisarev et al., 1990). Hypothyroxinemia, in turn, 

450 can affect tissue concentration of TH and their possible effects on downstream intracellular 

451 signal transduction. 

452 This work also evaluated the levels of arterial DII expression, as it is responsible for T4 

453 metabolism to generate T3. A dose-dependent decrease in DII expression was observed in 

454 abdominal arteries from HCB-treated rats, which, together with the lower levels of T4 in 

455 serum, could be responsible for the decrease in arterial T3 levels. Moreover, it has been 

456 widely established that a decrease in T3 causes a reduction in ER expression (Davis et al., 

457 2002; Faustino et al., 2015) which could be in line with the decrease in ER expression 

458 observed in this work. 

459 As a dioxin-like toxicant, HCB exerts both AhR-dependent and independent effects. AhR is a 

460 transcription factor that modulates processes such as apoptosis, cell proliferation and 

461 migration. Even though AhR is located in the cytosol, the binding of HCB to AhR can trigger 

462 the toxic- AhR complex translocation to the nucleus in order to modulate the expression of 
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463 genes with dioxin response elements (DREs) in their promoters. In this work we have shown 

464 artery AhR activation by 500mg/kg HCB but not by 5 mg/kg HCB, which indicates that the 

465 mechanism by which these doses act is different. In addition, we conclude that at least part of 

466 500 mg/kg HCB effects on the vascular system are exerted through AhR.

467 CONCLUSIONS

468 This work shows for the first time that subchronic administration of HCB generates arterial 

469 hypertension in rats, associated with impaired vascular reactivity. In this scenario, TGF-β1, 

470 ER, eNOS, AT1 and DII could constitute key molecules involved in the mechanism of HCB 

471 action and the development of hypertensive pathology. These findings may facilitate an 

472 experimental model for the development of more precise therapeutic targets in the treatment 

473 of HCB-induced hypertension. 

474
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FIGURE LEGENDS

Figure 1: Systolic BP. Systolic arterial pressure was measured at the indicated days of 

HCB treatment. White bands indicate control animals; grey and black bands indicate 

rats treated with 5 and 500 mg/kg HCB, respectively. Data represent the mean ± SEM 

of three independent experiments * p< 0.05; ** p< 0.01; *** p< 0.001 vs. control at 

each time; + p< 0.05; ++ p< 0.01,+++ p< 0.001 vs. 5 mg/kg HCB group (n = 6 per 

group).

Figure 2: Abdominal aorta structure and PCNA protein level: Arteries from control 

and HCB-treated rats were stained with Masson Trichrome. Panel A: Representative 

microphotographs. Artery wall thickness was measured in the arterial photographs using 

Image J software (bars indicate how measurements were done). Panel B: Quantification 

of arterial wall thickness. Panel C: Representative Western blot of PCNA from control 

and HCB-treated rats. Panel D: Quantification of PCNA protein levels by densitometric 

scanning of immunoblots. Panel E: Quantification of VSMC number in the arterial wall. 

Data represent the mean ± SEM of three independent experiments * p< 0.05; ** p< 

0.01; *** p< 0.001 vs. control (n = 6 per group).

Figure 3: Heart remodeling and serum creatinine levels. Heart sections from control 

and HCB-treated rats were stained with Masson Trichrome. Panel A: Representative 

photographs. Panel B: Morphometric quantification. Panel C: serum creatinine 

concentration from control and HCB-treated rats. Data represent the mean ± SEM of 

three independent experiments (n = 6 per group).
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Figure 4: Abdominal aorta ring response to NA. The arterial contractile response to 

NA was analyzed in vitro Data represent the mean ± SEM of three independent 

experiments * p< 0.05, ** p< 0.01 vs. control; + p < 0.05 vs. 5 mg/kg HCB group (n = 6 

per group).

Figure 5: TGF-β1 expression. Rats were treated with HCB (5 and 500 mg/kg) for 45 

days. Panel A: Representative pattern of semiquantitative RT-PCR amplification of 

TGF-β1 and GPDH cDNA. Panel B: Quantification of cDNAs normalized to GPDH 

cDNA. Panel C. Representative Western blot of TGF-β1. Panel C: Quantification of 

western blot TGF-β1 IOD normalized to the corresponding β-actin signal. Data 

represent the mean ± SEM of three independent experiments. * p < 0.05 vs. control; + p 

< 0.05 vs. 5 mg/kg HCB group (n = 6 per group).

Figure 6: ER, eNOS and AT1 expression, and AhR activation. Rats were treated 

with HCB (5 and 500 mg/kg) for 45 days. Panel A: Representative image of ER 

arterial immunohistochemistry. Panel B: Representative Western blot of ER. Panel 

C: Quantification of western blot ER IOD normalized to the corresponding β-actin 

signal. Panel D: Representative Western blot of eNOS. Panel E: Quantification of eNOS 

IOD normalized to the corresponding β-actin signal. Panel F: Representative Western 

blot of AT1. Panel G: Quantification of AT1 IOD normalized to the corresponding β-

actin signal. Panel H: Representative image of AhR arterial immunohistochemistry. 

Panel I: Quantification of cell number with nuclear AhR signal. Arrows indicate 

positive signal. Data represent the mean ± SEM of three independent experiments. * p < 

0.05, ** p< 0.01 vs. control; + p< 0.05 vs. 5 mg/kg HCB group (n = 6 per group).
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1 TABLE 1: TH serum levels and aortic DII expression

TSH (ng/ml) T4 (µg/dl) T3 (µg/dl)
mRNA 

DII/GPDH

Control 1.90 ± 0.30 4.16 ± 0.43 74.00 ± 4.60 9.2 ± 0.2

HCB 5 

(mg/kg)
1.99 ± 0.38 3.95 ± 0.27 76.00 ± 2.90 6.3 ± 0.1*

HCB 500

(mg/kg)
2.07 ± 0.27 2.01 ± 0.20**+ 72.50 ± 5.50 4.1 ± 0.1**+

2

3 Table 1: Data represent the mean ± SEM of three independent experiments, * p < 0.05 and ** 

4 p < 0.01 vs. control; + p< 0.05 vs. 5 mg/kg HCB group (n = 6 per group).

5


