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Abstract. Given a probability vector x with its components sorted in non-increasing
order, we consider the closed ball Bpε (x) with p ≥ 1 formed by the probability vectors
whose `p-norm distance to the center x is less than or equal to a radius ε. Here, we
provide an order-theoretic characterization of these balls by using the majorization
partial order. Unlike the case p = 1 previously discussed in the literature, we find that
the extremal probability vectors, in general, do not exist for the closed balls Bpε (x)

with 1 < p < ∞. On the other hand, we show that B∞ε (x) is a complete sublattice
of the majorization lattice. As a consequence, this ball has also extremal elements.
In addition, we give an explicit characterization of those extremal elements in terms
of the radius and the center of the ball. This allows us to introduce some notions of
approximate majorization and discuss its relation with previous results of approximate
majorization given in terms of the `1-norm. Finally, we apply our results to the problem
of approximate conversion of resources within the framework of quantum resource
theory of nonuniformity.
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1. Introduction

Majorization has become a powerful mathematical tool with applications in different
disciplines from economy to physics (see, e.g., Ref. [1] for an introduction to majorization
and some of its applications). This is due to the fact that majorization provides an
intuitive way of comparing probability vectors. In particular, majorization has also
been widespread in the quantum realm (see, e.g., Refs. [2, 3] and references therein
for applications of majorization in quantum information). Indeed, in many resource
theories, the deterministic and exact transformations between resources by means of free
operations are governed by a majorization arrow between probability vectors associated
to the resources (see, e.g., Ref. [4] for an introduction to quantum resource theories and
Refs. [5,6] for an abstract formulation of this formalism in terms of a symmetric monoidal
category). For instance, this is the case of transformations of bipartite entangled pure
states (resources) by means of local operations and classical communication (the free
operations), as it is stated by the celebrated Nielsen’s theorem [7], where the associated
probability vectors are formed using the Schmidt coefficients of the corresponding states.
Other quantum resource theories where resource transformations are also given by a
majorization arrow, are the ones of quantum coherence [8–11] and nonuniformity (or
purity) [12,13].

As expected, it is not always possible to transform resources in an exact and
deterministic way. For that reason, some other alternatives are studied. In particular, if
one allows some degree of error, approximate transformations arise as the natural ones.
For instance, approximate transformations within entanglement [14, 15], coherence [8]
and thermodynamics [9,16] quantum resource theories have already been studied. In this
context, the notion of approximate majorization in terms of the `1-norm [16–18] is one
of the most considered in the literature. However, in most of these works the fully order-
theoretic properties of majorization had not been considered. Here, we aim to exploit
these properties and subsequently analyze other possible definitions of approximate
majorization.

Precisely, from the order-theoretic viewpoint, majorization is a binary relation that
partially orders the set of probability vectors whose entries are sorted in a non-increasing
manner (see, e.g., [1, Sec. I.B]). Moreover, it has been shown that there is a proper
unique greatest lower bound (infimum) and a unique least upper bound (supremum)
for any pair of probability vectors. This leads to the definition of the majorization
lattice [19, 20]. This lattice is also complete, that is, the supremum and infimum
exist for arbitrary subsets of probability vectors [20–22]. We remark that the lattice
structure of majorization, beyond its partial order, has recently been found useful for
different quantum information problems, namely the study of majorization uncertainty
relations [23–26], entanglement transformations [27–30], and optimal common resource
in majorization-based quantum resources theories [22], among others [31–36].

Here, we investigate the order-theoretic properties of a particular subset of
probability vectors. More precisely, we consider the set Bpε (x) (with p ≥ 1) formed
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by probability vectors (with entries sorted in a non-increasing order) that are at `p-
norm distance ε from a given probability vector x. The case p = 1 (i.e., considering the
`1-norm) is particularly interesting, since it can be related to notions of approximate
majorization previously introduced in the literature [16,17]. Indeed, this case has been
recently considered in Refs. [18,31], where it is shown that the set B1

ε (x) admits extremal
probability vectors, in the sense of majorization. We show that a similar result arises for
the case p =∞, that is, the set B∞ε (x) has also extremal probability vectors, leading to
other notions of approximate majorization in terms of the `∞-norm. Moreover, we show
that this is no longer true in general for other `p-norms, turning the cases p = 1 and
p =∞ particularly interesting. In order to prove our results, we first show that B∞ε (x)

is a complete sublattice of the majorization lattice. This guarantees the existence of
minimum and maximum elements. Next, we provide a characterization of them in terms
of the radius and the center, and we relate them to two different notions of approximate
majorization in terms of the `∞-norm distance. Finally, we show that our results can
be applied to the problem of approximate state conversion within the resource theory
of nonuniformity [12,13].

The rest of this work is organized as follows. In Section 2, we recall the notions
of majorization and majorization lattice, and its main properties. In Section 3, we
provide one of our main results, namely that the ball B∞ε (x) is a complete sublattice of
the majorization lattice, and we give the explicit forms of the maximium an minimum
elements. In Section 4, we introduce the notion of approximate majorization in terms of
the `∞-norm distance and present its properties and discuss its relation with previous
notions introduced in the literature. In Section 5, we apply our results to the framework
of the quantum resource theory of nonuniformity. Finally, some final remarks are drawn
in Section 6. For the sake of readability and completeness, all order-theoretic notions
used in the main text are introduced in Appendix A, whereas all technical details and
proofs are delegated to Appendices B, C and D.

2. Preliminaries: majorization lattice

Here, we recall some basics of majorization theory and the majorization lattice that will
be useful later. For a more complete introduction to the subject see, e.g., Ref. [1].

We are going to work with probability vectors, which lie on a d-dimensional space:
the (d− 1)-probability simplex

∆d :=

{
x ∈ Rd : xi ≥ 0 and

d∑
i=1

xi = 1

}
. (1)

In this space, we can talk about majorization between two probability vectors (see, e.g.
[1]) in the following sense.

Definition 2.1. For given x, y ∈ ∆d, it is said that x majorizes y (denoted by x � y) if

sk(x
↓) ≥ sk(y

↓), ∀k ∈ {1, . . . , d− 1}, (2)



Extremal elements 4

where x↓ and y↓ denotes that the components of x and y are sorted in non-increasing
order and sk(x) :=

∑k
i=1 xi.

Since we are working with probability vectors, we trivially have sd(x) = sd(y) = 1

and, for that reason, we exclude this condition from the definition of majorization.
Definition 2.1 provides a natural way to see if one probability vector is more concentrated
than another one. Indeed, any probability vector x ∈ ∆d trivially satisfies the relations
e1 � x � ed, with e1 := (1, 0, . . . , 0) and ed :=

(
1
d
, . . . , 1

d

)
.

Remarkably, the majorization relation can be posed in several alternative ways. A
particular one, that relates majorization with doubly stochastic matrices, was originally
discussed in the seminal work [37]. Precisely, a d × d matrix B is doubly stochastic
matrix if Bij ≥ 0 and

∑
iBij =

∑
j Bij = 1 for all i, j. Therefore,

x � y ⇐⇒ there exists a doubly stochastic matrix such that y = Bx. (3)

Moreover, by using Birkhoff’s theorem [38], which states that the set of d × d

doubly stochastic matrices coincides with the convex hull of the set of d×d permutation
matrices, the r.h.s of (3) turns out to be equivalent to y = (

∑
k pkΠk)x for some p ∈ ∆d′

with d′ ≤ d2 − 2d + 2 (see Ref. [39]) and some set of permutation matrices {Πk}. In
addition, notice that ed = Bed for any doubly stochastic matrix B. In this sense,
majorization can be interpreted as a quantification of the notion of nonuniformity.

Among several equivalent definitions of majorization, a particularly useful one,
for our purposes, appeals to the notion of Lorenz curve [40]. More precisely, for a
given probability vector x, one introduces the set of points

{(
k, sk(x

↓)
)}d

k=0
(with the

convention (0, 0) for k = 0). Let Lx(ω), with ω ∈ [0, d], be the polygonal curve obtained
by the linear interpolation of these points. For x ∈ ∆d this corresponds to the Lorenz
curve of x, which is a non-decreasing and concave polygonal curve from (0, 0) to (d, 1)

(see, e.g., Fig. 2.a and 2.b). In this way, given two Lorenz curves Lx(ω) and Ly(ω),
Lx(ω) ≥ Ly(ω) for all ω ∈ [0, d] implies that x � y, and vice versa.

Now, we recall some interesting order-theoretic properties of majorization. For the
sake of completeness, all the order-theoretic notions that will be used here are defined
in Appendix A. First, let us introduce the set of d-dimensional probability vectors whose
components are sorted in non-increasing order,

∆↓d := {x ∈ ∆d : xi ≥ xi+1 with i ∈ {1, . . . , d− 1}} . (4)

Notice that this set can be geometrically visualized as a convex polytope embedded in
the (d − 1)-probability simplex ∆d (see, for instance, Figure 2.c, where the 2-simplex
∆3 and ∆↓3 are depicted).

It can be shown that the set ∆↓d equipped with the majorization relation �
given in Definition 2.1 is a partially ordered set (POSET). Notice that if we relax
the constraint that the components are sorted in a non-increasing manner, then
antisymmetry condition is no longer valid in general (see Appendix A). Instead, a weaker
version holds, where x and y only differ by a permutation of its entries. In such case, the
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Figure 1. Let x = (0.7, 0.2, 0.1) and y = (0.6, 0.35, 0.05), then x∨ y = (0.7, 0.25, 0.05)

and x ∧ y = (0.6, 0.3, 0.1) (a) Lorenz curves of x (red), y (blue) and x ∨ y

(black dot-dashed) (b) Lorenz curves of x (red), y (blue) and x ∧ y (black dot-
dashed) (c) 2-Simplex ∆3 (region inside the dotted triangle), ∆↓

3 (region inside the
black triangle), x (red point), y (blue point), x ∨ y (H) and x ∧ y (N). Blue
region indicates the set

{
x′ ∈ ∆↓

3 : x � x′ or x′ � x
}
, the red region indicates the set{

x′ ∈ ∆↓
3 : y � x′ or x′ � y

}
and the violet region indicates the intersection of both

sets.

set ∆d equipped with majorization relation gives a pre-ordered set, since the conditions
of reflexivity and transitivity remain valid. On the other hand, 〈∆↓d,�〉 is not a totally
ordered set, in general. This is due to the fact that there always exist x, y ∈ ∆↓d such
that x 6� y and y 6� x for any d > 2. In this situation, we say that the probability
vectors are incomparable. In terms of Lorenz curves, this means that they are different
but intersect at least at one point in the interval (1, d). However, in such case, one can
easily realize that there are infinite Lorenz curves below the ones of x and y, and among
of all them, there is one which is the greatest one. In the same vein, there are infinitely
many Lorenz curves above those of x and y, and there is one which is the lowest one (see,
e.g., Fig. 2.a and 2.b, where Lorenz curves of x = (0.7, 0.2, 0.1), y = (0.6, 0.35, 0.05), as
well as, the corresponding ones of x ∨ y and x ∧ y are depicted).

These intuitions can be formalized and allow to formulate the notion of infimum,
x∧ y, and supremum, x∨ y, between two probability vectors x, y ∈ ∆↓d, that lead to the
definition of the majorization lattice [19,20]. In particular, the algorithms to obtain x∨y
and x ∧ y were first introduced in [19]. Clearly, the majorization lattice is a bounded
lattice, with top and bottom elements e1 and ed, respectively. Moreover, it turns out
that the majorization lattice is indeed complete [20–22]. In other words, the infimum
and supremum exist for every family of probability vectors in ∆↓d. We reproduce this
result below and the algorithms to obtain the corresponding infimum and supremum,
as it will be useful for the rest of the work.

Lemma 2.2 (see, for example, Prop. 1 of [22]). The POSET 〈∆d,�〉 is a complete
lattice, that is, for arbitrary P ⊆ ∆↓d there exist the infimum xinf :=

∧
P and the
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supremum xsup :=
∨
P of P. The components of xinf are given by

xinfk = inf Sk − inf Sk−1, (5)

where Sk = {sk(x) : x ∈ P} with s0(x) := 0. To obtain the components of xsup, we must
first define the probability vector with components

x̄k = supSk − supSk−1. (6)

Then, we compute the upper envelope of L̄(ω), the polygonal curve defined by the linear
interpolation of the points {(k, sk(x̄))}dk=0. Finally, the components of the supremum
are given by

xsupk = L̄(k)− L̄(k − 1). (7)

For completeness, in Appendix B we recall the explicit algorithm to compute the upper
envelope given in Ref. [22].

When the set P ⊆ ∆↓d is a convex polytope, the corresponding infimum and
supremum can be computed as the infimum and supremum of the set of vertices, vert(P),
as explained in the following Lemma.

Lemma 2.3 (see Lemma 1 of [22]). Let P be a convex polytope contained in ∆↓d, and
vert(P) the set of vertices, vert(P) = {vn}Nn=1. Then, the infimum xinf :=

∧
P and

the supremum xsup :=
∨
P of P are given by the infimum and supremum elements of

vert(P), namely
xinf =

∧
{vn}Nn=1 and xsup =

∨
{vn}Nn=1. (8)

Clearly, the infimum and the supremum do not necessarily belong to the convex
polytope. In the sequel, we restrict our attention to a particular class of convex
polytopes that admit extremal probability vectors and inherits the lattice structure
of majorization.

3. Order-theoretic properties of B∞ε (x)

Let Bpε (x) be the (closed) ball with center x ∈ ∆↓d and radius ε > 0 inside ∆↓d, that is,

Bpε (x) =
{
x′ ∈ ∆↓d : ‖x′ − x‖p ≤ ε

}
, (9)

where ‖x‖p =
(∑d

i=1 |xi|p
) 1
p with p ≥ 1, and a limiting case ‖x‖∞ := limp→∞ ‖x‖p =

max {|xi|}di=1. Here, we are interested in characterizing the order-theoretic properties
of these balls with respect to the majorization relation. In particular, we aim to find
whether these balls admit extremal probabilities in the sense of majorization.

Our first result is that the balls Bpε (x) with 1 < p < ∞ do not have extremal
probabilities in general. In others words, there exist probability vectors x ∈ ∆↓d, for
which one can always find a radius ε sufficiently small such that the maximum or
minimum of Bpε (x) do not exist. More precisely, we obtain the following result.
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Theorem 3.1. Let x ∈ ∆↓d, ε > 0 and 1 < p < ∞ such that Bpε (x) ∩ ∂∆↓d = ∅. Then,
the supremum and infimum of the ball Bpε (x), which are,

∨
Bpε (x) and

∧
Bpε (x), do not

belong to the ball. In other words, the maximum and the minimum of Bpε (x) do not exist.

Interesting enough, this is not necessarily true for the closed `p-norm balls with
p = 1 and p =∞. We now provide a step forward in the order-theoretic characterization
of these balls. Let us first note that for p = 1 and p = ∞, Bpε (x) is a convex polytope,
since it is a translation and scaling of the convex polytope {x′ ∈ Rd : ‖x′‖p ≤ 1}
intersected with the (d − 1)-simplex (see, e.g., [41]). Then, according to Lemma 2.3
the supremum and infimum can be obtained from the vertices, {vn}Nn=1, of Bpε (x), that
is,
∨
Bpε (x) =

∨
{vn}Nn=1 and

∧
Bpε (x) =

∧
{vn}Nn=1. This characterization is not useful

enough to obtain the supremum and infimum, since one needs to know a priori the
vertices of Bpε (x). Notwithstanding, for p = 1, it has recently been shown not only how
to compute supremum and infimum, but also that they are the maximum and minimum
of the ball B1

ε (x) [18, 31]. Here, we complete the order-theoretic characterization of the
balls by analyzing the case p =∞, showing that B∞ε (x) also admits extremal probability
vectors. These results indicate that the existence of the maximum and minimum strongly
depends on the geometry of the ball under consideration.

Hereafter, we focus on the `∞-norm ε-ball with center x. To show the existence
of maxB∞ε (x) and minB∞ε (x), without appealing to the vertices of B∞ε (x), we provide
the following theorem that states B∞ε (x) inherits the lattice structure of majorization.
Precisely, it is a complete sublattice of the majorization lattice.

Theorem 3.2. Let x ∈ ∆↓d and ε > 0. Then, the quadruple 〈B∞ε (x),�,∨,∧〉 is a
complete sublattice of the majorization lattice 〈∆↓d,�,∨,∧〉.

This is an interesting order-theoretic result in itself that means for any B ⊆ B∞ε (x),
one has that the supremum and the infimum of B belong to the ball, that is,

∨
B ∈ B∞ε (x)

and
∧
B ∈ B∞ε (x), respectively. As a consequence, the supremum and the infimum of

B∞ε (x) belong to the ball, which means
∨
B∞ε (x) and

∧
B∞ε (x) are indeed the maximum

(maxB∞ε (x)) and the minimum (minB∞ε (x)) of B∞ε (x), respectively. The following two
theorems provide the algorithms to compute the maximum and minimum of B∞ε (x),
respectively.

Theorem 3.3 (Maximum). Let x ∈ ∆↓d, ε > 0 and x(ε)∞ be a probability vector defined
as

x(ε)∞ := x+ ν,

where

ν := (

k0−1︷ ︸︸ ︷
ε, . . . , ε, ε− δ,

k2−k0︷ ︸︸ ︷
−ε, . . . ,−ε,

d−k2︷ ︸︸ ︷
−xk2+1, . . . ,−xd), (10)
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k2 := max{k0, k1}, δ := k0ε− f(k0), 1 ≤ k0, k1, k2 ≤ d and

k1 := maxK1, with K1 := {k : xk ≥ ε} ∪ {1},
k0 := minK0, with K0 := {k : f(k) ≤ kε},

f(k) :=

{
1− sk(x), if k ≥ k1

1− sk1(x) + (k1 − k)ε, if k ≤ k1

Then,
maxB∞ε (x) = x(ε)∞ . (11)

Theorem 3.4 (Minimum). Let x ∈ ∆↓d, ε > 0 and x(ε)∞ be a probability vector defined as

x(ε)∞ k := L̄(k)− L̄(k − 1), (12)

where L̄(ω) is the upper envelope of the polygonal curve given by the linear interpolation
of the points {(k, sk(x− ν(ε)))}dk=0 with

ν(ε) :=

{
(ε, . . . , ε,−ε, . . . ,−ε) if d even,

(ε, . . . , ε, 0,−ε, . . . ,−ε) if d odd.
(13)

Then,
minB∞ε (x) = x(ε)∞ . (14)

Several simple cases can be noted. For example, if ‖e1 − x‖∞ ≤ ε, then the
vector (10) reduces to ν = (1 − x1,−x2, . . . ,−xd) and x(ε)∞ = e1, as expected. On
the other hand, when x + ν(ε) ∈ B∞ε (x), with ν(ε) given in (13), one has ν = ν(ε),
hence x(ε)∞ = x + ν(ε). For the minimum, if ‖ed − x‖∞ ≤ ε then the construction in
equation (12) directly gives x(ε)∞ = ed, as expected. Another simplification occurs when
x− ν(ε) ∈ B∞ε (x). In this case, x(ε)∞ = x− ν(ε). Given that the ball B∞ε (x) is defined by
the intersection with the ordered simplex ∆↓d, there is always a large enough ε such that
x± ν(ε) does not belong to the ball.

As direct consequences of Theorem 3.4, we can prove the following two corollaries.
The first one, states that the minimal distributions of two balls with the same radius but
centers that are related by a majorization relation, preserve such majorization relation.
The second one, says that the minimum of a ball of a given radius can be obtained
iterating the construction with two radius that sum to the original one.

Corollary 3.5. Let x, y ∈ ∆↓d be two centers such that x � y and ε > 0. Then,

x(ε)∞ � y(ε)∞ . (15)

Corollary 3.6. Let x ∈ ∆↓d and two radius ε1, ε2 > 0. Then,

x(ε1+ε2)∞ =
(
x(ε2)∞

)(ε1)
∞
. (16)



Extremal elements 9

Unfortunately, in general, the above properties does not hold for the maximum.
Let us see some counterexamples.

Example 3.7. Let x = (0.5, 0.3, 0.2, .0), y = (0.5, 0.3, 0.1, 0.1) and ε = 0.1. Notice that
x � y, but x(ε)∞ = (0.6, 0.3, 0.1, 0) � y(ε)∞ = (0.6, 0.4, 0, 0).

Example 3.8. Let x = (0.5, 0.2, 0.15, 0.1, 0.05), ε1 = 0.1 and ε2 = 0.05. Then,

x(ε1+ε2)∞ = (0.65, 0.35, 0, 0, 0) 6=
(
x(ε2)∞

)(ε1)
∞ = (0.65, 0.3, 0.05, 0, 0), with x(ε2)∞ =

(0.55, 0.25, 0.15, 0.05, 0).

3.1. Special cases: d = 3 and admissible pairs

Here, we address two special cases. In the first example, we consider three-dimensional
probability vectors (d = 3), whereas in the second, we restrict to certain values of the
pair (x, ε).

For d = 3, notice that all the results obtained by using the `∞-norm, can be directly
translated to results using the `1-norm, and vice versa, since we have the following
equivalence between the corresponding balls.

Theorem 3.9. Let x ∈ ∆↓3 and ε > 0. Then,

B1
ε (x) = B∞ε

2
(x). (17)

Now, we restrict our consideration to pairs (x, ε) satisfying the following definition.

Definition 3.10. Let x ∈ ∆↓d and ε > 0. A pair (x, ε) satisfying the following conditions
is called an admissible pair,

(i) 1 > x1 > x2 > . . . > xd > 0.

(ii) 0 < 2ε ≤ xi − xi+1 for all i ∈ {0, . . . , d},

where x0 := 1 and xd+1 := 0.

From a geometrical point of view, this means that B∞ε (x)∩ ∂∆↓d = ∅, that is to say that
an admissible pair always defines a ball that is small enough to be completely contained
within the ordered simplex ∆↓d. Notice that, although this is not the most general case, it
is representative of the class of approximation problems. In fact, in the scenario where
one looks for an approximation, x will be typically not in the border of the ordered
simplex, and ε is expected to be small enough such that the ball is strictly contained
within the same set. In this case, the maximum and minimum are easily calculated by
just adding or subtracting the vector ν(ε).

Corollary 3.11. Let (x, ε) be an admissible pair. Then,

x(ε)∞ = x+ ν(ε) and x(ε)∞ = x− ν(ε). (18)

Admissible pairs also guarantees that the maximum satisfies similar properties to
those given in Corollaries 3.5 and 3.6.
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Corollary 3.12. Let (x, ε) and (y, ε) be two admissible pairs such that x � y. Then,

x(ε)∞ � y(ε)∞ . (19)

Corollary 3.13. Let x ∈ ∆↓d and two radius ε1, ε2 > 0. Then,

x(ε1+ε2)∞ =
(
x(ε2)∞

)(ε1)
∞ . (20)

4. Approximate majorization in terms of the `∞-norm

Let us move on to the case of probability vectors x, y ∈ ∆↓d such that x � y. On one
hand, one can look for a probability vector y′ up to a certain distance of y, so that
the majorization relation x � y′ is obtained. On the other hand, one can look for a
probability vector x′ up to a certain distance of x, so that the majorization relation
x′ � y is obtained. Let us now formally introduce these two notions of approximate
majorization in terms of a distance D, which is a function D : ∆↓d × ∆↓d 7→ [0,+∞)

satisfying the axioms of a metric:

• D(x, y) ≥ 0 (non-negativity),

• D(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles),

• D(x, y) = D(y, x) (symmetry), and

• D(x, y) ≤ D(x, z) +D(y, z) (triangle inequality).

Precisely,

Definition 4.1. Let x, y,∈ ∆↓d and ε ≥ 0. We say that:

• x ε-post-majorizes y, denoted by x �D,ε y, whenever there exist y′ ∈ ∆↓d such that
x � y′ and D(y′, y) ≤ ε, and

• x ε-pre-majorizes y, denoted by xD,ε� y, whenever there exist x′ ∈ ∆↓d such that
x′ � x and D(x′, x) ≤ ε.

Clearly, these definitions depend on the choice of the distance and there is no, in
principle, any reason to choice one distance over other. In the following, we assume the
distance Dp(x, y) = ‖x − y‖p induced by the `p-norm with p ≥ 1. As it is well-known,
all the `p-norms are equivalent (see, e.g., [42]). Indeed, for any p < q, one has [43]

‖x‖q ≤ ‖x‖p ≤ d
1
p
− 1
q ‖x‖q. (21)

This equivalence means that all `p-norms define the same topology and the results of
continuity, convergence and many other properties do not depend on which norm is
chosen. In particular, we have this freedom of choice in the notions of post and pre-
majorization given in Def. 4.1. Notwithstanding, we will see that, for a practical purpose,
the cases p = 1 and p =∞ become particularly useful, since they can be related to the
maximum and minimum of the corresponding balls.
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Let us first observe that the relevant case p = 1, where the corresponding induced
distance D1(x, y) = ‖x− y‖1 has a clear operational interpretation in terms of a degree
of distinguishability between probability vectors, has already been considered in the
literature [16–18]. More precisely, let define x(ε)1 := maxB1

ε (x) and y(ε)
1

:= minB1
ε (y). It

has been shown that [16–18]

x �D1,ε y ⇐⇒ x � y(ε)
1
, and (22)

xD1,ε� y ⇐⇒ x
(ε)
1 � y. (23)

Moreover, post and pre-majorization by using the `1-norm are indeed equivalent:
x �D1,ε y ⇐⇒ xD1,ε� y [16].

Let us now consider the case of p =∞, where the corresponding induced distance
is given by D∞(x, y) = ‖x− y‖∞. Our first result is that post and pre-majorization in
terms of `∞-norm have indeed an analogue characterization to the corresponding ones
given in Eqs. (22)– (23).

Theorem 4.2. Let x, y,∈ ∆↓d and ε ≥ 0. Then,

x �D∞,ε y ⇐⇒ x � y(ε)∞ , and (24)

xD∞,ε� y ⇐⇒ x(ε)∞ � y. (25)

In this way, post and pre-majorization in terms of `1-norm and `∞-norm are both
equally useful definitions. Moreover, we will see that there is no a general criterion
in terms of majorization to choice one distance over the other (see Tables 1 and 2).
Therefore, the choice of the distance depends on the particular problem considered.

As we recalled above, post and pre-majorization in terms of the `1-norm are
equivalent. We will see that this is not true in general for the case of `∞-norm. To
show it, we provide the following examples.

Example 4.3. Let x =
(

7
13
, 4
13
, 2
13
, 0
)
and let y =

(
4
7
, 3
7
, 0, 0

)
. Notice that letting ε = 1

10

we have,
x(ε)∞ =

(
83
130
, 40
130
, 7
130
, 0
)

and y(ε)∞ =
(
33
70
, 23
70
, 1
10
, 1
10

)
.

Hence, x � y(ε)∞ (or, equivalently x �D∞,ε y), but x(ε)∞ � y (or, equivalently xD∞,ε� y).
Now, let x =

(
1
3
, 1
3
, 1
3

)
and let y =

(
3
5
, 2
5
, 0
)
. In this case, for ε = 3

10
we have,

x(ε)∞ =
(
19
30
, 10
30
, 10
30

)
and y(ε)∞ =

(
7
20
, 7
20
, 3
10

)
.

Hence, x(ε)∞ � y (or, equivalently xD∞,ε� y), but x � y(ε)∞ (or, equivalently x �D∞,ε y).

Now, we ask for the minimal ε such that x �D∞,ε y is possible. We find that this
quantity is equivalent to the minimal `∞-distance between y and all probability vectors
majorized by x. In addition, we find a sharp upper bound to this quantity in terms of
the `∞-distance between x and y.
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Example y(ε∞)
∞ and y(ε1)

1
Majorization comparison

x = (1/3, 4/15, 1/5, 1/5)

y = (4/9, 5/18, 5/18, 0)

y(1/5)∞ = (4/15, 4/15, 4/15, 1/5)

y(2/5)
1

= (4/15, 4/15, 4/15, 1/5)
y(ε∞)
∞ = y(ε1)

1

x = (4/11, 7/22, 2/11, 3/22)

y = (1/2, 1/3, 1/6, 0)

y(1/5)∞ = (3/10, 1/4, 1/4, 1/5)

y(10/33)
1

= (23/66, 1/3, 1/6, 5/33)
y(ε∞)
∞ 6� y(ε1)

1
and y(ε1)

1
� y(ε∞)

∞

x = (6/13, 3/13, 2/13, 2/13)

y = (4/11, 4/11, 3/11, 0)

y(1/10)∞ = (3/10, 3/10, 3/10, 1/10)

y(72/143)
1

= (1/4, 1/4, 1/4, 1/4)
y(ε∞)
∞ � y(ε1)

1
and y(ε1)

1
6� y(ε∞)

∞

x = (4/11, 7/22, 2/11, 3/22)

y = (1/2, 1/3, 1/6, 0)

y(1/5)∞ = (3/10, 1/4, 1/4, 1/5)

y(10/33)
1

= (23/66, 1/3, 1/6, 5/33)
y(ε∞)
∞ 6� y(ε1)

1
and y(ε1)

1
6� y(ε∞)

∞

Table 1. Comparison between post-majorization in terms of `∞-norm and `1-norm.

Theorem 4.4. Let x, y ∈ ∆↓d be such that x � y and define ε∞, ε̃∞ as

ε∞ := min{ε : x �D∞,ε y} and ε̃∞ := min{‖y′ − y‖∞ : x � y′}. (26)

Then, ε∞ = ε̃∞ ≤ ‖x− y‖∞, where the bound is sharp.

On the other hand, we obtain similar results for the case of ε-pre-majorization.

Theorem 4.5. Let x, y ∈ ∆↓d be such that x 6� y and define ε∞, ε̃∞ as

ε∞ := min{ε : xD∞,ε� y} and ε̃∞ := min{‖x′ − x‖∞ : x′ � y}. (27)

Then, ε∞ = ε̃∞ ≤ ‖x− y‖∞, where the bound is sharp.

In Table 1 and 2, we show with several examples that post and pre-majorization
in terms of `∞-norm and `1-norm are in equal foot in a majorization sense. All the
computations regarding `1-norm were made by implementing the algorithms given
in [18]. We also use the following notation: ε1 := min{ε : x �D1,ε y} and ε1 :=

min{ε : xD1,ε� y}.

5. Approximate state transformations between nonuniform states

There are many resource theories where the deterministic and exact transformations
between resources are governed by a majorization law. That is the case for the so-called
quantum nonuniformity resource theory, which claims that any nonuniform (that is, non
maximally mixed) state is a resource, and studies the possible interconversion between
resources by means of a prescribed class of (free) operations [12]. This problem is closely
related to the thermodynamic scenario where the free states and operations are defined
as the ones that are thermal relative to some fixed temperature [44].

Our previous results can be applied to the resource theory of quantum
nonuniformity. For simplicity, we follow Ref. [13], where only quantum operations that
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Example x
(ε∞)
∞ and x(ε

1)
1 Majorization comparison

x = (4/13, 4/13, 3/13, 2/13)

y = (1, 0, 0, 0)

x
(7/10)
∞ = (1, 0, 0, 0)

x
(18/13)
1 = (1, 0, 0, 0)

x
(ε∞)
∞ = x

(ε1)
1

x = (9/29, 8/29, 7/29, 5/29)

y = (1/2, 3/7, 1/14, 0)

x
(1/5)
∞ = (74/145, 13/29, 6/145, 0)

x
(139/203)
1 = (202/203, 1/203, 0, 0)

x
(ε∞)
∞ 6� x(ε

1)
1 and x(ε

1)
1 � x(ε

∞)
∞

x = (1/3, 7/24, 7/24, 1/12)

y = (4/11, 3/11, 3/11, 1/11)

x
(1/10)
∞ = (13/30, 3/8, 23/120, 0)

x
(5/66)
1 = (9/22, 7/24, 7/24, 1/132)

x
(ε∞)
∞ � x(ε

1)
1 and x(ε

1)
1 6� x(ε

∞)
∞

x = (8/25, 7/25, 7/25, 3/25)

y = (7/18, 5/18, 2/9, 1/9)

x
(1/10)
∞ = (21/50, 19/50, 9/50, 1/50)

x
(31/225)
1 = (103/225, 7/25, 59/225, 0)

x
(ε∞)
∞ 6� x(ε

1)
1 and x(ε

1)
1 6� x(ε

∞)
∞

Table 2. Comparison between pre-majorization in terms of `∞-norm and `1-norm.

preserve the dimension of the Hilbert space are considered (a more general case is
discussed in [12]).

Regarding the free operations, which must preserve the set of free states (in our
case, the maximally mixed state I/d), there are different approaches in the literature.
Namely,

• Mixture of unitaries (MU): EMU(ρ) =
∑
piUρU

†
i , with p ∈ ∆d′ (for some d′) and

{Ui} unitary operations;
• Noisy operations (NO): ENO(ρ) = TrE

(
U(ρ⊗ I/d)U †

)
, with U a unitary operation;

• Unital operations (U): EU(I/d) = I/d.

Notice that the induced sets of free operations satisfy the strict inclusion relations
{EMU} ⊂ {ENO} ⊂ {EU} (see Lemma 5 of [12]). Regardless of which class of free
operations is considered, the set of free states is formed only by the uniform state
ρ = I/d (i.e. the maximally mixed one). Hence, the resources are called nonuniform
states.

Moreover, as regards the transformations between nonuniform states, the three
classes of quantum free operations are equivalent, as the following Lemma asserts.

Lemma 5.1 (Lemma 10 of [12]). Let ρ and σ be two quantum density matrices acting
on a d-dimensional Hilbert space. Then,

ρ 7→
MU

σ ⇐⇒ ρ 7→
NO

σ ⇐⇒ ρ 7→
U
σ, (28)

where ρ 7→
X
σ with X ∈ {MU,NO,U} means that there exists a free operation EX such

that σ = EX(ρ).

In this way, one can fix any of these three classes of free operations without loss
of generality, and let ρ 7→ σ denote the transformation of ρ into σ by means of a free
operation (no matter of which class). In addition, due to Uhlmann’s [45] theorem, the
problem of exact transformations between nonuniform states reduces to a majorization
relation between their corresponding spectra (see, e.g., Lemma 3 of [13]). Precisely,
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Lemma 5.2. Let ρ and σ be two quantum density matrices acting on a d-dimensional
Hilbert space. Then,

ρ 7→ σ ⇐⇒ x(ρ) � x(σ), (29)

where x(ρ), x(σ) ∈ ∆↓d, with their components given by the eigenvalues of ρ and σ,
respectively.

Clearly, there exist nonuniform states ρ and σ such that ρ 7→ σ is not allowed. In
this case, free operations are not enough to give a solution for the exact transformation.
An alternative route is to relax the exact condition. For example, one can look for a
final state σ′ up to a certain distance of σ, so that the transformation ρ 7→ σ is allowed.
Or one can look for an initial state ρ′ up to a certain distance of ρ, so that ρ′ 7→ σ is
allowed. Let us define some notation for those cases.

Definition 5.3. Let ρ and σ be two quantum states acting on a d-dimensional Hilbert
space. We write:

• ρ D,ε7→ σ whenever there exists a quantum state σ′ such that ρ 7→ σ′ and D(σ, σ′) ≤ ε,

• ρ 7→
D,ε

σ whenever there exists a quantum state ρ′ such that ρ′ 7→ σ and D(ρ, ρ′) ≤ ε,

where D is a distance (a metric) on the set of quantum states.

These can be seen as notions of quantum post and pre-majorization. As it is
noticed in Ref. [12], two natural questions arise: (a) which distance measure on the
set of quantum states should be used?; and (b) can the problem be reduced to a
majorization relation between probability vectors associated to the quantum states,
as in the case of exact transformations (see Lemma 5.2)? For the latter, the answer is
positive as long as the distance measure used is contractive under unital operations.
This contractivity means that, for any pair of quantum states ρ and σ, and for
every unital operation E , then D(ρ, σ) ≥ D(E(ρ), E(σ)). It turns out that this
condition is satisfied by any distance induced by the Schatten p-norm of quantum states,
Dp(ρ, σ) := ‖ρ− σ‖p = (Tr|ρ− σ|p)1/p with p ≥ 1 (see [46]).

Theorem 5.4. Let ρ and σ be two quantum states acting on a d-dimensional Hilbert
space and x(ρ), x(σ) ∈ ∆↓d the corresponding probability vectors formed by the eigenvalues
of ρ and σ sorted in non-increasing order, respectively. Then, statement (i) is equivalent
to (ii) and statement (iii) is equivalent to (iv),

(i) ρ
Dp,ε7→ σ

(ii) x(ρ) �Dp,ε x(σ)

(iii) ρ 7→
Dp,ε

σ

(iv) x(ρ)Dp,ε� x(σ)

In other words, Theorem 5.4 says that, in the resource theory of nonuniformity, the
approximate conversion of quantum states by means of free operations can be studied in
terms of classical probability distributions (we notice that the equivalence between (i)
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and (ii) is similar to Lemma 55 of [12], but here we relax the contractivity condition of
the metric to free operations). Hence, all our previous results concerning approximate
majorization can be applied.

6. Concluding remarks

In this work, we study the majorization relation in connection with the geometry given
by the `p-norm. More precisely, we prove that `p-balls with 1 < p < ∞, in general, do
not admit extremal probaility vectors (Theorem 3.1), unlike the case p = 1 previously
discussed in the literature. Here, we complete this study by considering the case p =∞.
In particular, we show that the balls B∞ε are complete sublattices of the majorization
lattice (Theorem 3.2)). This is an interesting order-theoretic result in itself that has as
a consequence that each `∞-ball has supremum and infimum that belong to the ball,
that is, they are the maximum (Theorem 3.3) and minimum (Theorem 3.4), respectively.
Our findings show that the existence of a maximum and a minimum, is a rather peculiar
feature, which is specific of the `∞ and `1 norms.

We stress that this property becomes of particular interest in those areas of
research for which the notion of approximate majorization becomes essential, due to the
impossibility of working without making approximations. In turn, our results suggest
that the case `∞-norm (Theorem 4.2) together with `1-norm are the most relevant ones
for practical applications where approximations are unavoidable. And in principle, as
it follows from the examples given in Tables 1 and 2, there is no criterion in terms of
majorization to choose one norm over the other.

Finally, we apply our results in the framework of the quantum resource theory
of nonuniformity. In particular, we obtain that post-majorzation and pre-majorzation
between quantum states is equivalent to its classical counterpart between the probability
vectors formed by the corresponding eigenvalues of the quantum sates (equivalences
between (i) and (ii), and (iii) and (iv) of Theorem 5.4, respectively). In this way, all our
previous results concerning approximate majorization can be applied to this resource
theory.
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Appendix A. A brief introduction to order theory

Here, we provide all order-theoretic definitions that we have used in the main text to
characterize the majorization lattice and the ball B∞ε (x) (see, e.g., [47], for a complete
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introduction to order and lattice theories).
One of the primitive concepts in order theory is the one of partial order, which

formalizes and generalizes the intuitive notion of ordering of the elements of a set.

Definition Appendix A.1 (POSET). A (non-strict) partial order is a binary relation,
denoted as �, over a set P satisfying the following axioms: for every x, y, z ∈ P one has

(i) reflexivity: x � x,
(ii) antisymmetry: x � y and y � x, then x = y, and
(iii) transitivity: x � y and y � z, then x � z.

Notice that if the antisymmetry condition is not satisfied, the binary relation � is
called a preorder.

A set equipped with a partial order, 〈P ,�〉, is called a partially ordered set
(POSET). A totally ordered set is a particular POSET where all elements are
comparable, that is: either x � y or y � x for any pair x, y ∈ P . Clearly, this is
not the general case, because there exist POSETs for which there are elements that are
incomparable, that is, x 6� y and y 6� x.

The top (or maximal) and bottom (or minimal) elements of a POSET, if any, are
defined as follows.

Definition Appendix A.2 (top and bottom). A POSET 〈P ,�〉 has

(i) a top element > iff > ∈ P and > � x for all x ∈ S
(ii) a bottom element ⊥ iff ⊥ ∈ P and x � ⊥ for all x ∈ S

A bounded POSET is a POSET that has top and bottom elements. Other important
notions in order theory are the supremum (or least upper bound) and the infimum (or
greatest lower bound) of a given subset.

Definition Appendix A.3 (supremum and infimum). Let 〈P ,�〉 be a POSET and
let S ⊂ P . On the one hand, the supremum of S (if exists), denoted as

∨
S, is defined

as an element of P satisfying the two following conditions:

(i)
∨
S is an upper bound:

∨
S � x for all x ∈ S

(ii)
∨
S is the least of the upper bounds: for each y ∈ P such that y � x for all x ∈ S,

one has
∨
S � y.

On the other hand, the infimum of S (if exists), denoted as
∧
S, is defined as an element

of P satisfying the two conditions:

(i)
∧
S is a lower bound: x �

∧
S for all x ∈ S

(ii)
∧
S is the greatest of the lower bounds: for each y ∈ P such that x � y for all

x ∈ S, one has y �
∧
S.

Notice that if the supremum exists, then it is unique (and the same happens for
the infimum). In addition, if

∨
S ∈ S, then it is called the maximum of S and denoted

as maxS. In similar way, if
∧
S ∈ S, then it is called the minimum of S and denoted

as minS.
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A lattice is a partially ordered set in which the supremum and infimum of any two
elements exist.

Definition Appendix A.4 (lattice). A lattice 〈P ,�,∨,∧〉 is a POSET 〈P ,�〉 such
that for any pair x, y ∈ P there exist the supremum, denoted as x∨y, and the infimum,
denoted as x ∧ y.

This is the order-theoretic definition of a lattice. An alternative but equivalent
definition is the algebraic one, where a lattice is defined as a set equipped with two
binary operators, ∨ and ∧, which satisfy the idempotent, commutative and associative
laws, as well as the absorption law (see, e.g., [47]). Accordingly, if one considers a subset
of P formed by finite elements, S = {x1, . . . , xN} with xi ∈ P , by appealing to the
algebraic properties of the definition of lattice, it is straightforward to show that the
infimum and the supremum of P always exist, and are given by

∧
P = x1∧x2∧ . . .∧xN

and
∨
P = x1 ∨ x2 ∨ . . . ∨ xN , respectively. However, if one considers an arbitrary

subset of P (which could be infinite), the lattice properties alone are not strong enough
to guarantee the existence of an infimum and a supremum. If infimum and supremum
exist for every family, the lattice is said to be complete.

Definition Appendix A.5 (complete lattice). A complete lattice 〈P ,�,∨,∧〉 is a
POSET 〈P ,�〉 such that for any S ∈ P there exist the supremum, denoted as

∨
S, and

the infimum, denoted as
∧
S.

Finally, we introduce the notion of a sublattice, which is a subset with the same
supremum and infimum of the original lattice.

Definition Appendix A.6 (sublattice). Let 〈P ,�,∨,∧〉 be a lattice. S ⊆ P is a
subalttice of P iff x ∨ y ∈ S and x ∧ y ∈ S for any pair x, y ∈ S.

Appendix B. Algorithm to calculate the upper envelope

Here, we recall the algorithm given in Ref. [22] to obtain the upper envelope of the
polygonal joining {(k, sk(x))}dk=0 for a given probability vector x ∈ Rd.
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Algorithm 1 Upper envelope
input: x ∈ Rd
output: coordinates of the upper envelope of the polygonal joining {(k, sk(x))}dk=0

procedure UpperEnv(x)
K ← {0} . stores the ‘critical points’ of x
i← 0

while i < length(x) do
m← {0} . stores slope values
for j = i+1 . . . length(x) do

m← append
{
m,

sj(x)−si(x)
j−i

}
end for
k ← max(position of max(m)) . finds position of the last maximum slope
K ← append{K, k}
i← k . updates i

end while
return {(k, sk(x))}k∈K . coordinates of the upper envelope

end procedure

Appendix C. Proofs of Sec. 3

Proof of Theorem 3.1: Let x ∈ Rd, ε > 0, 1 < p < ∞ and consider the ball Bp
ε (x) =

{x′ ∈ Rd : ‖x′−x‖p ≤ ε}. Do not confuse the notation Bp
ε (x) with Bpε (x) = Bp

ε (x)∩∆↓d.
Let y, y′ ∈ Bp

ε (x) and z(t) := ty+(1−t)y′ for t ∈ [0, 1]. Let us check that ‖z(t)−x‖p < ε

for t ∈ (0, 1). Let define the function f(t) := (‖z(t)−x‖p)p =
∑d

i=1 |tyi+(1− t)y′i−xi|p.
It is straightforward to show that f(t) is convex, with exactly one local minimum and
f(0) = f(1) = εp. Then, f(t) < εp for all t ∈ (0, 1). Therefore, these calculations imply
that any linear variety intersecting the ball Bp

ε (x) in more than one point, necessarily
intersects the interior of the ball. Clearly, this does not hold for p = 1 or p =∞.

Given x ∈ Rd we can define the sets

Cx :=
{
x′ ∈ Rd : sk(x

′) ≤ sk(x) ∀k ∈ {1, . . . , d}
}
,

Cx :=
{
x′ ∈ Rd : sk(x

′) ≥ sk(x) ∀k ∈ {1 . . . , d}
}

Both Cx and Cx are convex (unbounded) polyhedra.
Let now assume x ∈ ∆↓d, ε > 0 and 1 < p < ∞ such that Bpε (x) ∩ ∂∆↓d = ∅.

Recall that the ball Bpε (x) is equal to Bp
ε (x) ∩ ∆↓d and let us denote its supremum

by
∨
Bpε (x) := x(ε). Notice that, being x(ε) the supremum of Bpε (x), the polytope

Cx(ε) := Cx(ε) ∩∆↓d must contain the ball Bpε (x). Then, from our previous calculations,
if a face of Cx(ε) intersects Bpε (x), then this intersection consists of one point.

Let assume that x(ε) ∈ Bpε (x) and let us make the following remarks:

(i) Notice that, if x(ε) is in the interior of Bpε (x), then there exists a face of Cx(ε) that
intersects the ball in more than one point. Hence, ‖x(ε) − x‖p = ε.
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(ii) If a face of Cx(ε) intersects the ball Bpε (x) in one point, then this point has to be the
supremum. Therefore, this face is tangential to the Bpε (x) at x(ε).

(iii) From the equations of Cx, it follows that the one-dimensional faces of Cx(ε) passing
through x(ε) are given by γ1, . . . , γd−1, with

γi := {t(0, . . . 0, 1,−1, 0, . . . , 0) + x(ε) : t ≥ 0} (C.1)

where t is bounded above by the condition γi ⊆ ∆↓d and the entry 1 of the d-
dimensional vector (0, . . . 0, 1,−1, 0, . . . , 0) is in position i.

Let us consider a maximal dimensional face of Cx(ε) that intersects the ball Bpε (x).
From items (i) and (ii), this face has to be tangential to the ball at x(ε). By the
geometry of the ball, the vector x(ε) − x is normal to the tangent space at x(ε). Hence,
(x(ε)−x)⊥γi for all i = 1, . . . , d−1. Then, by the characterization given in (iii) it follows
x(ε) = x+ t(1, . . . , 1) 6∈ ∆↓d for t 6= 0, a contradiction.

A similar argument applies for the minimum.

Proof of Theorem 3.2: Let x ∈ ∆↓d and ε > 0, and consider an arbitrary subset
B ⊆ B∞ε (x). Let s̄k := sup{sk(x′) : x′ ∈ B} with k ∈ {0, . . . , d}, and let L̄(ω) be
the upper envelope of the piecewise linear curve interpolating the points {(k, s̄k)}dk=0.
According to Lemma 2.2, L̄(ω) is the Lorenz curve of the supremum of B. Then,∨
B := xsup =

(
L̄(1), L̄(2)− L̄(1), . . . , L̄(d)− L̄(d− 1)

)
. Thus, we must prove that

‖xsup − x‖∞ ≤ ε. First, it is important to remark that, by construction, the set of
indices K := {k : L̄(k) = s̄k} is non-empty, with 0, 1, d ∈ K. Notice that, given k, there
exist k0, k1 ∈ K such that k1 < k ≤ k0 and

L̄(k)− L̄(k − 1) = s̄k0 − L̄(k0 − 1) = L̄(k1 + 1)− s̄k1 . (C.2)

Let us prove that |xsupk − xk| ≤ ε for all k ∈ {1, . . . , d}. Let us first note that

xsupk − xk = L̄(k)− L̄(k − 1)− xk (C.3)

= s̄k0 − L̄(k0 − 1)− xk (C.4)

≤ s̄k0 − s̄k0−1 − xk0 (C.5)

= sup{sk0(x′) : x′ ∈ B} − sup{sk0−1(x′) : x′ ∈ B} − xk0 (C.6)

≤ sup{sk0(x′)− sk0−1(x′) : x′ ∈ B} − xk0 (C.7)

= sup{x′k0 : x′ ∈ B} − xk0 ≤ ε, (C.8)

where we have used s̄k0−1 ≤ L̄(k0 − 1) and xk0 ≤ xk from (C.4) to (C.5), and
supA− supB ≤ sup{A − B} for A,B ⊆ R from (C.6) to (C.7), respectively.
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On the other hand, for a given δ > 0, there exists x′ such that s̄k1 − δ < sk1(x
′).

Then,

xsupk − xk + δ = L̄(k)− L̄(k − 1)− xk + δ (C.9)

= L̄(k1 + 1)− s̄k1 − xk + δ (C.10)

≥ s̄k1+1 − s̄k1 − xk1+1 + δ (C.11)

> s̄k1+1 − sk1(x′)− xk1+1 (C.12)

≥ sk1+1(x
′)− sk1(x′)− xk1+1 (C.13)

= x′k1+1 − xk1+1 (C.14)

≥ −ε. (C.15)

where we have used s̄k1+1 ≤ L̄(k1 + 1) and xk ≤ xk1 from (C.10) to (C.11). Then,
xsupk − xk + δ > −ε for all δ > 0, hence xsupk − xk ≥ −ε. Finally, xsup ∈ B∞ε (x) and
xsup � x′ for all x′ ∈ B.

A more direct argument applies for the infimum.

Proof of Theorem 3.3: According to Theorem 3.2, the supremum of B∞ε (x) is indeed the
maximum. Let us denote it as maxB∞ε (x) := x + νmax, so that we have to prove that
νmax = ν. On the one hand, by construction, one has that max{−xk,−ε} ≤ νmax

k ≤ ε

for all k ∈ {1, . . . , d}. On the other hand, notice that x+ νmax � x+ ν if and only if

sk(ν
max) ≥ sk(ν) for all k ∈ {1, . . . , d}. (C.16)

Let us compare these inequalities by analyzing the following cases:

• if k ∈ {1, . . . , k0−1}, one has sk(ν) = kr. Hence, sk(νmax) ≤ sk(ν). This inequality
together with (C.16) lead to νmax

k = νk;
• if k ∈ {k0 + 1, . . . , d}, one has νmax

k ≥ νk = max{−xk,−ε}. Then,
∑d

i=k ν
max
i ≥∑d

i=k νi and this is equivalent to sk(νmax) ≤ sk(ν). Therefore, the latter inequality
together with (C.16) give νmax

k = νk;
• if k = k0, one has νmax

k0
= νk0 , since sd(νmax) = sd(ν) and the two points given

above.

Hence, νmax = ν. Therefore, maxB∞ε (x) = x(ε)∞ .

Proof of Theorem 3.4: Let us prove that x(ε)∞ := (L̄(1), L̄(2)− L̄(1), . . . , L̄(d)− L̄(d−1))

satisfies x(ε)∞ ∈ B∞ε (x) and, for all x′ ∈ B∞ε (x), one has Lx′(ω) ≥ L̄(ω) for all ω ∈ [0, d].
This is equivalent to prove that minB∞ε (x) = x

(ε)
∞ .

Let us begin with the proof of x(ε)∞ ∈ B∞ε (x). Before that, let us observe that,
by construction, the set of indices K := {k : L̄(k) = sk(x − ν(ε))} is non-empty, with
0, d ∈ K. Notice that given k, there exists k0, k1 ∈ K such that k1 < k ≤ k0 and

L̄(k)− L̄(k − 1) = sk0(x− ν(ε))− L̄(k0 − 1) = L̄(k1 + 1)− sk1(x− ν(ε)). (C.17)
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Let us prove that |x(ε)∞ k − xk| ≤ ε for all k ∈ {1, . . . , d}. Let us first note that

x
(ε)
∞ k − xk = L̄(k)− L̄(k − 1)− xk (C.18)

= sk0(x− ν(ε))− L̄(k0 − 1)− xk (C.19)

≤ sk0(x− ν(ε))− sk0−1(x− ν(ε))− xk0 (C.20)

= ν
(ε)
k0
≤ ε, (C.21)

where we have used s̄k0−1 ≤ L̄(k0−1) and xk0 ≤ xk from (C.19) to (C.20). On the other
hand, let us note that

x
(ε)
∞ k − xk = L̄(k)− L̄(k − 1)− xk (C.22)

= L̄(k1 + 1)− sk1(x− ν(ε))− xk (C.23)

≥ sk1+1(x− ν(ε))− sk1(x− ν(ε))− xk1 (C.24)

= ν
(ε)
k1
≥ −ε, (C.25)

where we have used sk1+1(x − ν(ε)) ≤ L̄(k1 + 1) and xk ≤ xk1 from (C.23) to (C.24).
Therefore, x(ε)∞ ∈ B∞ε (x), and its Lorenz curve is given by L̄(ω).

Let us denote by Lx−ν(ε)(ω) to the polygonal curve given by the linear interpolation
of the points {(k, sk(x− ν(ε)))}dk=0. Although Lx−ν(ε) is not necessarily a Lorenz curve,
by construction, it satisfies that for all x′ ∈ B∞ε (x), one has Lx′(ω) ≥ Lx−ν(ε)(ω) for all
ω ∈ [0, d]. On the other hand, by appealing to the definition of upper envelope, one has
that, for all x′ ∈ B∞ε (x), Lx′(ω) ≥ L̄(ω) ≥ Lx−ν(ε)(ω) for all ω ∈ [0, d].

Proof of Corollary 3.5: Let us introduce the polygonal curves Lx−ν(ε)(ω) and Ly−ν(ε)(ω)

with ω ∈ [0, d] given by the linear interpolation of the sets of points{(
k, sk(x− ν(ε))

)}d
k=0

and
{(
k, sk(y − ν(ε))

)}d
k=0

with ν(ε) given by (13), respectively.
Notice that these curves are not necessarily Lorenz curves. Given that sk(x) ≥ sk(y) for
all k ∈ {1, . . . , d}, then Lx−ν(ε)(ω) ≥ Ly−ν(ε)(ω) for all ω ∈ [0, d]. As a consequence, their
respective upper envelopes preserve this order. Finally, by appealing to Theorem 3.4,
one has x(ε)∞ � y(ε)∞ .

Proof of Corollary 3.6: Let Lx−ν(ε2)(ω), Lx(ε2)−ν(ε1)(ω) and Lx−ν(ε1+ε2)(ω) the polygo-
nal curves given by the linear interpolation of the points

{(
k, sk(x− ν(ε2))

)}d
k=0

,{(
k, sk(x

(ε2) − ν(ε1))
)}d

k=0
and

{(
k, sk(x− ν(ε1+ε2))

)}d
k=0

, respectively; and let Lx−ν(ε2)(ω),
Lx(ε2)−ν(ε1)(ω) and Lx−ν(ε1+ε2)(ω) their corresponding upper envelopes. Notice that (16)
is equivalent to Lx−ν(ε1+ε2)(ω) = Lx(ε2)−ν(ε1)(ω) for all ω ∈ [0, d].

Let us focus our attention in an arbitrary interval [k, k′] where Lx(ε2)(ω) is linear.
Notice that Lx−ν(ε2)(ω) = Lx−ν(ε2)(ω) for ω = k, k′ and Lx−ν(ε2)(ω) ≤ Lx−ν(ε2)(ω) for all
ω ∈ (k, k′). As a consequence, one has Lx−ν(ε1+ε2)(ω) = Lx(ε2)−ν(ε1)(ω) for ω = k, k′ and
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Lx−ν(ε1+ε2)(ω) ≤ Lx(ε2)−ν(ε1)(ω) for all ω ∈ (k, k′), being Lx(ε2)−ν(ε1)(ω) a convex function
in this interval. Therefore, their upper envelopes have to coincide in this interval,
that is, Lx−ν(ε1+ε2)(ω) = Lx(ε2)−ν(ε1)(ω) for all ω ∈ [k, k′]. Repeating this argument for
all intervals of the form [k, k′] where Lx(ε2)(ω) is linear, one obtains the desired result
Lx−ν(ε1+ε2)(ω) = Lx(ε2)−ν(ε1)(ω) for all ω ∈ [0, d].

Proof of Theorem 3.9: First, let us prove an intermediate result. Let Vpε = {ν ∈
R3 : ‖ν‖p ≤ ε and ν1 + ν2 + ν3 = 0}. Then, V1

ε = V∞ε
2
. Indeed, notice that

• If |ν1| ≥ |ν2| and ν1 ≥ 0 ≥ ν2, then

‖ν‖1 = ν1 − ν2 + |ν3| = ν1 − ν2 + ν1 + ν2 = 2ν1 ≤ ε ⇐⇒ ‖ν‖∞ = ν1 ≤
ε

2
.

• If |ν1| ≥ |ν2| and ν2 ≥ 0 ≥ ν1, then

‖ν‖1 = −ν1 + ν2 + |ν3| = −ν1 + ν2 − ν1 − ν2 = 2|ν1| ≤ ε ⇐⇒ ‖ν‖∞ = |ν1| ≤
ε

2
.

• If |ν2| ≥ |ν1| and ν2 ≥ 0 ≥ ν1, then

‖ν‖1 = −ν1 + ν2 + |ν3| = −ν1 + ν2 + ν1 + ν2 = 2ν2 ≤ ε ⇐⇒ ‖ν‖∞ = ν2 ≤
ε

2
.

• If |ν2| ≥ |ν1| and ν1 ≥ 0 ≥ ν2, then

‖ν‖1 = ν1 − ν2 + |ν3| = ν1 − ν2 − ν1 − ν2 = 2|ν2| ≤ ε ⇐⇒ ‖ν‖∞ = |ν2| ≤
ε

2
.

Finally, let us notice that

x′ ∈ B1
ε (x) ⇐⇒ x′ − x ∈ V1

ε = V∞ε
2
⇐⇒ x′ ∈ B∞ε

2
(x).

Proof of Corollary 3.11: Let (x, ε) be an admissible pair as in Definition 3.10. Before
presenting the proof, let us observe that any admissible pair satisfies xk ≥ xk+1+2ε ≥ 2ε.

Now, from Theorem 3.3 and using the previous observation, it is easy to see that
k0 = d/2 when d is even, and k0 = (d + 1)/2 when d is odd. Then, k1 = k2 = d, δ = ε

and f(k) = (d − k)ε. Finally, using those parameters one has ν = ν(ε), arriving to the
desired result: x(ε) = x+ ν(ε).

For the minimum, we invoke Theorem 3.4. In this case, it is direct to observe that
x − ν(ε) ∈ ∆↓d, that is to say that x − ν(ε) is an ordered probability vector. Hence,
L̄(ω) coincides with the Lorenz curve of x− ν(ε), and x(ε)k = (x− ν(ε))k, concluding the
proof.

Proof of Corollary 3.12: From (18), one has x(ε)∞ = x + ν(ε) and y(ε)∞ = y + ν(ε). Given
that x � y, it directly follows x(ε)∞ = x+ ν(ε) � y(ε)∞ = y + ν(ε).
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Proof of Corollary 3.13: From (18), one has x(ε1+ε2)∞ = x+ ν(ε1+ε2) and x(ε2)∞ = x+ ν(ε2).

Then,
(
x(ε2)∞

)(ε1)
∞ = (x+ ν(ε2))

(ε1)

∞ = x+ ν(ε2) + ν(ε1) = x+ ν(ε1+ε2) = x(ε1+ε2)∞ .

Appendix D. Proofs of Sec. 4:

Proof of Theorem 4.2: Let us first show the equivalence between x �D∞,ε y and x � y(ε)∞ .
Assume x �D∞,ε y. Then, there exists y′ ∈ ∆↓d such that x � y′ and ‖y′−y‖∞ ≤ ε. Then,
y′ ∈ B∞ε (y) and, by definition, one has y′ � y(ε)∞ . Thus, if x �D∞,ε y ⇒ x � y(ε)∞ . The
converse statement is straightforward, since by definition, one has ‖y(ε)∞ −y‖∞ ≤ ε, hence
x � y(ε)∞ implies x �D∞,ε y. Similar arguments can be used to prove the equivalence
between xD∞,ε� y and x(ε)∞ � y.

Proof of Theorem 4.4: Let us first show the equivalence between both quantities ε1
and ε2. On the one hand, from the definition of ε1, one has x � y(ε1)∞ , so that
ε1 = ‖y(ε1)∞ − y‖∞ ∈ {‖y′ − y‖∞ : x � y′}. Then, ε1 ≥ ε2. On the other hand, from the
definition of ε2, one has x � y′0 � y(ε2)∞ with y′0 := arg min{‖y′ − y‖∞ : x � y′}. Hence,
ε2 ≥ ε1. Therefore, ε1 = ε2.

Let us note that, since x � x, one has ε2 ≤ ‖x − y‖∞. Let us now show that this
upper bound is sharp. Take for example x =

(
1
3
, 1
3
, 1
3

)
and y =

(
1
2
, 1
4
, 1
4

)
(clearly x � y).

Then, ‖x − y‖∞ = 1
6
and it is easy to check y(1/6)∞ = x and x � y(ε)∞ for ε < 1

6
, hence

ε1 = 1
6
.

Proof of Theorem 4.5: Let us first show the equivalence between the quantities ε1
and ε2. On the one hand, from the definition of ε1, one has x(ε1)∞ � y, so that
ε1 = ‖x(ε1)∞ − x‖∞ ∈ {‖x′ − x‖∞ : x′ � y}. Then, ε1 ≥ ε2. On the other hand,
from the definition of ε2, one has x(ε2)∞ � x′0 � y with x′0 := arg min{‖x′−x‖∞ : x′ � y}.
Hence, ε2 ≥ ε1. Therefore, ε1 = ε2.

Let us note that, since y � y, one has ε2 ≤ ‖x − y‖∞. Let us now show that this
upper bound is sharp. Take for example x =

(
1
2
, 1
4
, 1
4

)
and y = (1, 0, 0) (clearly x � y).

Then, ‖x − y‖∞ = 1
2
and it is easy to check that x(1/2)∞ = y and x(ε)∞ � y for ε < 1

2
.

Hence, ε1 = 1
2
.

Appendix E. Proofs of Sec. 5:

Proof of Theorem 5.4: Let us first rewrite the statements,

(i) there exists a quantum state σ′ such that ρ 7→ σ′ and ‖σ − σ′‖p ≤ ε.

(ii) there exists a probability vector y′ such that x(ρ) � y′ and ‖x(σ)− y′‖p ≤ ε.
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(iii) there exists a quantum state ρ′ such that ρ′ 7→ σ and ‖ρ− ρ′‖p ≤ ε.
(iv) there exists a probability vector x′ such that x′ � x(σ) and ‖x(ρ)− x′‖p ≤ ε.

Let us prove the implication (ii)⇒(i). Let σ =
∑

k xk(σ) |k〉 〈k| be the spectral
decomposition of σ where the basis is sorted in such a way that x1(σ) ≥ . . . ≥ xd(σ).
To see that (ii) implies (i), one can define the quantum state σ′ =

∑
k y
′
k |k〉 〈k|, which

is diagonal in the same basis as σ and whose eigenvalues are given by the distribution
y′. Then, ‖σ− σ′‖p = ‖x(σ)− y′‖p ≤ ε, where the last inequality follows by hypothesis.
Finally, due to Lemma 5.2 and the fact that y′ = x(σ′), the condition x(ρ) � y′ implies
that there exists a unital operation such that ρ 7→ σ′.

The implication (iv)⇒(iii) follows as before by considering diagonal density
matrices. Indeed, let ρ =

∑
k xk(ρ) |k〉 〈k| be the spectral decomposition of ρ where

the basis is sorted in such way that x1(ρ) ≥ . . . ≥ xd(ρ). Now, taking ρ′ =
∑

k x
′
k |k〉 〈k|

and following the same arguments as before one obtains the implication (iv)⇒(iii).

In order to prove (i)⇒(ii) and (iii)⇒(iv) we need to recall Lidskii’s Theorem (see,
e.g., [48, Th. III.4.4]). It says that if Φ is a symmetric gauge function in Rd (for instance
Φ(x) = ‖x‖p or Φ(x) = ‖x‖∞, see in [48, Ex. II.3.13] for more examples), then

Φ(x(ρ)− x(σ)) ≤ Φ(x(ρ− σ)),

where ρ and σ are Hermitian and the entries of x(ρ) and x(σ) are the eigenvalues of ρ
and σ sorted in non-increasing order, respectively. Also, recall the following property of
the Schatten p-norm,

‖ρ‖p = ‖x(ρ)‖p.

Then, combining both results, it follows

‖x(ρ)− x(σ)‖p ≤ ‖ρ− σ‖p.

Hence, (i)⇒(ii) follows by taking y′ = x(σ′) together with Lemma 5.2, whereas (iii)⇒(iv)
follows by taking x′ = x(ρ′) together with Lemma 5.2.
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