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Abstract

It has been argued in [EPL 90 (2010) 50004], entitled Essential dis-

creteness in generalized thermostatistics with non-logarithmic entropy,
that ”continuous Hamiltonian systems with long-range interactions
and the so-called q-Gaussian momentum distributions are seen to be
outside the scope of non-extensive statistical mechanics”. The argu-
ments are clever and appealing. We show here that, however, some
mathematical subtleties render them unconvincing
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1 Introduction

During more than 25 years, an important topic in statistical mechanics theory
revolved around the notion of generalized q-statistics, pioneered by Tsallis
[1]. It has been amply demonstrated that, in many occasions, the celebrated
Boltzmann-Gibbs logarithmic entropy does not yield a correct description
of the system under scrutiny [2]. Other entropic forms, called q-entropies,
produce a much better performance [2]. One may cite a large number of such
instances. For example, non-ergodic systems exhibiting a complex dynamics
[2].
The non-extensive statistical mechanics of Tsallis’ has been employed to
fruitfully discuss phenomena in variegated fields. One may mention, for
instance, high-energy physics [3]-[4], spin-glasses [5], cold atoms in optical
lattices [6], trapped ions [7], anomalous diffusion [8], [9], dusty plasmas [10],
low-dimensional dissipative and conservative maps in dynamical systems [11],
[12], [13], turbulent flows [14], Levy flights [15], the QCD-based Nambu, Jona,
Lasinio model of a many-body field theory [16], etc. Notions related to q-
statistical mechanics have been found useful not only in physics but also in
chemistry, biology, mathematics, economics, and informatics [17], [18], [19].

In this work we revisit results presented in [20]. First, we note that [20]
has been criticized, in a manner unrelated to ours here, in a Comment [21].
There is also a reply by Abe to that Comment [22]. It is stated in [20] that
one encounters an essential discreteness in generalized thermostatistics with
non-logarithmic entropy. Thus, ”continuous Hamiltonian systems with long-
range interactions and the so-called q-Gaussian momentum distributions are
seen to be outside the scope of non-extensive statistical mechanics” [20]. The
pertinent arguments are clever and appealing. However, as we will show here
that, some mathematical subtleties render them unconvincing. The main
reason is the Functional Analysis is the branch of mathematics operative
in this context, not simple Calculus. Functional variational procedures are
described, for instance, in Ref. [23].

2 Continuous variational Tsallis’ case

The functional MaxEnt treatment is given in [24]. Let P stand for the per-
tinent probability distribution (PD). One evaluates mean values here in the
customary fashion, linear in P, i.e.,
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< R >=
∫
M
RP dµ. It is well known that the MaxEnt variational Tsallis

functional is [2]

FS(P) = −

∫

M

Pq lnq(P) dµ+ α





∫

M

PH dµ− < U >



 + γ





∫

M

P dµ− 1



 .

(2.1)
For the variational increment h we have [23]

FS(P+h)−FS(P) = −

∫

M

(P+h)q lnq(P+h) dµ+α





∫

M

(P + h)H dµ− < U >



+

γ





∫

M

(P + h) dµ− 1



+

∫

M

Pq lnq(P) dµ− α





∫

M

PH dµ− < U >



−

,

γ





∫

M

P dµ− 1



 . (2.2)

Eq. (2.2) can be recast as

FS(P + h) − FS(P) =

∫

M

[(

q

1− q

)

Pq−1 + αH+ γ

]

h dµ−

∫

M

qPq−2h
2

2
dµ+O(h3). (2.3)

Eq. (2.3) leads now to the following equations

(

q

1− q

)

Pq−1 + αH+ γ = 0, (2.4)

−

∫

M

qPq−2h2 dµ ≤ C||h||2. (2.5)

Eq. (2.4) is the Euler-Lagrange one while (2.5) gives bounds originating from
the second variation [23]. Starting with (2.4) we use the procedure given in
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[2]. One first gives the Lagrange multipliers α and β a prescribed form in
terms of a (thus far unknown) quantity Z:

α = βqZ1−q, (2.6)

γ =
q

q− 1
Z1−q, (2.7)

and then Z is determined by appeal to normalization. Accordingly, one has

P =
[1+ β(1− q)H]

1
q−1

Z
= e2−q(−βH)/Z, (2.8)

and, on account of normalization,

Z =

∫

M

[1+ β(1− q)H]
1

q−1 dµ. (2.9)

For Eq. (2.9) we have,

W = −

∫

M

qPq−2h2 dµ = −

∫

M

qZ2−q[1+ β(1− q)H]
q−2
q−1h2 dµ. (2.10)

How to obtain a bound is discussed in [24].

3 Discrete variational Tsallis’ case

The concomitant Tsallis discrete functional is

FS(P) = −

n∑
i=1

Pq
i lnq(Pi) + λ1

(

n∑
i=1

PiUi− < U >

)

+ λ2

(

n∑
i=1

Pi − 1

)

(3.1)

For the increment we have

FS(P+h)−FS(P) = −

n∑
i=1

(Pi+hi)
q lnq(Pi+hi)+λ1

[

n∑
i=1

(Pi + hi)Ui− < U >

]

+

λ2

[

n∑
i=1

(Pi + hi) − 1

]

+

n∑
i=1

Pq
i lnq(Pi) − λ1

(

n∑
i=1

PiUi− < U >

)

−
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λ2

(

n∑
i=1

Pi − 1

)

(3.2)

Eq. (3.2) can be recast as

FS(P + h) − FS(P) =

n∑
i=1

[(

q

1− q

)

Pq−1
i + λ1Ui + λ2

]

hi

−

n∑
i=1

qPq−2
i

h2
i

2
+O(h3), (3.3)

Eq. (3.3) leads to the following equations:
(

q

1− q

)

Pq−1
i + λ1Ui + λ2 = 0, (3.4)

−

n∑
i=1

qPq−2
i h2

i ≤ C||h||2 (3.5)

Eq. (3.4) is the Euler-Lagrange one while (3.5) gives bounds originating from
the second variation.
Starting with (3.4), we use again the procedure given in [2] and in Section
2. One first gives the Lagrange multipliers λ1 and λ2 a prescribed form in
terms of a (thus far unknown) quantity Z:

λ1 = βqZ1−q, (3.6)

λ2 =
q

q− 1
Z1−q, (3.7)

and then has

Pi =
[1+ β(1− q)Ui]

1
q−1

Z
, (3.8)

so that normalization demands that

Z =

n∑
i=1

[1+ β(1− q)Ui]
1

q−1 . (3.9)

For Eq. (3.5) we have,

W = −

n∑
i=1

qPq−2
i h2

i = −

n∑
i=1

qZ2−q[1+ β(1− q)Ui]
q−2
q−1h2

i . (3.10)

Just how to obtain a bound follows the lines discussed in [24], adapted to
the discrete scenario.
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4 Our above results vis-a-vis those of Ref.

[20]

We have seen in the two previous Sections that a rigorous functional analysis,
MaxEnt treatment, yields Eqs. (2.8), (2.9), (3.8), and (3.9). This entails that
Eqs. (3) and (4) of [20] cannot be correct. Neither are correct Eqs. (7) and
(8)of such reference. The question is the passage from the continuous to the
discrete (or viceversa) scenarios. This is the main issue discussed in [20].

It is well known in Measure Theory [25] that it is not possible to pass
from a discrete probability distribution (PD) to a continuous one via a simple
Riemann integral, as done in [20]. Moreover, a discrete PD can be cast as
an integral over a Lebesgue-Stieltjes measure, concentrated on a finite (or
numerable) set of points. For instance, in the Shannon entropic case one
has, in phase space (q, p), with U the energy and λi Lagrange multipliers:

S = −

n∑
i=1

Pi lnPi = −

∫

M

P[U(p, q), λ1....., λn] lnP[U(p, q), λ1....., λn]dµ(p, q),

(4.1)
with

dµ(p, q) =

n∑
i=1

δ[U(p, q) −Ui]dU(p, q), (4.2)

where
Pi = P[Ui, λ1....., λn]. (4.3)

Thus, it becomes clear that Eq. (7) of [20] is incorrect because there, the
probability density is NOT concentrated on a numerable set of points. The
Tsallis’ entropy scenario is identical to the one above. One just must insert
in (4.1) PqlnqP instead of P lnP.

Note also that Eq. (11) of [20] is NOT the standard classical Boltzmann’s
entropy expression, transcribed in his tombstone at Vienna’s cemetery. This,
of course, does not contain Planck’s constant. The derivation that follows
such Eq. (11) is thus invalid.

Finally, we cite some recent works that successfully deal with the Tsallis’
q-statistics with continuous probability distributions [26, 27, 28].
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5 Conclusions

We have here shown, by recourse to Functional Analysis, that Tsallis’s ther-
mostatistics is fully valid in the continuous instance, notwithstanding the
arguments of [20].

7



References

[1] C. Tsallis, J. of Stat. Phys., 52 (1988) 479.

[2] C. Tsallis, Introduction to Nonextensive Statistical Mechanics Ap-

proaching a Complex World (Springer, NY, 2009).

[3] A. Adare et al., Phys. Rev. D 83 (2011) 052004.

[4] G. Wilk, Z. Wlodarczyk, Physica A 305 (2002) 227.

[5] R. M. Pickup, R. Cywinski, C. Pappas, B. Farago, and P. Fouquet, Phys.
Rev. Lett. 102 (2009) 097202.

[6] E. Lutz and F. Renzoni, Nature Physics 9 (2013) 615.

[7] R. G. DeVoe, Phys. Rev. Lett. 102 (2009) 063001.

[8] Z. Huang, G. Su, A. El Kaabouchi, Q. A. Wang, and J. Chen, J. Stat.
Mech. L05001 (2010).

[9] J. Prehl, C. Essex, and K. H. Hoffman, Entropy 14 (2012) 701.

[10] B. Liu and J. Goree, Phys. Rev. Lett. 100 (2018) 055003.

[11] O. Afsar and U. Tirnakli, EPL 101 (2013) 20003.

[12] U. Tirnakli, C. Tsallis, and C. Beck, Phys. Rev. E 79 (2009) 056209.

[13] G. Ruiz, T. Bountis, and C. Tsallis, Int. J. Bifurcation Chaos 22 (2012)
1250208.

[14] C. Beck and S. Miah, Phys. Rev. E 87 (2013) 031002.

011109.

[15] G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84 (2000) 2770.

[16] J. Rozynek, G. Wilk, J. of Physics G 36 (2009) 125108.

[17] C. M. Gell-Mann and C. Tsallis, Nonextensive EntropyInterdisciplinary

Applications (Oxford University Press, New York, 2004).

[18] S. Abe, Astrophys. Space Sci. 305 (2006) 241.

8



[19] S. Picoli, R. S. Mendes, L. C. Malacarne, and R. P. B. Santos, Braz. J.
Phys. 39 (2009) 468.

[20] S. Abe, EPL 90 (2010) 50004.

[21] B. Andresen, EPL 92 (2010) 40005.

[22] S. Abe, EPL 92 (2010) 40006.

[23] G. Y. Shilov: Mathematical Analysis (Pergamon Press, NY, 1965).

[24] A. Plastino, M. C. Rocca, Physica A 436 (2015) 572.

[25] M. Adams, V. Guillemin, Measure Theory and Probability (Springer,
Berlin, 1996).

[26] H. Christodoulidi, T. Bountis, C. Tsallis, L. Drossos, J. Stat. Mech.
(2016) 123206.

[27] M. S. Ribeiro, F. D. Nobre, E. M. F. Curado, Phys. Rev. E 85 (2012)
021146.

[28] L. J. L. Cirto, V. R. V. Assis, C. Tsallis Physica A 393 (2014) 286.

9


	1 Introduction
	2 Continuous variational Tsallis' case
	3 Discrete variational Tsallis' case
	4 Our above results vis-a-vis those of Ref. abe
	5 Conclusions

