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Abstract

The spread of an epidemic process is considered in the context of a spatial SIR
stochastic model that includes a parameter 0 ≤ p ≤ 1 that assigns weights p and
1 − p to global and local infective contacts respectively. The model was previously
studied by other authors in different contexts. In this work we characterized the
behavior of the system around the threshold for epidemic spreading. We first used a
deterministic approximation of the stochastic model and checked the existence of a
threshold value of p for exponential epidemic spread. An analytical expression, which
defines a function of the quotient α between the transmission and recovery rates,
is obtained to approximate this threshold. We then performed different analyses
based on intensive stochastic simulations and found that this expression is also a
good estimate for a similar threshold value of p obtained in the stochastic model.
The dynamics of the average number of infected individuals and the average size
of outbreaks show a behavior across the threshold that is well described by the
deterministic approximation. The distributions of the outbreak sizes at the threshold
present common features for all the cases considered corresponding to different values
of α > 1. These features are otherwise already known to hold for the standard
stochastic SIR model at its threshold, α = 1: (i) the probability of having an outbreak
of size n goes asymptotically as n−3/2 for an infinite system, (ii) the maximal size of
an outbreak scales as N2/3 for a finite system of size N .
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1. Introduction

The SIR model is probably the most widely used model in mathematical epi-
demiology [1, 2, 3]. Since W. Kermack and A. McKendrick employed it to describe
the development of a plague epidemic in Bombay [4], it has been extensively used for
many purposes. Sometimes as the kernel of more complex epidemiological models
in the field of infectious disease transmission [2, 5] and other times to study spread-
ing phenomena in other fileds such as rumor propagation [6], computer viruses [7],
information diffusion in Web forums [8] or investors’ behavior in stock markets. [9].

In the deterministic version of the model, the three epidemiological classes are
represented by three continuous variables (S: susceptible, I: infected, and R: recov-
ered) that evolve in time according to a set of ordinary coupled differential equations.
It is easy to treat mathematically, has a straightforward interpretation and leads to
simple and important predictions [4]. However, from the very beginning it was dis-
covered that for some applications, it was necessary to consider the fluctuations and
the discrete nature of the population and of the processes involved (infection and
recovery) [1, 10]. For example, using a stochastic version of the SIR model, M. S.
Bartlett showed that stochasticity was an essential aspect to be considered to explain
the persistence of measles as a function of the city size in several cities of England
and Wales [10, 11].

The threshold for epidemic spreading that in both versions of the SIR model (de-
terministic and stochastic) occurs when the transmission rate (β) equals the recovery
rate (γ) and so, the quotient α ≡ β/γ = 1 is of particular interest. The properties
of the stochastic SIR model at the threshold have been extensively studied lately by
rigorous mathematical theory, more empirical treatments, and computer simulations
[12, 13, 14, 15].

In the present work we study a stochastic SIR model on the lattice with local
and global contacts where the weight of the global contacts is taken into account
through a single parameter p. It is inspired in Watts-Strogatz model [16] and has
already been used by other authors to study transmission of diseases of high α values
[17, 18, 19, 20]. The purpose of using these simple models in this field is to gain
insight into the qualitative trends observed when the global contacts are lowered. To
obtain an accurate description of the transmission process, a more realistic network
well suited to represent human interactions should be used. On the other hand, SIR
type models that combine local contacts in a square lattice with some kind of global
connection have been proposed to study the spread of infectious diseases in plants
and animals [21, 22, 23]. In these cases, where the lattice could eventually be a good
enough representation of the “spatiality” of the problem, predictions could also have
a quantitative character.
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In this work we study the model for low α values since we are interested in the
behavior around the threshold for epidemic spreading. In models where the hypoth-
esis of uniform mixing holds, the threshold is given by the condition R0=1, where
R0 is the basic reproductive number, defined as the average number of secondary
infections produced by one infected individual in a completely susceptible popula-
tion [2]. This is the case of the classic SIR model where R0 = α. In models where
uniform mixing is broken, as in the one studied in the present work, it is known
that the concept of R0 is meaningless [2, 24, 25], and so, the threshold condition is
something to be explored. We here show that it is possible to define a threshold for
exponential spreading that in this model (with two free parameters) is not a point
as in the classical SIR model but a curve in the (p, α) plane. We found that for any
α > 1 considered, by sufficiently lowering the value of p, the threshold can be crossed
producing a drastic reduction of the probability for a major outbreak. We managed
to characterize several model properties around the threshold through the analysys
of stochastic simulations and by using a deterministic approximation developed in a
previous work [20].

The work is organized as follows: we first introduce the stochastic model (SM)
and the deterministic approximation (DA). Then, using the DA, we can build a phase
diagram in the parameter space detecting the region in which it is possible to prevent
the exponential spread. We perform intensive stochastic simulations and find that
average magnitudes follow the same trends predicted by the DA. In particular the
dynamical behavior of the average number of infected individuals makes it possible
to unambiguously define the threshold for exponential spreading in the SM for all
the values of α considered. We then analyze the distributions of the outbreak sizes
at the epidemic threshold and obtain several features that are known to hold for the
classical SIR model. A summary of our findings is finally given in the conclusions.

2. The stochastic model and the deterministic approximation

2.1. The stochastic model

We consider the stochastic model studied in [19], but since in the present work
we focus on the epidemic spread only, we do not consider the births and deaths.
The population consists of N individuals identified with the sites of an L×L square
lattice with periodic boundary conditions. They may be in one of the three epidemi-
ological states: S, I or R (susceptible, infected or recovered). The dynamics of the
model are described by a stochastic Markovian process in which an individual may
experience one of these two changes in its state: S → I (infection) or I → R (re-
covery). Infections occur through infective contacts among susceptible and infected
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individuals. We define an infective contact as a contact between two individuals
such that if one individual is susceptible and the other infected, the former becomes
infected. We assume that an individual at a given site has an infective contact with
a randomly chosen individual on the lattice with transition rate pβ, and with one of
its four nearest neighbors (also randomly chosen) with transition rate (1− p)β. By
changing p, we may change the relative weight of the global and local contacts in
the system. The case p=1 corresponds to the classical SIR model (uniform mixing)
where an individual may contact any other individual in the system. On the other
hand, the case p=0 corresponds to the square lattice where an individual may only
contact one of its four nearest neighbors. Recovery from infection in this model is
the same for every site and occurs at a transition rate γ.

The state of the system, Γ = (E1, E2, ..., EN), is defined by specifying Ej (the
state of site j) for the N sites of the lattice. Three variables of interest are the
number of individuals in the system that are in state S, I and R that we call: NS,
NI , and NR respectively.

The probability transition rates for infection and recovery processes at site “j”
are

W j
inf =

p β NI

N
+ (1− p)β 1

4

∑
j′∈νj

δEj′ ,I

 δEj ,S

W j
rec = γδEj ,I

where δAB is one if states A and B are the same, and zero if not. Index j′ in the sum
runs over the 4 neighbors of site j (we call this set of sites νj).

Stochastic simulations are performed using the Gillespie algorithm [26]. Each
simulation begins in the same initial state where N − 1 individuals are susceptible
and one individual is infected. A Markov chain

Γ(t1)→ Γ(t2)→ ...Γ(text)

with a set of exponentially distributed times t1, t2, ...text is generated, where text
(the time at extinction) is the first time with NI = 0. Γ(text) is an absorbing state
and NR(text) (the number of recovered individuals) is the total number of individuals
that have experienced the infection during the dynamic evolution of the disease from
the initial state to its extinction. We also refer to NR(text) as the ”outbreak size”.

For most of the calculations in this work we take L = 800, N = N0 = 640, 000,
but in Section 3.2.3 we also consider N = 2N0 and N = 4N0 to study size effects.
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2.2. Deterministic approximation

In the present work we use a deterministic approximation of the stochastic model
in [19]. In this approximation, developed in [20], the local infective contacts are
treated using a pair approximation scheme with second moment closure.

In the deterministic context we denote N
(d)
S , N

(d)
I , N

(d)
R , the time functions whose

values are the number of individuals of each type, and N
(d)
SS , N

(d)
SI , N

(d)
SR, N

(d)
II , N

(d)
IR ,

N
(d)
RR, the similar ones for the number of pairs formed by two neighboring individuals

whose type corresponds to the subscripts; for example, N
(d)
SR represents the number

of pairs formed by a susceptible and a recovered neighboring individual.
Then we define the nine functions Xi = N

(d)
I /N , Xs = N

(d)
S /N , Xr = N

(d)
R /N ,

Xss = N
(d)
SS /N , Xsi = N

(d)
SI /N , Xsr = N

(d)
SR/N , Xii = N

(d)
II /N , Xir = N

(d)
IR /N ,

Xrr = N
(d)
RR/N .

In [20] we construct a system of nine differential equations having these nine
unknowns. Then, using several relationships between the unknowns, the system is
reduced to five equations and the unknowns Xs, Xi ,Xss, Xsi, Xii. In the present
case, where birth and death are not considered, the five equations of the DA are:

dXs

dt
=− pβXsXi −

(1− p)βXsi

4
(1)

dXi

dt
=− γXi + pβXsXi +

(1− p)βXsi

4
(2)

dXss

dt
=− 2pβXiXss −

3(1− p)βXsiXss

8Xs

(3)

dXsi

dt
=− pβXiXsi − 3(1− p)β

(
(Xsi)

2

16Xs

− XsiXss

8Xs

)

+ 2pβXiXss −
(

(1− p)β
4

+ γ

)
Xsi (4)

dXii

dt
=− 2γXii + pβXiXsi + (1− p)β

(
3(Xsi)

2

16Xs

+
Xsi

4

)
(5)
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We take Xs(0) = (N − 1)/N, Xi(0) = 1/N, Xss(0) = (2N − 4)/N, Xsi(0) =
4/N, Xii(0) = 0 as initial values, which correspond to the presence of only one
infected individual, and N − 1 susceptible ones.

Now we define R
(d)
0 , which we will call “R0 of the deterministic approximation”.

Consider a fixed time t. By equation (2) the amount of new infective cases in the (in-
finitesimal) time interval between t and t+dt is Nβ

(
(1− p)Xsi(t)/4+pXs(t)Xi(t)

)
dt.

If the only initial infected individual remains in this state at time t, we estimate the
number of new infections generated between times t and t + dt by this individual
as the quotient between that amount and N

(d)
I (t) = NXi(t) = number of infected

individuals at time t. To take into account the recovery possibility of this individual,
we multiply by the “probabilistic” factor e−γt, thus arriving at

R
(d)
0 =

∫ ∞
0

β

(
(1− p)Xsi(t)

4Xi(t)
+ pXs(t)

)
e−γtdt. (6)

As expected, for p = 1 we obtain the value α corresponding to the SIR model (see
[27]): ∫ ∞

0

βXs(t)e
−γtdt =

β

γ
= α. (7)

When necessary, we will calculate R
(d)
0 numerically, for different values of p, si-

multaneously with the resolution of the system, which is performed using the Euler’s
Method with a time step of 0.01 day.

3. Results and Discussion

Henceforth, we take 1/γ (the mean duration of infection) as the unit of time.
This is equivalent to making the change of variables: τ = γt. Doing this in equations
(1) to (7) is equivalent to substituting γ by 1, β by β/γ and t by τ . Since β/γ=α,
there are only two free parameters in our study: α and p. In this work we focus on
the case 0 ≤ p ≤ 1 and 1 ≤ α≤ 2.

3.1. Deterministic approximation predictions

In this section we explore the dynamical behavior of the DA system for low α
values.
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3.1.1. Condition for exponential epidemic spread

For p = 1 the DA reduces to the SIR model where it is well known that Xi(τ)
behaves as

Xi(τ) ' Xi(0)e(α−1)τ

as long as Xs(τ) does not fall appreciably from 1. Then the condition α> 1 deter-
mines the exponential spread of the epidemic in this case.

For p < 1, in our previous work [20], we checked that after an initial transient
time, for α=7 and 17, Xi(τ) grows exponentially but with a reduced exponent r well
approximated by:

r =
1

4

(
1 + p+

√
1 + 10p− 7p2

)
α− 1 (8)

Assuming for the moment that Xi(τ) presents this behavior also for low α values,
the condition for exponential growth r > 0 leads to:

α >
4

1 + p+
√

1 + 10p− 7p2
(9)

Since the right side of (9) is a strictly decreasing function of p that takes all the
values of the interval [1,2], the condition α> 1 does not guarantee that inequality
(9) holds.

In Fig. 1 we plot the curves r = 0 and R
(d)
0 = 1 in the (p, α) plane. While the

curve for r = 0 is explicitly obtained from (8), the curve for R
(d)
0 = 1 is computed

numerically from (6) by sweeping the (p, α) plane. These curves divide the plane
into three regions. In principle, one would expect exponential epidemic growth only
in region III. We denote pe the value of p that satisfies r = 0 for a given α. From
(8), pe is well approximated by the value:

pe =
α + 1−

√
(α + 7)(α− 1)

2α
(10)

3.1.2. Numerical results

We first show that after an initial transient time, Xi(τ) behaves as exp(−rτ) with
r given by expression (8) also for low α values, and that therefore Fig.1 contains

useful information. For this purpose we first keep α=1.2 fixed and compute N
(d)
I (τ)

for different values of p crossing the different regions of the phase diagram of Fig.1.
The results are shown in Fig. 2a and 2b. For p lower than pe ' 0.383, the N

(d)
I (τ)-

curves fall down after having reached a maximum with a value barely greater than
1 individual (Fig.2a). For p=0.383, N

(d)
I (τ) remains almost constant at the scale of

Fig.2a, for τ > 5. For all p-values the curves show an exponential behavior after an
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initial transitory regime. It is remarkable that there is none qualitative change in
the N

(d)
I (τ) behavior for p=0.176 (R

(d)
0 ' 1). The subsequent dynamics of N

(d)
I (τ)

is shown in Fig.2b. For p > pe (r > 0) the classical epidemic behavior is observed.

It is remarkable that for r = 0, N
(d)
I (τ) decreases slightly from 1 individual after

800 infectious periods. It means that the DA predicts that even when an epidemic
does not develop, the disease may persist for a very long time. The total number of
individuals that get infected in the population is the asymptotic number of recovered
individuals, N

(d)
R (∞). In Fig.2c it is plotted as a function of p for α=1.2, 1.4 and

1.6. The curves show a sharp increase for p = pe, giving support to the idea that in
the phase diagram of Fig.1 region III corresponds to a system behavior qualitatively
different than in regions I and II, not only for the dynamic evolution of N

(d)
I (τ), but

also for the total number of infections produced in the population.

3.2. Stochastic model predictions

3.2.1. Averaged magnitudes. Comparison between deterministic and stochastic ap-
proaches

It is not obvious that the DA equations are useful to approach the dynamics of the
stochastic model. For high values of α, in our previous work [20] we checked that the
number of infected individuals averaged over several samples was well approximated
by the DA during the epidemic spread. Moreover, the fraction of infected individuals
for each single epidemic sample was almost identical to each other except for a shift
in time that was caused by the different instants at which the epidemic was triggered
(see Fig.1 in [20]). Of course, there was always a probability that extinction would
occur before the infected individual can infect anyone, and a fraction of the samples
did not lead to an epidemic.

For low values of α, the situation for individual samples is quite different. Almost
half of the samples (48%) become extinct within the infectious period (τ = 1), but
the samples that spread for longer times present a very different dynamical behavior.
Then, in this case, with the DA we could at best obtain a good approximation for
the average behavior of the SM.

We now present some results showing that the DA captures the essential behavior
of the averaged magnitudes obtained with the SM. In Fig.3a and 3b the dynamical
behavior of the averaged number of infected individuals for α=1.2 and different values
of p is shown for the SM. As can be observed in the figure, when p is changed, the
time evolution of 〈NI〉 in the SM (Fig.3a and 3b) presents a similar behavior to that

obtained with the DA for N
(d)
I (Fig.2a and 2b). In particular, it can be seen that

there should be a value, p′e, for p (which corresponds to the pe of the DA) such that
〈NI〉 grows exponentially with time for p > p′e. To determine p′e we analyze 〈NI〉
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Table 1: Threshold value for the global contact parameter, p, above which exponential epidemic
spread is expected in the DA (pe) and the SM (p′e) for different α values. The value of pe is given
by (10), while the value of p′e is determined numerically (see text). R0(p′e) is the basic reproductive
ratio for the SM at p = p′e.

α pe p′e R0(p
′
e)

1.2 0.383 0.401 1.08
1.4 0.202 0.237 1.17
1.6 0.103 0.151 1.25
2.0 0.000 0.0672 1.39

for τ ∈ (5, 30) and check whether it is approximately constant in this interval. For
α=1.2 a value p′e ' 0.401 & pe ' 0.383 is obtained (see Fig.3a). The magnitude of

〈NI〉 is, however, strongly overestimated by N
(d)
I (τ) computed with the DA because

of extinctions.
The values of p′e for other α values (determined as described above) are compared

with the deterministic values pe in Table 1. It can be seen that p′e & pe where the
difference p′e − pe increases with α. The value R0(p

′
e) is also listed in the table to

visualize how much R0 deviates from the value of 1 when exponential growth has
already been prevented. R0 is very well approximated by the DA in the whole range
of p values for α=1.2. For larger α the agreement worsens but even for α=1.6 the
relative agreement between SM and DA computations of R0 is within 3%.

Fig.3c shows the total number of infected cases until extinction averaged over
several samples in the SM for different values of p and α. As can be observed in
the figure, a sudden increase of this magnitude occurs for p ∼ p′e, as was previously
observed in Fig.2c for the DA results. In the SM, however, the transition is not as
sharp as the one observed for the DA. N

(d)
R (∞) also strongly overestimates 〈NR(τext)〉.

For α=1.2 and p = 1, for example, N
(d)
R (∞) ' 200, 770 while 〈NR(τext)〉 ' 33, 326.

We may conclude that the DA predicts the correct trend for 〈NR(τext)〉 and its
qualitative change of behavior when the proportion of global contacts, p, is increased.
The origin of the quantitative discrepancy between N

(d)
R (∞) and 〈NR(τext)〉 will be

studied in the following section considering the contribution of each single sample to
the last average.

3.2.2. Final size of epidemics.

The stochastic model has an inherent probabilistic nature and, therefore, so do
its predictions. When the infected individual enters the fully susceptible population,

9



an epidemic (of a given size) may be unleashed, or there may be no epidemic. Av-
erage magnitudes are useful analysis tools but they do not have an epidemiological
correlate. In order to study the behavior of individual samples, and how it changes
as a function of the global contact parameter, p, in Fig.4 we plot the value of the final
size of each epidemic as a function of the time it lasts for a set of 100,000 samples.

The figure shows that for p . p′e there is a strong correlation between the time
elapsed until extinction and the number of infections produced during the epidemic
spread (Fig. 4a-4c). The monotonous increase of 〈NR(τext)〉 with p observed in this
p-range (Fig.3c) could be associated with the increasing number of samples that last
longer. For values of p distinctively larger than p′e (Fig.4e and 4f) a change of behavior
is observed: the points of the figures are grouped into two clearly differentiated sets.
The set that groups the higher values of NR forms a sort of cloud that is clearly
separated from the rest of the points that are distributed similarly to the cases
corresponding to p < p′e. The points in the cloud have to be identified with the
samples that experienced exponential epidemic spread, while the other set includes
the ones that became extinct without developing a major outbreak. For the case
p = 1, for example, if 〈NR(τext)〉 is computed only considering the points in the
cloud, a value of around 200,799 individuals is obtained, which is very close to that
predicted by the DA (200,770). This confirms that the main failure of the DA is not
accounting for extinctions. Finally, for p & p′e (Fig.4c and 4d) there is a transition
region where an intermediate behavior is observed between those described for low
and high values of p. In particular, for p = 0.45 (Fig.4d), the grouping of the points
for high NR begins to be noticeable, but the gap in NR-values observed in Fig.4e
and 4f is absent yet. In Fig.5a we present the histograms with the probability Gn

of obtaining an outbreak of size NR(τext) = n for the cases considered in Fig.4. The
curves quantify the changes in the distribution of outbreak sizes around p′e, observed
qualitatively in Fig.4. In particular, for p = p′e, a power law behavior for Gn ∝ n−3/2

is observed for 10 . n . 2000. The same behavior has been reported for the Gn

corresponding to the classical stochastic SIR model when α=1 [13, 15].

3.2.3. System behavior at and near the threshold. Comparison with the SIR model.

The stochastic SIR model presents a threshold for epidemic spreading at α ≡
β/γ=1 that has been studied by other authors [12, 13, 15, 14]. For the SM we
defined the threshold from the equation

r(p, α) = 0 (11)

where r is the exponent obtained by fitting 〈NI〉 to k.exp(rτ) for τ ∈ (5, 30). Thus,
for each value of α there is a value of p = p′e, that defines the threshold: (p′e, α). We
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computed Gn for the SM, for different (p′e, α), and obtained the same behavior in
all cases (Fig.5b). The asympthotic behavior of Gn for an infinite system (solid line)
is also indicated in the figure. By comparison, it can be inferred that for the finite
systems the deviation of Gn from the asymptotic behavior is due to finite size effects.
These effects are expected because the power law behavior of Gn implies that the
outbreaks at the threshold have a probability of reaching any size, and this is limited
by the size of the system.

In ref. [13, 14, 15] the authors studied the size effects for the SIR model at the
threshold and argue that the maximal size of an outbreak should scale as N2/3. To
check their hypothesis they computed the probability Un(N) of having an outbreak
of size greater than n in a system of size N , and found that the curves Un(N)/Un(∞)
vs n/N2/3 collapse for different values of N . To see whether the SM verifies the same
scaling law we performed simulations for the cases α=1.4, p = 0.237 and α=1, p = 1
(SIR-model) considering three system sizes: N = N0 = 640, 000, N = 2N0, and
N = 4N0. The collapse of the curves, shown in Fig.6, indicate that the SM and
the SIR model obey the same scaling law. However, the collapse curve for α=1.4 is
different from that for α=1.

In the case of the SIR model, the asymptotic behavior of Gn as n−3/2 implies
that, for an infinite system, the average size of an outbreak, 〈n〉 =

∑
nGn diverges.

However, below the threshold, it is well known [13, 15, 14] that

〈n〉 =
1

1− α
(12)

and a finite number of average infected individuals is expected for α < 1. For a finite
system of size N , if 1/(1 − α) � N , one would expect eqn.(12) to hold even for a
finite system [14].

In the case of the SM studied in the present work we do not have an expres-
sion equivalent to eqn.(12). In order to explore the behavior of 〈NR(τext)〉 with the
”distance” to the threshold, in Fig.7a we replot the information of Fig.3c for the
cases where p < p′e taking −1/r as the independent variable. The figure shows that
〈NR(τext)〉 follows a linear behavior with −1/r, as in the case of the SIR model, but
with a slightly increasing slope for increasing α. In Fig.7b we compare the behavior
of 〈NR(τext)〉 when approaching the threshold: α=1.4, p′e = 0.237, by decreasing p′e
(keeping α=1.4) or decreasing α (keeping p′e = 0.237). In both cases a linear behav-
ior with similar values for the slope of the straight lines was obtained. Of course, if
the threshold is approached such that −1/r increases beyond the scale of the figure,
the points depart from the linear behavior due to finite size effects.

Finally, concerning the goodness of the DA to approach the SM behavior, it is
worth mentioning that the case p = 0 (where only local contacts are present) was
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considered by Souza et al. [28] both for the SM and the DA. The authors found that
the SM presents a percolation-like transition for α ' 4.6657, while their pair-wise
approximation (our DA) predicts a transition at α =2. It is worth noting that the
consideration of global contacts drastically improves the performance of the DA as
can be observed in Table 1.

4. Conclusions

In this work we studied a stochastic epidemiological SIR model with local and
global contacts where the weight of global contacts is given by a parameter p. Taking
appropriate units of time, there is only another free parameter in this model, the
quotient between transmission and recovery rates: α.

By using a deterministic approximation of the model, we were able to construct a
phase diagram in the (p, α) plane where we identified a region in which exponential
epidemic spread is prevented even when the basic reproductive ratio of the model,
R0, remains above 1. We obtained an analytical expression pe(α) that approximates,
for each α, the threshold value of p for the exponential growth of the number of
infected individuals.

We found that these predictions of the DA are closely linked to the behavior of
the average number of infected individuals in the SM, 〈NI〉. In this case, we could
define a threshold value p′e (which is slightly larger than pe) such that 〈NI〉 does
not grow exponentially with time for p < p′e. The absolute values of the average
number of infected individuals and the average epidemic size do not match the cor-
responding magnitudes obtained by the DA because of extinctions. For p >> p′e the
agreement could be recovered if the average is performed using the samples that lead
to epidemics exceeding a threshold that, for high p values, is well defined.

We found that the SM behavior around the threshold is closely related to the
behavior of the classic stochastic SIR model around its threshold. We summarize
below the similarities and differences between both behaviors that emerge from the
comparison of our results for the SM and what is known from the literature for the
standard SIR model [13, 15, 12, 14].

- In the SIR model, the threshold is given by β/γ ≡ α=1. As R0=α and the
exponent for epidemic spreading is r = α− 1, the threshold may be expressed
unambiguously as R0 = 1 or r = 0.

In the SM both R0 and r are functions of α and p. As is well known (and was
verified in the present work) if the population is not well mixed R0 is not a
useful concept [2, 24, 25]. The threshold is obtained from the condition r = 0,

12



which in this case does not give a parameter value, but a relation between
them: r(p, α) = 0 that leads to p = p′e(α).

- Below the threshold, the average size of an outbreak in the SIR model verifies:

〈NR(τext)〉 =
1

1− α
= −1

r
(13)

For the SM we empirically obtained that 〈NR(τext)〉 grows approximately lin-
early with −1/r. However, if p or α is kept fixed, the behavior is strictly
linear:

〈NR(τext)〉 =
a(α)

r
+ b(α) =

c(p)

r
+ d(p) (14)

with a, b, c and d smooth functions. In both cases the above relationships are
no longer valid in the vicinity of the threshold due to finite size effects.

- Strictly at the threshold, the probability of having an outbreak of size n in the
SIR model is Gn = kn−3/2 for n ∈ (n1, n2), where n2 increases with the size of
the system, N .

In the SM the same behavior is observed for all the (p′e, α) cases considered.

- The probability Un(N) that the outbreak size is at least n in a population of
size N shows the following scaling law for the SIR model [13, 15].

Un(N)

Un(∞)
= f

(
n/N2/3

)
The same scaling law was observed in the present work for the SM, where
the scaling function f depends on the threshold point (p′e(α), α), f being an
increasing function of α.

It would be interesting to know if those properties at the threshold, which the
SM shares with the stochastic SIR model, hold for other networks with global and
local contacts

Our study highlights the importance of keeping the global contacts as low as
possible as a key measure to prevent large epidemics and points out that a substantial
improvement of the epidemiological status (where exponential epidemic spread is
prevented) could be accompanied by an insignificant reduction of R0, which remains
with values well above one. Even though the SM model is very simple, from the
epidemiological perspective and in the treatment of the spatial structure, we believe
that our conclusions could be taken as a basis for exploration by more complex
models in specific contexts.
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6. Figure captions

Figure 1
Phase diagram for epidemic growth in the deterministic approximation. The

regions above and below the dashed line correspond to the points (p, α) with R
(d)
0

greater and lower than 1 respectively. The regions above and below the solid line
correspond to the rate of epidemic growth, r, greater and lower than 0 respectively.

Figure 2
DA results. (a) Number of infected individuals (N

(d)
I ) as a function of time (τ)

for α=1.2 and p=0.10, 0.176, 0.30, 0.35, 0.383, 0.40 and 0.45. The values p=0.176
and 0.383 correspond to R

(d)
0 ' 1 and r ' 0 respectively. (b) N

(d)
I for α=1.2 on

an expanded time scale and p=0.10, 0.30, 0.35, 0.383, 0.40, 0.45, 0.50, 0.60 and 1.0.
The solid line corresponds to p = 0.383 ' pe. (c) Asymptotic number of infected

individuals N
(d)
R (∞) as a function of p for three α values. Vertical lines indicate the

pe values: 0.383, 0.202, 0.103 corresponding to α=1.2, 1.4, and 1.6 respectively.

Figure 3
Average magnitudes in the SM. (a) Averaged number of infected individuals,

〈NI〉, for α=1.2 and different values of p. The thin horizontal line has been drawn to
show that 〈NI(τ)〉 for p = 0.401 remains almost constant for τ ∈ (5, 30). (b) 〈NI〉 for
α=1.2 on an expanded time scale and for p = 0.10, 0.30, 0.35, 0.401, 0.45, 0.50, 0.60
and 1.0. The solid line corresponds to p = 0.401 ' p′e. Each curve is the average
of m independent stochastic simulations, where m = 100, 000 for p ≥ 0.50 and m =
1, 000, 000 for p < 0.50. (c) Averaged number of individuals that have experienced
the infection until extinction for different values of α and p. Each point corresponds
to an average over 100,000 samples when 〈NR(τext)〉 > 5000, and to an average over
1,000,000 samples when 〈NR(τext)〉 < 5000. The crosses correspond to p = 0.401 '
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p′e(1.2), p = 0.237 ' p′e(1.4), and p = 0.151 ' p′e(1.6). The broken lines have been
drawn to guide the eye. The vertical solid lines indicate the pe values corresponding
to the beginning of exponential spread in the DA, as in Fig.2c.

Figure 4
Number of individuals that have experienced the infection in a given stochastic

simulation, NR(τext), as a function of the duration of the corresponding simulation,
τext, for α=1.2. Different panels correspond to simulations performed for different p
values. Each panel contains 100,000 points, each one corresponding to an indepen-
dent stochastic simulation with identical initial conditions.

Figure 5
Probability Gn of obtaining an outbreak of size NR(τext) = n. (a) Gn for α=1.2

and different p values. The different curves represent the distributions of points in
the y-axis of the different pannels of Fig.4. (b) Gn at the threshold for different
cases. Black line: n−3/2/

√
4π (asymptotic behavior for an infinite system in the case

p = 1, α = 1 [15]).

Figure 6
Scaling behavior of the normalized cumulative distribution Un(N)/Un(∞) at the

threshold. Six different systems, corresponding to two sets of parameters at the
threshold (p(α), α), and three system sizes (N), were considered. When plotted as
a function of n/N2/3 the distributions corresponding to α = 1.4 or α = 1 colapse in
the upper or lower curves, respectively. N0 = 640, 000.

Figure 7
Averaged number of individuals that have experienced the infection until extinc-

tion below the threshold. (a) The cases α=1.2, 1.4, and 1.6 for different values of p
are considered. The points correspond to the same simulations of Fig.3c (cases with
p < p′e) but 〈NR(τext)〉 is plotted here versus −1/r, where r is determined fitting
〈NI(τ)〉 to exp(rτ) for τ ∈ (5, 30) as in Fig.3a. The broken lines are linear fits to the
points corresponding to a fixed α. The fitted slopes are 1.154, 1.357, and 1.669 for
α=1.2, 1.4 and 1.6 respectively. The unit slope line (solid) is the expected behavior
for the SIR model (α=1, p = 1). (b) The case α=1.4 for different values of p, and
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the case p = 0.237 for different values of α are considered. Broken lines are linear
fits corresponding to each case with slopes 1.357 (α = 1.4) and 1.382 (p = 0.237).
Note that the two cases correspond to two perpendicular directions on approaching
the threshold (p = 0.237, α=1.4) in the (p, α)-plane.
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Figure 2
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Figure 3
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Figure 5a Figure 5b
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Figure 7a Figure 7b
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