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a b s t r a c t 

This article shows the dataset of clearance assays and the re- 

constitution of stable biological nano-complexes using both 

detergent-assisted and spontaneous solubilization of phos- 

pholipids by the recombinant purified apolipoprotein A-I 

(apoA-I). Protein was intra-chain crosslinked in order to in- 

troduce steric constrains. Then, native and crosslinked pro- 

tein function was evaluated by a data collection of dimiris- 

toyl phosphatidyl choline (DMPC) micellization curves. Addi- 

tionally, resulting particles from spontaneous or detergent- 

assisted lipid solubilization were characterized by transmis- 

sion electron microscopy (TEM), size exclusion chromatog- 

raphy (SEC), and native polyacrylamide gel electrophoresis 

(PAGE). Here we set up an experimental design that may 

help study protein structure based on its function, since in- 

teraction with biological membranes and lipids is an intrin- 

sic activity attributed to many proteins in circulation. In ad- 

dition, by t -test analysis of collected-data, we examined the 

formation of lipoprotein particles by native and intra-chain 

crosslinked proteins under different conditions like tempera- 

ture and time incubation. Thus, data shown here strengthen 
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the usefulness of an easy, rapid, accessible and inexpensive 

approach to test protein flexibility related to its function. 

© 2020 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

S
pecifications Table 

Subject Biochemistry and Biophysics 

Specific subject area Biophysics (lipid/protein assay) 

Protein structure and lipid interaction 

Type of data Image 

Graph 

Figure 

How data were acquired The lipid-protein interaction studies were carried out through native 

polyacrylamide gradient gel electrophoresis (PAGE). Gels were run in 

a Mini-PROTEAN® (BIO-RAD Tetra Vertical Electrophoresis Cell for 

Mini Gels, 4-gel #1658004). 

Intensity associated with the bands was quantified with ImageJ 

software version 1.51 j8. 

Micellization assays were monitored alternatively in a Helios Beta: 

Single beam, quartz coated (Thermo) or in a UV–visible Agilent Cary 

8454 (Agilent Technologies) spectrophotometers kinetics curves were 

obtained using SigmaPlot 12.0 (Systat Software, Inc.) 

Statistical analysis was performed by the GraphPad Prism version 

8.0.0 for Windows (GraphPad Software, San Diego, California USA, 

www.graphpad.com ). 

The relative size of the particles was estimated by both native PAGE 

and size exclusion chromatography (SEC). Samples were resolved by 

elution through a 6 HR column (Pharmacia) using a Merck-Hitachi 

L6200 Intelligent pump and detected at 280 nm by a UV–VIS 

detector (Merck-Hitachi L4200). 

Particle morphology was characterized by transmission electron 

microscopy (TEM) on a JEOL-1200 EX microscope and observed 

under negative staining. 

Data format Raw 

Analyzed 

Filtered 

Parameters for data collection Data were collected by three or five independent experiments using 

recombinant proteins and commercial lipids. 

Description of data collection Each dimyristoyl phosphatidyl choline (DMPC) solubilization kinetics 

was normalized to the absorbance at minute 0 at λ325 nm . 

Quantification of the relative amount of the reconstituted 

lipoproteins was performed by scanning all the bands within each 

lane and measuring the intensity of each band with relation to the 

100% of the total intensity. 

Data source location Institution: Instituto de Investigaciones Bioquímicas de La Plata 

(INIBIOLP). CCT CONICET La Plata 

City: La Plata, Buenos Aires 

Country: Argentina 

Data accessibility With the article 

Direct URL to data: Díaz Ludovico, Ivo; Ramella, Nahuel A. (2020), 

“Dataset of the construction and characterization of stable biological 

nanoparticles”, Mendeley Data, V2, 

http://dx.doi.org/10.17632/rgk9n9wt3d.1 

http://creativecommons.org/licenses/by/4.0/
http://www.graphpad.com
http://dx.doi.org/10.17632/rgk9n9wt3d.1
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Value of the Data 

• Data show a robust experimental approach to construct stable nanoparticles which may help

test protein flexibility and might act as platforms to be used as carriers of drugs or biological

compounds. 

• These data may benefit the extended field of either basic or applied biochemistry research,

as it may give information on the protein structure-function relationship. Its simplicity and

low cost will surely make it possible an extensive use. 

This design may be combined with mass spectrometry, and fluorescence techniques to char-

acterize the spatial arrangement of proteins within the platforms and the domains that may

interact with membranes. 

• Data show a well-defined methodological design to evaluate the interaction of flexible pro-

teins with different lipid microenvironments and the importance of a structural constraint as

induced here by intra-chain crosslinking. 

1. Data Description 

The efficiency of protein solubilization as lipid complexes and the effect of crosslinking in

this behavior were initially evaluated by using detergent-mediated interaction [1] . In this regard,

human apoA-I reconstituted into discoidal complexes (rHDL) was previously used in clinical tri-

als to vehiculize cholesterol out of the atherosclerotic plaques [2] or as drug carriers, since the

structural arrangement resembles that of the particles isolated in vivo [3] . These particles may

be attained by using sodium cholate, an amphipathic molecule that was shown to promote the

formation of bilayer-like complexes due to its flat-shaped structure [1] . ApoA-I with the native

sequence (Wt), either unmodified (native) or crosslinked (Wt + BS 3 ), was incubated with DMPC

multilamellar vesicles (MLV) at a 40:60:1 lipid:sodium cholate:protein molar ratio and the prod-

uct of the rearrangement of the reconstituted particles tested and characterized. Fig. 1 shows

that under our conditions Wt rearranged mainly as three discretely-sized rHDL of approximate

140, 440 and 670 kDa molecular weight ( Fig. 1 A). The relative quantification of the intensity

associated with the bands after gel imaging was performed in the ImageJ software. Then, inten-

sities were normalized to the sum of intensities for each lane and shown in Fig. 1 B as arbitrary

intensity units (as shown in the online repository, along with the original figures). These data

confirmed a higher yield of the smallest population ( Fig. 1 B). Instead, intra-chain crosslinked Wt

(Wt + BS 3 ) yielded a particle population, mainly represented by the largest complexes (indicated

in Fig. 1 A by the black stealth arrow). 

Wt and Wt + BS 3 were incubated with DMPC MLV at a molar ratio 40:1 in the presence

of sodium cholate as indicated in Methods. A) Home-made 4–30% non-denaturing, gradient
Fig. 1. Characterization of sodium cholate-mediated reconstituted particles. 
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Fig. 2. Characterization of the spontaneous interaction of Wt with DMPC. 
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el electrophoresis (PAGE) developed with silver staining. The apparent molecular weight was

valuated by comparison with high molecular weight commercial standards (labeled to the

eft). B) The relative amount of each population was estimated by quantifying the intensity of

he different bands in each lane. Bars represent media ± standard deviation of triplicates of

hree independent measurements as evaluated by t-test. Symbol ∗ indicates significant differ-

nces at p ≤0.05. Densitometry measurements determined by ImageJ, are available in the on-

ine repository, as raw and normalized values ( https://data.mendeley.com/datasets/rgk9n9wt3d/

/files/1661c901- 454d- 401c- ba9b- 008de37e1c32 ). 

In a different design, interactions of Wt with lipids may occur at the lipid transition tem-

erature (Tm), where the solubilization of phospholipids by apoA-I was previously shown to

e maximized [4] . The convenient Tm of the DMPC (24 °C) is well suited to perform this test

ithout requiring sophisticated lab heaters and avoiding proteins to be incubated under dras-

ic conditions. Thus, we set to characterize the effect of intra-molecular crosslinking by incu-

ating Wt and Wt + BS 3 with DMPC MLV for 3 h at 24 °C. First, we analyzed the product of

his interaction. As Fig. 2 A shows, under these conditions large discretely-sized rHDL were

btained from Wt, with a low amount (around 20% as it is observed in Fig. 2 B) of smaller

omplexes by using the same methodology for data collection as described above and the

aw data from gel densitometry measurements its available in the online repository ( https:

/data.mendeley.com/datasets/rgk9n9wt3d/1/files/a0b7b063- 169c- 42b9- 8fb9- ea6d906a8c38 ). In-

tead, and similarly to data shown for sodium cholate-mediated rHDL, Wt + BS 3 yielded mostly

ne large population (indicated as in Fig. 1 by the black stealth arrow). 

Multilamellar DMPC vesicles were incubated with Wt (0.05 mg/mL) or Wt + BS 3 at a molar

atio 145:1 DMPC: protein at 24 °C in phosphate saline buffer (PBS) pH 7.4 for 3 h (A) The rel-

tive size of the incubation product was estimated by 4–30% non-denaturing gradient gel elec-

rophoresis (PAGE) developed with silver staining as explained above. From left to right, com-

ercial Mw marker, Wt and Wt + BS 3 ; B) The relative amount of each population was estimated

y quantifying the intensity of the different bands in each lane. Bars represent media ± stan-

ard deviation of triplicates of three independent measurements as evaluated by t -test. Symbol

indicates significant differences at p ≤0.05 between Wt or Wt + BS 3 large particles (solid line)

r small complexes (dashed line). 

As the simplicity of this procedure makes it highly accessible to a vast biochemical research

eld, we further characterized its properties. To this regard, we evaluated the importance of

he regular buffer compositions used in a lab routine to perform this assay (either Tris or PBS)

n the efficiency of protein arrangement. As it is well known, the efficiency of the interaction

ay be followed by the decrease of the lipid turbidity as large MLV rearrange into small nano

iscs with lower light dispersion. Each point was registered as raw arbitrary absorbance unit

n a spectrophotometer at 325 nm. Points were then normalized to sample absorbance at time

 (or what it is equivalent immediately after addition of MLV) using only DMPC MLV, in the

orresponding buffer as turbidity control. Each dataset of point distributions was fitted using

xponential decay function as we detailed in “DMPC clearance assay” section. From the registry

https://data.mendeley.com/datasets/rgk9n9wt3d/1/files/1661c901-454d-401c-ba9b-008de37e1c32
https://data.mendeley.com/datasets/rgk9n9wt3d/1/files/a0b7b063-169c-42b9-8fb9-ea6d906a8c38
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of the absorbance during the incubation time, (and as it was previously reported [5] ), Wt clar-

ified MLV with fast kinetics (dark symbols in Fig. 3 A). Instead, crosslinked protein exhibited a

lower kinetics to clearance, (white symbols). No difference between curves was observed with

Tris or PBS buffer. To better characterize the comparative clearance progression, Wt and Wt + BS 3 

fitted function was analyzed statistically at different times. Even though the lower kinetics of

the Wt + BS 3 was observed from the beginning of the reaction, it became significant after 7.5-

min incubation under these conditions ( Fig. 3 C). Data from clearance assays are available in the

online repository as arbitrary absorbance values, point by point, as normalized values ( https:

//data.mendeley.com/datasets/rgk9n9wt3d/1/files/de4bea35- 3b38- 4fe4- 9254- ceeeac96c9f7 ). 

DMPC multilamellar vesicles were incubated with Wt (0.05 mg/mL) or crosslinked Wt (Wt-

BS 3 ) at a molar ratio 145:1 DMPC: protein at 24 °C, either in Tris 20 mM (A) or PBS (B) buffers,

both at pH 7.4 for 1 h; time dependence of the absorbance at 325 nm was monitored for 1 h.

C) Difference in the micellization efficiency between Wt (black bars) or Wt-BS 3 (grey bars) was

estimated from the change in the absorbance at each incubation time. Bars represent media

± standard deviation of triplicates of three independent measurements as evaluated by t -test. 

Symbols ∗ and 

∗∗ indicate significant differences at p ≤0.05 and p ≤ 0.01, respectively. 

Next, we set to characterize the effect of incubation time on the stability of the rear-

ranged nanoparticles. When we compared particle stability at 24 °C at 72 h versus 3 h [5] ,

longer times resulted in a small arrangement of Wt, yielding some degree of smaller particles

( Fig. 4 A).Instead, Wt + BS 3 remained mainly as a unique discrete, larger population (indicated by

a black arrow). 

Afterward, we analyzed the stability of the rearranged rHDL by keeping samples at different

temperatures. This control is worth to be done, as lipid-protein interactions are strongly depen-

dent on temperature. Twenty Celsius degrees was chosen as it is a normal lab room temperature.

Instead, freezing at −20 °C is important to be evaluated, as storage at low temperatures may be

a common procedure to preserve samples from deterioration. Particles obtained after 72 h at

24 °C ( Fig. 4 ) were incubated for 7 days at 20 °C or −20 °C, alternatively. A higher yield of

the smaller particles and some amount of lipid-free protein were observed at 20 °C incubation

for Wt. A lower effect was observed for Wt + BS 3 on lipoprotein distribution ( Fig. 4 B, labeled

as above by the black stealth arrow). Instead, for the case of lipid-protein complexes incubated

under freezing conditions, major amount of lipid-free proteins was observed for both Wt and

Wt + BS 3 visualized in Fig. 4 B as a single band with a molecular weight minor to 66 kDa. 

DMPC MLV were incubated with Wt (0.05 mg/mL) or Wt + BS 3 at a molar ratio 145:1 DMPC:

protein at A) 24 °C for 3 h or 72 h; B) Particles obtained after 72 h at 24 °C (as shown in A) were

incubated for 7 days either at 20 °C or −20 °C. The relative size of the incubation product was

estimated by 4–30% non-denaturing gradient gel electrophoresis (PAGE) developed with silver

staining as explained above. 

Finally, the different complexes obtained by incubation for 72 h at 24 °C were isolated by

size exclusion chromatography ( Fig. 5 A), and reanalyzed afterwards by native PAGE ( Fig. 5 B).

At the online repository we submitted the raw and normalized 280 nm absorbance chro-

matograms as a point by point dataset ( https://data.mendeley.com/datasets/rgk9n9wt3d/1/files/

2a791058- 38eb- 4db2- af91- 86ca17b5226a ). Most of the protein eluted as large complexes, es-

pecially in the case of Wt + BS 3 , which remained stable under the elution and concentration

steps, as shown in Fig. 3 B. The analysis of complex morphology by TEM indicated that Wt

formed the well-known disc-shaped complexes [1] . Crosslinked Wt also formed discoidal par-

ticles but with some elongated conformations ( Fig. 5 C). The raw TEM imaging are available

in the online repository as a PDF file ( https://data.mendeley.com/datasets/rgk9n9wt3d/1/files/

9d938b70- c512- 46ce- 955b- ee11b4c3ae8a ) 

Wt and Wt + BS 3 (at a protein concentration of 0.05 mg/mL) were incubated with DMPC for

72 h at 24 °C at a lipid-to-protein molar ratio of 145:1 and the product of the micellization

analyzed. A) Size exclusion chromatography was performed through a Superose 6 HR column

(Pharmacia), equilibrated with 50 mM Tris buffer pH 7.4 at a flow of 0.5 mL/min. Collected

fractions corresponding to the main peaks (shaded in grey) were pooled, concentrated and ana-

lyzed by a 4–30% non-denaturing, home-made gradient gel electrophoresis developed with silver

https://data.mendeley.com/datasets/rgk9n9wt3d/1/files/de4bea35-3b38-4fe4-9254-ceeeac96c9f7
https://data.mendeley.com/datasets/rgk9n9wt3d/1/files/2a791058-38eb-4db2-af91-86ca17b5226a
https://data.mendeley.com/datasets/rgk9n9wt3d/1/files/9d938b70-c512-46ce-955b-ee11b4c3ae8a
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Fig. 3. Analysis of the kinetics of DMPC clearance mediated by Wt. 
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Fig. 4. Stability of Wt complexes as a function of incubation time and temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

staining B). Homogenous large sized Wt-BS 3 complexes are labeled by a black stealth arrow; C)

Morphology of the reconstituted HDL from Wt and Wt-BS 3 was analyzed by TEM under nega-

tive staining prior to FPLC isolation. Black bars in C) indicate the magnification scale used for

the observations. 

2. Experimental Design, Materials and Methods 

2.1. Materials 

Guanidinehydrochloride (GndHCl), cholesterol (Chol), sodium cholate, ethylenediaminete- 

traacetic acid (EDTA) and sodium chloride (NaCl) were purchased from Sigma Chemical Co. (St

Louis, MO); dimyristoyl phosphatidylcholine (DMPC) was purchased from Avanti Polar Lipids. Al-

abaster, AL. His-purifying resin was from Novagen (Darmstadt, Germany). Bis-(sulfosuccinimidyl)

suberate (BS 3 ) and isopropyl- β-D-thiogalactoside (IPTG) were purchased from Thermo Scientific

(Waltham, MA). All other reagents were of the highest analytical grade available. 

2.1. Protein variants purification 

ApoA-I was expressed from a bacterial system transformed with a cDNA containing the na-

tive human sequence further modified to introduce an acid-labile Asp-Pro peptide bond between

amino acids 2 and 3 [6] . This construct was inserted into a pET-30 plasmid (Novagen, Madi-

son, WI), transformed into BL21 (DE) E coli cells (Novagen, Madison, WI) grown in Luria-Bertani

(LB) medium in presence of kanamycin at 50 μ/mL, then expressed by induction with IPTG

0.4 mM. Bacteria were harvested by centrifugation and lysed by sonication in Tris-buffered saline

with 3M guanidine hydrochloride and purified using immobilized metal affinity chromatography

(IMAC) by elution through Ni-chelating columns (Novagen, Madison, WI). Fractions containing

His-tagged-apoA-I were pooled and dialyzed. Then, N-terminal His-Tag extension was removed

by incubation of isolated apoA-I in 50% formic acid (v/v) for 5 h at 55 °C. Proteins were then

dialyzed at 4 °C until formic acid removal, and then at least 2 buffer changes against Tris-buffer

saline at 4 °C (each at 1:1,0 0 0 v/v protein:buffer). Finally, the protein was separated from the

tag, eluting it through the Ni-chelating column [7] . This resulted in a high yield of protein with a

purity of at least 95% (determined by SDS-PAGE). Samples were stored at −80 °C with 3M guani-

dine hydrochloride and extensively dialyzed (3 buffer changes each at 1:10 0 0 v/v protein:buffer)

of the corresponding buffer prior to use. 
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Fig. 5. Characterization of apoA-I variants rearrangement. 
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2.2. Protein Crosslinking 

Proteins were crosslinked at 0.05 mg/mL (monomeric state) in PBS pH 7.9 for 3 h with-

out agitation at room temperature. Fresh BS 3 was added (within 1 min after solubilization in

PBS to avoid hydrolysis of free crosslinker) at 30:1 BS 3 :protein molar ratio [8] . Reactions were

quenched for 15 min after the addition of Tris buffer to a 50 mM final concentration. The con-

centration of crosslinked proteins was calculated by the BCA Protein Assay Kit (Thermo Scientific

(Waltham, MA)). The presence of the monomeric conformation after the treatments was con-

firmed by polyacrylamide gradient electrophoresis, either under native or denaturing conditions.

Oligomers were not observed at these conditions. Proteins were dialyzed against PBS or TRIS

buffer at pH7.4, alternatively and stored at −20 °C. 

2.3. DMPC multilamellar vesicles construction 

DMPC (5 mg from a stock solution in chloroform) was used to form a film in a round-bottom

tube, dried by blowing a N 2 atmosphere and exhaustively exposed to vacuum in a lyophilizer

(Virtis) to evaporate the solvent. Then, PBS or Tris buffers at pH 7.4 were added to a final DMPC

concentration of 5 mg/mL. MLV were attained by extensive vortexing at room temperature for

5 min, then heating at 37 °C in three cycles of 30 s each [9] . 

2.4. DMPC clearance assay 

DMPC MLV were added to the 0.05 mg/mL protein samples (pre-heated) until a final molar

ratio of 145:1 DMPC:protein [4] . All reagents and instruments were pre-heated at 24 °C. Sam-

ples were gently mixed (for 5 s.) and clearance efficiency at 24 °C was determined as the time

dependence of the light dispersion, monitoring absorbance (A) at 325 nm. Alternatively, spec-

trophotometers Helios Beta Single beam quartz coated (Thermo), or a UV–visible Agilent Cary

8454 (Agilent Technologies) was used yielding indistinguishable information. All DMPC experi-

ments were performed in the presence of 0.05% sodium azide. Each kinetics curve was normal-

ized to the initial absorbance. Curves were adjusted by fitting into a double exponential decay

in the SigmaPlot software version 12.0. Efficiency of micellization (clearance) was determined as

1-A 325 nm 

at fitted curves at indicated times. Five different experiments were used to determine

averaged 1-A 325 nm 

and standard deviation. 

2.5. Lipoprotein particle construction 

2.5.1. By DMPC micellization 

Proteins at 0.05 mg/mL were pre-incubated to a final temperature of 24 °C (as the rest of

the elements: cuvettes, lipids, tubes, etc.), and, DMPC MLV were added at the same ratio as de-

scribed above, gently mixed and incubated for either 3 or 72 h. This last condition was used to

test the effect of temperature on particle storage. Complexes were incubated at room tempera-

ture (20 °C) or at −20 °C for 7 days. Samples were thawed at room temperature, and immedi-

ately seeded on gel for electrophoresis analysis. 

2.5.2. By detergent rearrangement 

Lipoprotein particles were constructed using the rearrangement method mediated by de-

tergents [1] . Sodium cholate in PBS was added to DMPC MLV to a final molar ratio of 40:60

(DMPC:sodium cholate). Once sodium cholate was added, initially “cloudy” DMPC MLV clarified

by vortexing followed by 30-min incubation at 24 °C. Lipids were added to 0.05 mg/mL proteins

to final molar ratio of 40 per each mol of protein, and samples were incubated overnight at

24 °C. Detergent was removed by exhaustive dialysis maintaining the mentioned temperature. 
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.5.3. Polyacrylamide gel electrophoresis 

Home-made native gradient polyacrylamide gels (4–30%) were used to analyze lipoprotein

article size and relative amount. Each gel was imaged and transformed into an 8-bit image.

f contrast or brightness was modified, it was applied to the entire gel. Densitometry and area

f curves in plots were obtained by using ImageJ software version 1.51 j8. Data were normal-

zed considering as 100% of density the sum of each lipoprotein band per lane. Triplicates were

veraged and used to determine standard deviation for subsequent statistical analysis. 

.5.4. Fast performance liquid chromatography (FPLC) 

Lipoprotein particles were obtained for 72-h incubation of proteins at same DMPC:protein

nd protein concentration as described above. The relative size of the particles was estimated

y size exclusion chromatography (SEC) using a Merck-Hitachi L6200 Intelligent pump. Samples

ere filtered with a 45 μm-pore syringe filter, eluted (300 μL each) through a Superose 6 HR

0/30 column, previously equilibrated with 50 mM Tris buffer pH 7.4 at a flow of 0.5 mL/min,

nd detected at 280 nm using a UV–VIS detector (Merck-Hitachi L4200). For better comparison

urves registered as described above and normalized to maximum of each dataset. Only col-

ected samples corresponding to chromatogram peaks were tested by PAGE. 

.5.5. Transmission electron microscopy observations 

Particle morphology (obtained after 72 h at 24 °C as described above) was characterized by

ransmission electron microscopy (TEM) on a JEOL1200 EX. Samples were seeded on Formvar

rids, contrasted with 0.5% phosphotungstic acid and visualized by negative staining. Sample

reparation for TEM imaging was performed at room temperature. Selected images were rep-

esentative from seven independent images captured from different grid zones. Brightness and

ontrast were adjusted in ImageJ software version 1.51 j8 to improve the visualization of the

ipoprotein’s shape. 

.5.6. Other analytical methods 

For statistical analysis, datasets were analyzed in GraphPad Prism 8.0 software using para-

etric t -test with Welch ́s correction or unpaired T -test corrected for multiple comparisons us-

ng the Holm-Sidak method. Only results with a significance level of p < 0.05 were considered.

nless otherwise stated, measurements were reproduced in three independent experiments and

eported as means of triplicates ± standard deviation. 
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