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ABSTRACT
The formation and stability of collisionless self-gravitating systems are long-standing problems, which date back to the work of
D. Lynden-Bell on violent relaxation and extends to the issue of virialization of dark matter (DM) haloes. An important prediction
of such a relaxation process is that spherical equilibrium states can be described by a Fermi–Dirac phase-space distribution,
when the extremization of a coarse-grained entropy is reached. In the case of DM fermions, the most general solution develops a
degenerate compact core surrounded by a diluted halo. As shown recently, the latter is able to explain the galaxy rotation curves,
while the DM core can mimic the central black hole. A yet open problem is whether these kinds of astrophysical core–halo
configurations can form at all, and whether they remain stable within cosmological time-scales. We assess these issues by
performing a thermodynamic stability analysis in the microcanonical ensemble for solutions with a given particle number at
halo virialization in a cosmological framework. For the first time, we demonstrate that the above core–halo DM profiles are
stable (i.e. maxima of entropy) and extremely long-lived. We find the existence of a critical point at the onset of instability of the
core–halo solutions, where the fermion-core collapses towards a supermassive black hole. For particle masses in the keV range,
the core-collapse can only occur for Mvir & 109 M¯ starting at zvir ≈ 10 in the given cosmological framework. Our results prove
that DM haloes with a core–halo morphology are a very plausible outcome within non-linear stages of structure formation.
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1 IN T RO D U C T I O N

The thermodynamics of self-gravitating systems is a vast subject of
research with deep implications in astrophysics. It includes the long-
standing problems of relaxation in collisionless/collisional stellar
systems, to the issue of virialization of dark matter (DM) haloes and
structure formation. Depending on the initial conditions of the system
at virialization (such as total mass, size, degree of concentration,
etc.), they may become thermodynamically unstable, experience a
gravothermal catastrophe, suffer phase transitions, or even undergo
core collapse towards a massive black hole (BH).

The first dynamical and thermodynamical studies were developed
for classical point masses within Newtonian gravity, and applied
to the case of stars in globular clusters or galaxies in Antonov
(1962), Michie (1963), King (1966), Lynden-Bell (1967), Lynden-
Bell & Wood (1968), Katz (1980, 2003), Padmanabhan (1990),
and Chavanis (2006).1 Contemporaneously to such earliest works,

? E-mail: carguelles@fcaglp.unlp.edu.ar
1In late 1970, a more rigorous approach was developed (Katz 1978) to analyse
the thermodynamic stability from statistical mechanics, and applied here for
the case of fermions.

the attention was directed to self-gravitating quantum particles in
Ruffini & Bonazzola (1969), mainly focusing on the mathematical
aspects of the solutions at hydrostatic equilibrium. The role of the
quantum pressure at the centre of the configurations was evidenced
within a fully general relativistic (GR) treatment, distinguishing
between the bosonic and fermionic nature of the particles. In the
case of fermions, such self-gravitating models (either at zero or at
the more realistic finite temperature) were further investigated by
different authors, with applications to the morphology of DM haloes
at equilibrium and/or to the mass of the DM particles (Zel’dovich
et al. 1980; Doroshkevich et al. 1980; Baldeschi, Gelmini & Ruffini
1983; Ruffini & Stella 1983; Gao, Merafina & Ruffini 1990; Ingrosso
et al. 1992; Bilic et al. 2002; Bilic, Tupper & Viollier 2003; Argüelles
et al. 2014, 2018, 2019a, b; de Vega, Salucci & Sanchez 2014;
Chavanis, Lemou & Méhats 2015a, b; Ruffini, Argüelles & Rueda
2015; Gómez et al. 2016; Randall, Scholtz & Unwin 2017; Becerra-
Vergara et al. 2020), though lacking a thermodynamic stability
analysis (with the exception of Chavanis et al. 2015a, b).

In the case of galactic structures, a central question in the field
is precisely how a self-gravitating system of collisionless particles
(either stars or DM particles) reaches the steady state we observe. The
complex evolution of the coarse-grained phase-space distribution
of such a system is driven by the mean-field Vlasov–Poisson
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(VP) equation. It involves rapid fluctuations in the overall time-
varying gravitational field, able to redistribute the energy between
the particles in few dynamical times, even faster than collisional
relaxation time-scales (Binney & Tremaine 2008). Such a process
is known as violent relaxation, and is the main mechanism able to
lead the averaged phase-space distribution function (DF) towards a
quasi-stationary state (qSS).

A typical stationary coarse-grained DF that is a possible solution
of the mean-field VP equation was originally predicted to be of a
Fermi–Dirac type in the seminal work of Lynden-Bell (1967), from
a statistical description. Such an approach for violent relaxation
was developed for distinguishable classical particles, and three
decades later extended to indistinguishable particles such as massive
neutrinos in Kull, Treumann & Boehringer (1996). Those results
were later formalized and extended out of equilibrium (e.g. allowing
for the escape of particle effects) within thermodynamical and
kinetic theory approaches in Chavanis (1998, 2004), respectively.
Such a generalization leads to a tidally truncated Fermi–Dirac DF
at equilibrium, naturally implying finite-sized systems as the ones
applied here to model fermionic haloes.

However, as recognized by Lynden-Bell himself (Lynden-Bell
1967), the violent relaxation mechanism is likely to be incomplete
towards the outer and low-density halo regions. This discrepancy
was traditionally associated with the short dynamical time-scales
involved, which together with the long-range nature of the inter-
actions imply that the entire system does not have enough time
to explore the full phase space to reach a most likely final state.
Contrary to this expectation, in Levin, Pakter & Rizzato (2008) it
was shown that when the initial phase-space distribution (prior to
relaxation) satisfies the virial theorem, then the resulting qSS is close
to ergodic and so the Lynden-Bell statistics works well to reproduce
the numerical simulations.2 However, if the virial condition is
violated, parametric resonances arise and the mean-field gravitational
potential oscillations lead to ergodicity breaking with partial mass
evaporation towards the halo (Levin et al. 2008). This more general
case implies a qSS with a dense core–diluted halo behaviour, as
arising within numerical simulations, which according to Levin et al.
(2014) cannot be well explained in the traditional Lynden-Bell theory.
However, more general core–halo distributions can arise as well
within generalized Lynden-Bell statistics (as e.g. successfully applied
here for fermionic haloes with equation 1), which still remain to be
contrasted against numerical simulations of violent relaxation.

On general grounds, as first recognized in the original work
of Lynden-Bell (1967) for classical particles, there is an effective
‘exclusion principle’ acting in such relaxation processes due to the
incompressibility of the VP equation in phase space; that is, the
coarse-grained DF cannot exceed a maximum initial value after
some evolution. This may be considered as a classical counterpart
of the Pauli exclusion principle for self-gravitating fermions, both
leading to degeneracy effects in the matter distribution of the
collisionless systems. This degeneracy, either of quantum or of
classical origin, when large enough implies a richer dense core–
diluted halo morphology for the qSS (regardless of any possible
incompleteness of violent relaxation that would only affect the outer
halo). Explicit realizations of such a novel profile morphology were
solved in Chavanis & Sommeria (1998) for stars, and in Gao et al.
(1990), Bilic et al. (2002), Ruffini et al. (2015), Chavanis et al.
(2015b), Argüelles et al. (2018, 2019a), and Becerra-Vergara et al.

2An effective cut-off in radius is needed in order for this virial condition
scenario to match the simulations (Levin et al. 2008).

(2020) for fermions. Such distributions differentiate with respect to
the traditional King profiles (typically applied to globular clusters),
the latter being based on a Boltzmannian DF inherent to collisional
systems (Binney & Tremaine 2008).

The manifestation of such a core–halo profile in astrophysics is
yet an open issue, though several key results have been reported
from theoretical as well as phenomenological fronts. They include
(i) the avoidance of the traditional gravothermal catastrophe, thanks
to the arising of the central degeneracy (Chavanis & Sommeria 1998;
Chavanis et al. 2015b), not present in Boltzmannian distributions; (ii)
the possibility for the degenerate fermion core to mimic the massive
BHs at the centre of galaxies, while the outer halo can explain the
rotation curves (Ruffini et al. 2015; Argüelles et al. 2018, 2019a);
and (iii) the fact that astrophysical core–halo DM profiles can be
thermodynamically (and dynamically) stable, as well as long-lived as
proven here. These issues can be addressed through a thermodynamic
stability analysis for self-gravitating systems with a given particle
number (see e.g. Chavanis et al. 2015b, for a recent study within
Newtonian gravity). Indeed, it is the aim of this work to make, for
the first time, such an analysis in full GR, and apply it to realistic
DM haloes of fermionic nature at virialization within a realistic
cosmological framework.

On the realm of fermionic self-gravitating systems, the bulk of the
works in the field (besides the ones done by P. H. Chavanis) were
developed assuming hydrostatic equilibrium, without analysing the
thermodynamic stability of the solutions. Interestingly, stationary
phase-space solutions of the VP equation [of the form f(²) with f

0
(²)

< 0 and ² the particles energy], such as (13) or (1) implemented
here, are always VP dynamically stable (Binney & Tremaine 2008;
Lemou, Méhats & Raphaël 2011). However, this stability analysis
does not explain how such a collisionless self-gravitating system
reaches the required steady state, nor whether they minimize the free
energy (or maximize the coarse-grained entropy), or whether they
are just transitional (unstable/unreachable) states.

Indeed, a proper answer to this problem requires the introduction of
relaxation processes such as violent relaxation and Landau damping,
where the qSS is reached upon a maximization (coarse-grained)
entropy problem. Moreover, as it is explained in Chavanis et al.
(2015b), the VP equation has an infinite number of conserved inte-
grals (e.g. the so-called Casimir integrals), while the maximization
entropy problem holds only for a given total mass and energy (two
integrals). Therefore, VP dynamical stability does not necessarily
imply thermodynamical stability (see, however, Chavanis 2019,
and references therein for general conclusions in the relativistic
case). Thus, some VP dynamically stable solutions in hydrostatic
equilibrium are more likely to occur in nature than others.

A first thermodynamic study of self-gravitating systems of el-
ementary fermions in a fully relativistic framework was given in
Bilić & Viollier (1999), paying attention mainly to the occurrence of
gravitational phase transitions between gaseous and semidegenerate
(neutral) fermion stars. They worked in the canonical ensemble,
and analysed only (i) systems with total number of fermions below
the Oppenheimer–Volkoff value (i.e. N < NOV) where no relativistic
collapse to a BH is possible and (ii) very low spherical-box sizes R up
to R ∼ 101ROV not applicable to any astrophysical DM halo system.

Only recently, a more extensive fully relativistic, thermodynamic
stability analysis for self-gravitating fermions was done in Alberti &
Chavanis (2018), Roupas & Chavanis (2019), and Chavanis & Alberti
(2019), complementing to the case N > NOV (where core collapse
towards a BH may arise). In the latter, such an analysis was done
either in the microcanonical or in the canonical ensembles, enlarging
to spherical-box sizes about an order of magnitude above the original

MNRAS 502, 4227–4246 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/3/4227/6056505 by guest on 31 August 2021



On the formation and stability of DM haloes 4229

work of Bilić & Viollier (1999), yet orders of magnitude below any re-
alistic DM halo size. An analogous non-relativistic (e.g. Newtonian)
thermodynamical study was done in Chavanis et al. (2015b) within
the more realistic fermionic King model. There, much larger bounded
system sizes were reached, with potential applicability to realistic
DM haloes for particles masses of mc2 ∼ 1 keV (results that are here
compared against our relativistic approach in Section 3.4). However,
the works cited above were mainly focused on the mathematical as-
pects and characterization of the solutions in full dimensionless units,
and only applied to astrophysical objects in a qualitative fashion.

It is the purpose of this work to make a detailed thermodynamic
stability analysis of a self-gravitating system of fermions in GR, at the
moment of DM halo formation in a realistic cosmological set-up, and
for particle masses of mc2 ∼ O(10 keV). The novelty of this work
with respect to other similar analysis recently given in the literature
(Chavanis et al. 2015b; Alberti & Chavanis 2018; Roupas & Chavanis
2019) relies on the fact that it is the first time such a thermodynamical
analysis of fermionic matter is developed in GR, for realistic DM halo
configurations that are tidally truncated (i.e. by including the escape
of particle effects) in a warm dark matter (WDM) cosmology. In
particular, we emphasize on the possible different shapes of the DM
profiles, and analyse their thermodynamical stability, from dwarf to
larger halo sizes, making a direct link with the core–halo Ruffini–
Argüelles–Rueda (RAR) profiles presented in Ruffini et al. (2015),
Argüelles et al. (2018, 2019a), and Becerra-Vergara et al. (2020).

In the following, we summarize the content of this work. In
Section 2, we write the hydrostatic and thermodynamic equilibrium
equations of a self-gravitating system of massive fermions at finite
temperature in GR. In Section 3, we develop for the first time a
thermodynamic stability analysis for systems with a given particle
number N at halo virialization (with initial conditions consistent
with a Press–Schechter analysis within a WDM cosmology as given
in Appendix B), and for a particle mass of mc2 ∼ O(10 keV). We
first assume (a) spherical-box-confined configurations with size R
and (b) tidally truncated systems. We work in the microcanonical
ensemble, which is more appropriate for astrophysical applications
as explained in Chavanis et al. (2015b). Details on the stability
criterion used here, as well as the calculation of the lifetime of
metastable states, are given in Appendix A.

The main conclusion of Section 3 can be summarized as follows:
For spherical-box-confined configurations, there are no thermody-
namically stable core–halo solutions that are of astrophysical interest
when applied to DM haloes, while the opposite is true for tidally
truncated systems. This is the first time that a dense core–diluted halo
solution, which is successfully applied to model realistic DM haloes
(as in Argüelles et al. 2018, 2019a; Becerra-Vergara et al. 2020), is
proven to be thermodynamically stable (i.e. entropy maxima) and
extremely long-lived.

In Section 3.4 and Appendix A, we compare our results with
other similar works in the literature. In Section 4, we explain the
mathematical and physical characteristics of the turning point (TP)
instability, while further showing the existence of a gravitational
core collapse for solutions with N > NOV, and its implications for
supermassive BH (SMBH) formation in the high-redshift Universe.
In Section 5, we draw our conclusions.

2 SELF-GRAVITATING FERMIONS AT FINI TE
T E M P E R AT U R E I N G R

In this section, we introduce the system of equations for a self-
gravitating system of massive, neutral fermions (spin 1/2) in hy-
drostatic equilibrium within GR. More specifically, we solve the

Tolman–Oppenheimer–Volkoff (TOV) equations for a perfect fluid
whose equation of state (EoS) takes into account (i) the relativistic
effects of the fermionic particles, (ii) finite temperature effects of
the system, and (iii) escape of particle effects (i.e. tidally truncated)
at large momentum (p) through a cut-off in the Fermi–Dirac DF, as
follows:

f (r, ²) =
(

1−e[²−²c(r)]/kBT (r)

e[²−μ(r)]/kBT (r)+1
, if ² < ²c,

0, if ² > ²c,
(1)

where ² =
p

c2p2 + m2c4 − mc2 is the particle kinetic energy, ²c

is the cut-off particle energy above which no more particles are left,
μ is the chemical potential with the particle rest energy subtracted
off, and T is the temperature. It is relevant to emphasize that the
parameters μ, T, and ²c are all functions of the radius r of the
configuration, corresponding to the fulfilment of the Tolman and
Klein conditions (i.e. zeroth and first laws of thermodynamics in GR)
and energy conservation along a geodetic (see below). We denote by
kB the Boltzmann constant, h is the Planck constant, c is the speed
of light, and m is the fermion mass. We do not include the presence
of antifermions; i.e. we consider temperatures T ¿ mc2/kB. The
full set of (r-functional) parameters of the model is defined by the
temperature, degeneracy, and cut-off parameters, β = kBT/(mc2), θ =
μ/(kBT), and W = ²c/(kBT), respectively.

Importantly, the quantum phase-space function equation (1) can
be obtained from a maximum entropy production principle as first
shown for fermions in Chavanis (1998). Indeed, there it is shown to
be a stationary solution of a generalized Fokker–Planck equation for
fermions including the physics of violent relaxation and evaporation,
appropriate within the non-linear stages of structure formation. As
explained in Section 1, these results were first conceptualized in
the pioneer work of D. Lynden-Bell for collisionless stellar systems
(Lynden-Bell 1967), and formalized and generalized much later for
quantum (collisionless) particles (Kull et al. 1996; Chavanis 1998,
2004). Indeed, maximum entropy principles applied to DM halo
formation in terms of self-gravitating systems are being recently
reconsidered in the literature, as in the case of dwarf galaxies in
Sánchez Almeida, Trujillo & Plastino (2020).

We write below all the relevant equations to this problem, and
leave for the next section the thermodynamic (complementary)
formalism. The matter source for the corresponding Einstein equa-
tions is given in terms of the following (parametric) fermionic
EoS:

ρ(r) = m 2
h3

R ²c

0 f (r, p)
¡
1 + ²(p)

mc2

¢
d3p , (2)

P (r) = 4
3h3

R ²c

0 f (r, p) ²
1+²(p)/2mc2

1+²(p)/mc2 d3p , (3)

where the integration is carried out over the momentum space
bounded from above by the escape energy ² ≤ ²c. With f (r, p)
the phase-space DF of the fermions as given in equation (1).

We consider the system as spherically symmetric, so we adopt the
metric

ds2 = eνc2dt2 − eλdr2 − r2d22 − r2 sin2 2dφ2, (4)

where r, 2, and φ are the spherical coordinates, and ν and λ only
depend on the radial coordinate r.

The Tolman and Klein conditions are

eν/2T = constant, (5)

eν/2(μ + mc2) = constant. (6)

MNRAS 502, 4227–4246 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/3/4227/6056505 by guest on 31 August 2021



4230 C. R. Argüelles et al.

The cut-off condition comes from the energy conservation along
a geodesic,

eν/2(² + mc2) = constant, (7)

that leads to the cut-off (or escape energy) condition (1 + Wβ) =
e(νb−ν)/2, where νb ≡ ν(rb) is the metric function at the boundary of
the configuration, i.e. W(rb) = ²c(rb) = 0, and rb ≡ R is the boundary
radius often called tidal radius. The above cut-off formula reduces to
the known escape velocity condition ve

2 = −28 in the classical limit
c → ∞ (i.e. eν/2 ≈ 1 + 8/c2) considered by King (1966), where V =
m8, with 8 being the Newtonian gravitational potential, adopting
the choice V(rb) = 0.

The above conditions together with the Einstein equations lead to
the system of dimensionless equilibrium equations:

dM̂

dr̂
= 4πr̂2ρ̂(r̂), (8)

dν

dr̂
= 2(M̂(r̂)+4πP̂ r̂3)

r̂2(1−2M̂(r̂)/r̂)
, (9)

dθ

dr̂
= − 1−β0(θ (r̂)−θ0)

β0

M̂(r̂)+4πP̂ (r̂)r̂3

r̂2(1−2M̂(r̂)/r̂)
, (10)

β(r̂) = β0e
ν0−ν(r̂)

2 , (11)

W (r̂) = W0 + θ (r̂) − θ0 . (12)

The first two correspond to the only relevant Einstein equations (mass
and TOV equations), while the third is a convenient combination
of Klein and Tolman relations for the gradient of θ = μ/(kBT).
The fourth equation reads for Tolman, and W(r) is a direct com-
bination of Klein and cut-off energy condition of key relevance
for thermodynamics (see Section 3.2). We have introduced the
dimensionless quantities r̂ = r/χ , M̂ = GM/(c2χ ), ρ̂ = Gχ2ρ/c2,
and P̂ = Gχ2P/c4, where χ = (~/mc)(mp/m) and mp = √

~c/G is
the Planck mass. We note that the constants of the Tolman and Klein
conditions are evaluated at the centre r = 0, indicated with a subscript
‘0’.

The above coupled system of ordinary (highly non-linear) differ-
ential equations (8)–(12) implies a boundary condition problem to
be solved numerically. It was first solved in Argüelles et al. (2018)
for regular conditions at the centre of the configuration [M(0) = 0,
θ (0) = θ0, β(0) = β0, ν(0) = ν0, W(0) = W0], for a given DM particle
mass m, to find solutions consistent with the DM halo observables
of the Galaxy. For positive central degeneracy parameter θ0 > 0, the
DM profiles (fulfilling with fixed halo boundary conditions inferred
from observables) develop a dense core–diluted halo morphology
where the central core is sensitive to the particle mass (Ruffini et al.
2015; Argüelles et al. 2018). While the central core is governed by
Fermi-degeneracy pressure, the outer halo holds against gravity by
thermal pressure and resembles the King profile or Burkert profile
(see Argüelles et al. 2018, 2019a, for details).

A model built upon the above considerations is usually called as
the RAR model, in honour of the authors in Ruffini et al. (2015),3 and
then extended in Argüelles et al. (2018) including for the escape of
particles (or tidal effects). Importantly, such a DM halo model is the
more general of its kind, given it does not work in the fully Fermi-
degeneracy regime θ0 À 1 (as in Randall et al. 2017), nor in the

3The underlying system of equations (8)–(12) of the original RAR model (i.e.
without the cut-off at large momentum W → ∞) was first derived in Gao
et al. (1990), though the boundary condition problem relevant for galactic
observables was first properly solved in Ruffini et al. (2015).

diluted Fermi regime θ0 ¿ −1 (as in de Vega et al. 2014). However,
in the next sections, we will cover all regimes and check along the full
set of equilibrium configurations that are thermodynamically stable
or unstable, and analyse if they are of astrophysical interest regarding
the DM halo phenomenology.

The main advantages of fermionic DM profiles with a core–halo
morphology (e.g. as in Argüelles et al. 2018) over the diluted ones
(e.g. Boltzmannian-like) can be summarized as follows:

(i) The arising of the fermion-degeneracy pressure developed
through the centre of the DM halo is able to stop the gravitational
core collapse to a singularity, thus preventing the gravothermal
catastrophe typical of Boltzmannian phase-space DF. Such a result
was first demonstrated in Chavanis & Sommeria (1998) in Newtonian
gravity, and further shown here as well as in Alberti & Chavanis
(2018) and Chavanis & Alberti (2020) in full GR.

(ii) Thermodynamically metastable (i.e. local maxima of entropy)
core–halo solutions of self-gravitating fermions are extremely long-
lived, and shown to be of astrophysical relevance when applied to
DM haloes as demonstrated in this work. Besides, they are more
likely to arise in Nature than global entropy maximum (King-like)
solutions (Chavanis 2005).

(iii) Such a core–halo DM distribution is in good agreement with
overall rotation curve data from dwarf to elliptical galaxies, while
the dense core can be an alternative for the central massive BH
scenario (Argüelles et al. 2019a), including the case of our own
Galaxy (Argüelles et al. 2018; Becerra-Vergara et al. 2020) and for
the same particle mass in the keV regime.

In the limit W → ∞ (i.e. ²c → ∞), the system of equations
above reduces to the equations considered in the original RAR model
(Ruffini et al. 2015). Such a limit clearly implies that no escape of
particles at all is present in the Fermi–Dirac DF (1), which is reduced
to the typical formula below (where the upper bound integration limit
for p in the EoS is set to infinity):

f (r, ²) = 1

e[²−μ(r)]/kBT (r) + 1
. (13)

The main difference between a core–halo DM profile resulting from
equations (8) to (12), which is built upon either (1) or (13), is that
in the first case the outer halo resembles a King-like profile, while
in the second case it goes as ρ ∝ r−2 as r → ∞ (resembling a
pseudo-isothermal sphere).

3 THERMODYNAMI C STABI LI TY A NA LY S IS
O F D M H A L O E S AT V I R I A L I Z AT I O N

In the former section, we set the necessary equations to obtain
a system of self-gravitating fermions in hydrostatic equilibrium,
which can be successfully applied to model DM haloes as in the
RAR model. However, such stability equations do not explain how
these kinds of collisionless systems reach the steady state in a
given cosmological set-up. Indeed, the relaxation of collisionless
self-gravitating particles represents a rather complicated problem
that involves complex processes such as violent relaxation and
non-linear Landau damping (Binney & Tremaine 2008). As first
shown in the seminal paper of Lynden-Bell (1967), it is possible
to obtain a qSS resulting from a violent relaxation process, by
solving a maximization (coarse-grained) entropy problem at fixed
total energy and particle number. The concept of thermodynamical
stability, at difference to dynamical stability, is thus understood in
terms of such a maximization problem. Moreover, it can be shown
that if an equilibrium state in GR is thermodynamically stable (i.e.
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coarse-grained entropy maxima) then it is always dynamically stable
(Ipser 1980), while in general, the reciprocal is incorrect (see
Chavanis 2019, for a detailed discussion in Newtonian gravity as
well as in GR).

Historically, the main motivation to study the stability of dense
clusters composed by self-gravitating objects was linked to the
appealing idea that the formation of massive BHs at the centre of
active galactic nuclei could be the result of the collapse of such
clusters (Rees 1984). The bulk of the works in the field were aimed at
the analysis of the relativistic instability (i.e. collapse) of dense stellar
clusters following Maxwellian energy distributions with specific
cut-offs in energy a la Zeldovich–Podurets (see e.g. Bisnovatyi-
Kogan et al. 1998, and references therein). Such stability analysis
was pursued by approximate methods such as the fractional binding
energy criterion or the search for maxima in an M(ρ0) curve, with ρ0

the central density and M the total mass of the configuration.
In this work, we reconsider the problem of collapse of dense and

relativistic clusters with application to massive BH formation, though
the cluster is now a degenerate compact core made of neutral keV DM
fermions, surrounded by a diluted halo composed of the very same
particles. Such DM fermions follow a much richer energy DF such as
the generalized Fermi–Dirac DF in equation (1), including for central
degeneracy, generic cut-off energy, and (effective) temperature free
parameters, which is well motivated since it arises from a maximum
entropy production principle (see Section 2). We use a rigorous
approach to analyse the thermodynamic (and dynamical) stability
of the fermionic distributions as the one developed by Katz (1978)
(see Appendix A), which was not applied in Bisnovatyi-Kogan et al.
(1998) nor in similar contemporary works. Such an analysis is
properly compared and connected in Section 4 with the TP criterion
in terms of the traditional M(ρ0) curve. Even if the stability results
presented here show some similitude with respect to the ones done in
the past for Maxwellian DFs, they cannot be compared on an equal
footing; that is, the more general quantum DFs used here imply a
double-spiralling shape in the caloric curves as in Fig. 7, one of
gravothermal catastrophic nature including for degeneracy effects
(not present in the classical DF) and the other of relativistic nature.

As mentioned above, we will use throughout this work the
Katz criterion (detailed in Appendix A) to find the full set of
thermodynamical-stable solutions along the series of (hydrostatic)
equilibrium. This is a powerful and rigorous method that relies
only on the derivatives of specific caloric curves (e.g. total energy
versus 1/T∞), without the need to explicitly calculate the (rather
involving) second-order variations in entropy.4 Indeed, this is a
commonly used method in the context of self-gravitating systems
as can be seen in recent works (Chavanis et al. 2015a; Alberti &
Chavanis 2018). In next subsections, we work on the microcanonical
ensemble, applied for isolated systems so that its energy E is
conserved. In this ensemble, the relevant thermodynamic potential
to be extremized is the coarse-grained entropy S.5 This choice is
justified, the microcanonical ensemble being the more appropriate
for astrophysical applications as carefully explained in Chavanis et al.
(2015b).

4Interestingly, by just solving the extremization of entropy at fixed energy and
particle number (i.e. solving up to first-order variation in S) it is possible to
obtain the Fermi–Dirac DF at statistical equilibrium – with or without cut-off
as used here – as well as the GR EoS (Chavanis 2019).
5In Appendix A, we complement the analysis in the canonical ensemble for
other N, R examples, where the relevant thermodynamic condition is the
minimization of free energy F at fixed N and T∞.

Self-gravitating solutions with a given particle number N and total
energy E = c2M(R), which extremize the coarse-grained entropy,
must be bounded in radius. Otherwise, as the total mass of the system
has no upper bound, the maximization entropy problem is not well
defined and the entropy will never reach a maximum (Binney &
Tremaine 2008).

In this section, we formally perform two thermodynamic stability
analysis, under two different choices of the fermionic phase-space
DFs. In Section 3.1, we assume a DF given by equation (13). Under
this choice, the solutions obtained from equations (8) to (12) have no
spatial boundaries, implying DM density profiles scaling as ρ ∝ r−2

at large distances (see Fig. 2 and e.g. Ruffini et al. 2015, for more
details). Thus, as it is customary, we confine such a self-gravitating
system within a spherical box of total radius R in order to avoid an
entropy runaway.

In Section 3.2 instead, we assume a DF given by equation (1),
corresponding to the more realistic tidally truncated self-gravitating
system, naturally bounded in radius (R ≡ rb) thanks to the particle-
energy cut-off condition.

Next, we introduce the basic thermodynamic potentials in a GR
framework, relevant to develop the corresponding stability analysis
for the case of self-gravitating fermions at finite T∞. When working
in a curved space–time, the relevant thermodynamic potential is the
Gibbons–Hawking free energy (Gibbons & Hawking 1977)

F = M(R) +
Z

6

sT uαd6α, (14)

where M(R) is the total mass of the system as obtained by integrating
equation (8) up to R, 6 is the space-like hypersurface occupied by the
system (within a sphere of radius R) with uα a unit time-like normal
vector, and s is the entropy density that in the case of a relativistic
fluid is given by the Gibbs–Duhem relation

s(r) = P (r) + ρ(r) − μ(r)n(r)

T (r)
. (15)

Taking into account the metric tensor (4), and the Tolman and
Klein equations, the free energy of the system can be written as a
dimensionless expression explicitly dependent on the free parameters
of the model, as follows:

F = M̂(R̂) + m̂[1 + θ0β0]eν0/2N̂ −Z R̂

0
4πr̂2e(ν(r̂)+λ(r̂))/2[P̂ (r̂) + ρ̂(r̂)]dr̂ , (16)

where eλ(r̂) = (1 − 2M̂(r̂)/r̂)−1 is the space-like metric factor. Sim-
ilarly, the dimensionless entropy reads

S = −
µ

1

β0
+ θ0

¶
N̂ +

e−ν0/2

m̂β0

Z R̂

0
4πr̂2e(ν(r̂)+λ(r̂))/2[P̂ (r̂) + ρ̂(r̂)]dr̂ . (17)

Note that equation (16) can be written as F = M̂(R̂) − T̂∞S, which is
a more familiar expression, reminiscent of classical thermodynamics,
where T̂∞ ≡ β∞ represents the (dimensionless) temperature of the
system seen by an observer at infinity.

3.1 Box-confined DM haloes

As explained above, when making a thermodynamical stability
analysis with the standard Fermi–Dirac DF (13), it is mandatory
to bound the system in a box of radius R in order for S to reach a
maximum. Thus, the physical parameters needed to be fixed along
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the series of equilibrium solutions (extremum of S) are in this case
the total particle number N and spherical-box radius R; that is, two
extra equations are needed to be added to the system described by
equations (8)–(12)Z R̂

0
4πr̂2eλ(r̂)/2n̂(r̂)dr̂ = N̂, (18)

eν(R̂) = 1 − 2M̂(R̂)

R̂
. (19)

Both are given in a dimensionless form [with N̂ = N (m/mp)3], and
the second equation being the Schwarzschild condition assuring the
continuity of the metric at the boundary radius. The parameters
(N̂ , R̂) are chosen so as to fulfil the virial mass and radius
of a DM halo at virialization in a realistic cosmological set-up.
Indeed, such parameters are obtained from a Press–Schechter-based
formalism within a WDM cosmology for mc2 = 10 keV as detailed
in Appendix B. We provide the following two relevant examples (we
shall use R̂ ≡ R̂vir from now on):

(1) N̂ = 0.38, R̂vir = 1.4 × 107

(2) N̂ = 3.67, R̂vir = 3.8 × 107.

Such values imply, in dimensionfull units, the following virial
mass and radius: a typically small DM halo with Mvir ≡ M(Rvir) ≈
6.2 × 109 M¯ and Rvir = 11.1 kpc corresponding to the example
(1) and an average-sized DM halo with Mvir ≡ M(Rvir) ≈ 5.9 ×
1010 M¯ and Rvir = 29.7 kpc for (2); that is, each pair (Rvir, Mvir)
is consistent with the values obtained from the Press–Schechter
formalism as required (see Fig. B2).

The values for N̂ are chosen this way in order to have one
case, i.e. item (1), with N̂ = 0.38 < N̂OV, and the other, i.e. item
(2), with N̂ = 3.67 > N̂OV, N̂OV ≈ 0.4 being the Oppenheimer–
Volkoff critical particle number (Oppenheimer & Volkoff 1939).
Such a critical value triggering core collapse can be written in
a more familiar way in terms of the Planck mass mp and the
fermion mass m as NOV = 0.398 m3

p/m
3, corresponding to a critical

mass MOV = 0.384 m3
p/m

2 that for mc2 = 10 keV reads MOV ≈
6 × 109 M¯. Thus, any equilibrium configuration of fermions at finite
T∞ with M & 6 × 109 M¯ may undergo (under certain conditions)
a core collapse towards an SMBH as explained in Section 4. The
astrophysical and cosmological consequences of such a core collapse
in terms of the typical DM halo examples considered here are further
commented in Sections 4 and 5.

We next apply the Katz criterion (see Appendix A for the details) to
find all the thermodynamically stable branches of solutions along the
microcanonical caloric curve 1/T̂∞ versus Ê, with 1/T̂∞ = ∂S/∂Ê

and Ê = M̂(R̂).6 Thermodynamically stable solutions are maxima of
entropy S (either local or global) at fixed E and N, while the unstable
solutions are either minimum or saddle point of entropy. Importantly,
thermodynamically stable solutions (associated with second-order
variations of S) are only a reduced subset along the full set of
(hydrostatic) equilibrium solutions. Indeed, the latter corresponds
with solutions arising from the system of given equations (8)–(12),
(18), and (19), which are simply an extremum of entropy (i.e. to
first order δS = 0 for given N and E) as demonstrated in Chavanis

6We notice that in order to recover the non-relativistic limit of the caloric
curve, one should redefine the energy as the binding energy Eb = (M −
mN)c2, though all the results of this paper hold since the behaviour of the
caloric curves and the sign change of its derivatives around the TPs are not
altered by adding a constant term to the energy.

Figure 1. Series of equilibrium solutions along the caloric curve for box-
confined configurations of mc2 = 10 keV fermions fulfilling the boundary
conditions (1) at halo virialization. For this large value of R̂ ∼ 107, the curve
spirals inwards several turns until it starts unwinding just when the quantum
degeneracy (i.e. Pauli principle) sets in at θ0 & 10. The states within the
continuous-blue branches are thermodynamically (and dynamically) stable
(i.e. either local or global entropy maxima), while the dotted-purple branch
– between (a) and (b) – is unstable (i.e. either minimum or saddle point of
entropy), according to the stability criterion of Appendix A.

(2019). This last statement clearly justifies the need to apply the Katz
criterion to make a stability analysis.

3.1.1 Mvir ≈ 6.2 × 109 M¯, Rvir = 11.1 kpc

The numerical problem consists in solving equations (8)–(12) under
the choice of the DF given by equation (13), with the specific
boundary condition equations (18) and (19) at virialization. As a first
example, we consider a rather small halo with Mvir ≈ 6.2 × 109 M¯
and Rvir = 11.1 kpc. We solve this problem for a wide range of
control parameters (ν0, β0, and θ0), for fixed mc2 = 10 keV, and
plot in Fig. 1 all the equilibrium solutions (i.e. extremum of S)
along the caloric curve (i.e. −M̂ versus 1/T̂∞) as customary.
This problem implies a monoparametric family of solutions, since
for a fixed particle mass m we have three free model parame-
ters and two given boundary conditions given by equations (18)
and (19)

We differentiate in Fig. 1 among the full family set of thermo-
dynamically stable solutions (in continuous-blue line), from the
thermodynamically unstable ones that are shown in dotted violet.
We then analyse in detail all the different kinds of density profiles
(extremum of S) for a fixed value of the total energy M̂ inside
the spiral structure (see vertical dashed line in Fig. 1). The main
conclusions out of this stability analysis can be summarized as
follows:

(i) Upper continuous-blue branch contains solutions that are
entropy maxima (either local or global; see Appendix A), until the
point where the caloric curve starts to rotate clockwise (i.e. first
point where the curve 1/T̂∞ versus −M̂ is tangent to a vertical line),
labelled as a red square (a). Interestingly, all the solutions lying in
this stable branch belong to the diluted Fermi regime, with θ0 ¿ −1
(i.e. Boltzmannian-like). The associated density profiles resemble
pseudo-isothermal spheres, with a density tail behaviour of ρ ∝ r−2

at large distances (see curve 1 in Fig. 2).
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On the formation and stability of DM haloes 4233

Figure 2. Density profiles for mc2 = 10 keV corresponding to the equilib-
rium states of the caloric curve in Fig. 1 with energy M̂ ≈ 0.38. Only the
profile (1) (resembling a pseudo-isothermal sphere) and the core–halo one (5)
are stable, while profiles (2)–(4) are thermodynamically unstable. Solutions
like (4) were applied to describe DM haloes in galaxies in Ruffini et al. (2015),
though they are very unlikely to occur in Nature (i.e. unstable), at difference
with the more realistic core–halo solutions analysed in Section 3.2.

(ii) From this point all along the dotted-violet branch ending in
point (b), solutions are thermodynamically unstable (either minimum
or saddle point of S). Hydrostatic equilibrium solutions well inside
the spiral start to transition from diluted Fermi [see e.g. the density
profile (2) in Fig. 2 with θ0 . −1] to semidegenerate Fermi [see
e.g. density profile (3) with θ0 & 10], just when the caloric curve
starts to rotate anticlockwise. Precisely at this point, the central
core becomes degeneracy-pressure supported; that is, the thermal
de Broglie wavelength (λB) is larger than the interparticle mean
distance at the core λB > lc. This unwinding within the upper spiral
of the caloric curve proves that the Pauli exclusion principle halts the
classical gravothermal catastrophe, as first realized within Newtonian
gravity in Chavanis & Sommeria (1998). In the ‘unrolled’ side of the
curve, the profiles develop a core–halo behaviour, such that the larger
θ0 & 10 the more compact and degenerate is the central core while
the more diluted and extended is the outer halo. Unstable core–halo
solutions like (4) are similar to the ones applied to DM haloes in
Ruffini et al. (2015) within the original RAR model (see Section 3.4
for further relevant implications).

(iii) For larger energies [at the right of point (b), where the
amount of anticlockwise rotations of the caloric curve equals the
number of clockwise rotations], a lower branch of entropy maximum
(either local or global) arises, labelled in continuous-blue. The
thermodynamically metastable solutions of this branch (i.e. local
entropy maxima) have a tremendously long-lived lifetime much
larger than the age of the Universe as calculated in Appendix A. The
interesting connection between metastability and long-liveness of
self-gravitating systems with long-range interactions was originally
demonstrated in Chavanis (2005). Typical stable density profiles [see
e.g. density profile (5) of Fig. 2] develop highly compact core sizes
below Mpc scales, surrounded by a very extended and diluted halo
with no relevant astrophysical application as further discussed below.

(iv) We recognize the existence of a spiral feature in the caloric
curve, with the absence of the monotonic inspiralling typical of
Boltzmannian DF (see e.g. Padmanabhan 1990). This necessarily
implies that the gravothermal catastrophe is avoided, since the sin-

Figure 3. The observationally inferred DM surface density 6obs
0D ∼

102 M¯ pc−2 (including 3σ errors in orange band; Donato et al. 2009) is
compared with the theoretical prediction 60D ∝ ρprh (see footnote 7), for
the full series of equilibrium along the caloric curve of Fig. 1. Only pseudo-
isothermal-like solutions such as (1) (see Fig. 2) are stable and agree with
6obs

0D at the same time.

gular isothermal sphere is never present along our fermionic family
of solutions. Such a result was first demonstrated in Chavanis &
Sommeria (1998) for the Fermi–Dirac DF in Newtonian gravity and
generalized here within GR for realistic DM halo sizes (see also
Alberti & Chavanis 2018).

(v) By comparing the observationally inferred DM surface density
6obs

0D ∼ 102 M¯ pc−2 (Donato et al. 2009) (including 3σ errors in
orange band) with the theoretical prediction7 from the corresponding
fermionic density profiles along the caloric curve, we conclude the
following:

(a) There are no thermodynamically stable core–halo so-
lutions of astrophysical interest when applied to low-mass
(∼109 M¯) DM haloes (box-confined). Either they can fit DM
halo observables [like the solution (4) as obtained within the
RAR model in Ruffini et al. 2015] but are saddle points of
entropy or they are (local) maxima of entropy as solution (5), but
the halo is too diluted to match the observational 60D relation.

(b) There exist diluted Fermi DM profiles [like solution
(1) resembling pseudo-isothermal spheres] that are stable (i.e.
maxima of entropy), and at the same time they match the
observational 60D relation. These statements can be directly
checked by comparing the information in Figs 1–3.

3.1.2 Mvir ≈ 5.9 × 1010 M¯, Rvir = 29.7 kpc

We repeat here the same analysis done in the above example,
but in this case the total particle number corresponds to larger
haloes, exceeding the OV limit (as e.g. N̂ = 3.67 > N̂OV). This
implies a novel qualitative behaviour in the lower end of the caloric
curve, towards the more degenerate and relativistic (i.e. higher
T∞) configurations, while for lower values of such parameters the
situation is similar than in the above N̂ < N̂OV case. Indeed, by

7Such predicted magnitude is calculated as 60D ∝ ρ(rp)rh, with ρ(rp) ≡ ρp

the density at plateau and rh the halo scale length as detailed in Argüelles
et al. (2019a).
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Figure 4. Series of equilibrium solutions along the caloric curve for box-
confined configurations of mc2 = 10 keV fermions fulfilling the boundary
conditions (2) at halo virialization. The states within the continuous-blue
branches are thermodynamically (and dynamically) stable (i.e. either local
or global entropy maxima), while the dotted-violet branches – between (a)
and (b) and after (c) – are unstable (i.e. either minimum or saddle point of
entropy), according to the stability criterion explained in Appendix A. The
arising of the second spiral of relativistic origin for high T∞ is characteristic
of caloric curves at a fixed N within GR, and implies the existence of a TP in
an M(ρ0) curve (see Section 4).

comparing Figs 4–6 with respect to the analogous Figs 1–3, it
can be directly concluded that the main five results drawn in the
above example with N̂ < N̂OV hold here as well, as we summarize
below:

(i) Starting with stable (entropy maxima) states corresponding to
solutions with θ0 ¿ −1 (in upper continuous-blue branch of Fig. 4),
there is an equal amount of times the caloric curve rotates clockwise
starting at (a) (i.e. gaining an instability mode) as rotates anticlock-
wise (i.e. recovering a stability mode). This process continues until
point (b), where the thermodynamic stability is restored. In between
the points (a) and (b), the solutions are either minimum or saddle
points of entropy, and progressively increase their central degeneracy
until a typical core–halo profile (i.e. with θ0 & 10) is obtained just
after the spiral unwinds.

(ii) After point (b) and up to (c), the solutions are entropy
maxima (either local or global) and therefore thermodynamically
metastable or stable, respectively. Metastable solutions are shown to
be extremely long-lived as calculated in Appendix A, and thus can
be considered as stable and even more likely to occur in Nature than
global entropy maxima as explained in Chavanis (2005). Similarly
as in the above case, these stable core–halo solutions are of no
astrophysical interest when applied to typical DM halo masses
(∼1010 M¯), since their halo densities are too diluted (and their
sizes too extended) to match the observational 60D relation [see e.g.
solution (3) in Figs 5 and 6].

(iii) At difference with the former case (N̂ < N̂OV), a turn-over
occurs in the caloric curve at the ending point of the stable branch
where the continuous-blue line is tangent to a vertical line [labelled
(c) in Fig. 4]). According to the Katz criterion (see Appendix A),
a new instability mode is gained because at (c) an extra clockwise
rotation takes place in the thermodynamic curve. On the left of this
point arises a new branch of thermodynamically unstable solutions,
plotted in Fig. 4 in dotted-violet, which extends indefinitely into the

Figure 5. Density profiles for mc2 = 10 keV corresponding to the equilib-
rium states of the caloric curve in Fig. 4 with energy M̂ ≈ 3.672. Only the
profiles (1) (resembling a pseudo-isothermal sphere) and the core–halo one
(3) are stable, while profiles (2) and (4) are thermodynamically unstable.
Solutions like (2) were applied to describe DM haloes in galaxies similar
to the Milky Way in Ruffini et al. (2015), though they are very unlikely to
occur in Nature (i.e. unstable), at difference with the more realistic core–halo
solutions analysed in Section 3.2.

Figure 6. The observationally inferred DM surface density 6obs
0D ∼

102 M¯ pc−2 (including 3σ errors in orange band; Donato et al. 2009) is
compared with the theoretical prediction 60D ∝ ρprh (see footnote 7), for
the full series of equilibrium along the caloric curve of Fig. 4. Only pseudo-
isothermal-like solutions such as (1) (see Fig. 5) are stable and agree with
6obs

0D at the same time.

second spiral in the caloric curve.8 Importantly, at the bottom-left end
of this unstable branch we recognize the so-called ‘TP’ instability
(labelled with an empty red circle), whose mathematical, physical,
and astrophysical properties are discussed in Section 4.

8A spiralling of relativistic origin (similar to our case) in a caloric curve was
first shown in Roupas (2015) for a self-gravitating ideal gas confined in a
spherical box, and extended in Roupas & Chavanis (2019) for fermions at
finite T in GR.
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Remark 1: The pseudo-isothermal sphere-like behaviour (belong-
ing to the diluted Fermi class of stable configurations) implies density
halo tails going as ρ ∼ r−2 for large r, until the abrupt end of the
boundary-box radius R sets in. Though such a slope is in tension
with standard DM halo phenomenology, which indicates sharper halo
trends such as ∼r−3 as in the Burkert or NFW profiles. Importantly,
halo tails more similar to this phenomenologically suitable one can
be obtained in the more realistic tidally truncated scenario, while at
the same time belonging to stable branch, shown in the following
Section 3.2.

Remark 2: As shown in Alberti & Chavanis (2018), for box-
confined configurations of fermions, the larger the box size R̂ (as
compared to ROV), the less relevant are the GR effects in the overall
distribution when compared with Newtonian gravity. As we are using
very large values of R̂ ∼ 107 in order to reach realistic galactic sizes
for O(10 keV) particles, very similar conclusions about the stability
should be obtained within Newtonian equations as well. However,
we notice that appreciable differences should arise towards the high-
T̂∞ end of the caloric curve, since the radius of the degenerate core
is close to the critical one before collapse9 [i.e. notice that rc ∼ ROV

close to point (c) of Fig. 4; see also Section 4].

3.2 Tidally truncated DM haloes

In tidally truncated systems, the tidal radius R, which is naturally
set by the escape energy condition in Section 2, is not fixed along
the series of equilibrium. Indeed, it must be sensitive to the free
parameters of the system that vary along the caloric curve, including
T∞. What remains constant instead is a combination of the Klein and
escape energy conditions, as explicited in Section 2 and equation
(12).

In other words, at difference with the box-confined case, the factor
W0 − θ0 = (²c − μ)/(kBT) is the one to be kept constant here, together
with N. It is only by fixing this factor (and not R) that the Katz criterion
applies, and that the changes of stability in the thermodynamic
curve (e.g. in the microcanonical ensemble) correspond to the
maximization entropy problem (Katz 1980; Chavanis et al. 2015b).10

In tidally truncated systems, the spanning of the caloric curve
(either in temperature or in energy) is sensitive to the constant W0 −
θ0, affecting as a consequence the different locations of the solutions
in such curve. Given such solutions may be of astrophysical interest
for DM halo applications, it is thus convenient to have an educated
guess on which W0 − θ0 value to start with, in order not to make
(undesired) blind trials.

Fortunately, the phenomenology of different observationally in-
ferred DM haloes (from dwarf all the way to elliptical galaxies) in
terms of a self-gravitating system of fermions given by equations
(8)–(12) was already worked out in Argüelles et al. (2019a) within
the RAR model. In that work, a particle mass of mc2 = 48 keV
was used as a relevant example, in views of the successful Milky
Way phenomenology developed within the same model in Argüelles
et al. (2018). For haloes with density tails eventually acquiring a
power law r−n with n > 2 (i.e. close to the ones provided by N-body

9Indeed, within the theory of degenerate stars (resembling the compact cores
in our configurations), an excess of ∼10 per cent in the critical mass at
collapse is known to arise if the analysis is done in Newtonian gravity (though
with relativistic energies) instead of GR (Rees, Ruffini & Wheeler 1974).
10This fact was first recognized by Katz (Katz 1980), and detailed further
in Chavanis et al. (2015b), who used the dimensionfull constant factor A =
(2m4/h3)e−(²c−μ)/kBT proportional to the one fixed here.

simulations), we obtain from Argüelles et al. (2019a) typical W0 −
θ0 values between 20 and 28 (and reaching up to 40 or larger for
isothermal sphere density tails ∝ r−2).

Therefore, we consider next the boundary condition problem
(N̂, W0 − θ0), and perform the corresponding thermodynamic stabil-
ity analysis (for mc2 = 48 keV as motivated in the comment above),
with the following values: N̂ = 76.25 and W0 − θ0 = 24.

The chosen value for N̂ = 76.25 > N̂OV) implies, in dimensionfull
units, the virial mass of an average DM halo mass Mvir ≡ M(Rvir) ≈
5.4 × 1010 M¯. That value is chosen this way in order to properly
compare the thermodynamical stability results of this section with
the ones of Section 3.1.2.

With the educated choice of W0 − θ0 = 24, it is expected to
find along the series of equilibrium a solution with a halo size
at virialization of Rvir ≈ 29 kpc (as dictated from Fig. B2 within
the Press–Schechter formalism of Appendix B). Besides that, it is
further pursued to check if such an expected solution may be both
thermodynamically stable and of astrophysical interest or otherwise.

The numerical problem is analogous as the one of Section 3.1.2.
Indeed, for the tidally truncated haloes under consideration (i.e.
with N̂ > N̂OV), it is expected that the caloric curve is qualitatively
similar to the one in the box-confined case (see Chavanis et al.
2015b, for an analogous comparison in Newtonian gravity reaching
the same conclusion). However, it is clear that the precise locations
of the points where stability changes, as well as the stability branch
extensions along the caloric curve, should shift with respect to one
another. It is thus worthy to make here a detailed investigation to
search for a new family of solutions, with the hope to find profiles
that are thermodynamically stable as well as of astrophysical interest
(not possible for the box-confined case as shown in Section 3.1).

We solve the system of equations (8)–(12) though this time under
the more realistic DF given by equation (1), with the specific fixed
constraints (N̂ = 76.25, W0 − θ0 = 24) and for mc2 = 48 keV. We
solve it for a wide range of control parameters [ν0, β0, and θ0], and
plot in Fig. 7 all the equilibrium solutions (i.e. extremum of S) along
the −M̂ versus 1/T̂∞ caloric curve as customary.11 This problem
implies a monoparametric family of solutions, since we have three
free model parameters (notice that W0 is not independent of θ0) for
two given boundary conditions. We differentiate in Fig. 7 among the
full family set of thermodynamically stable solutions (in continuous-
blue line), from the thermodynamically unstable ones that are shown
in dotted-violet. We then analyse in detail all the different kinds of
density profiles for a fixed value of the total energy M̂ as an example
(see vertical dashed line in Figs 7 and 8 for the profiles).

The main conclusions out of this stability analysis can be summa-
rized as follows:

(i) Analogously as in Section 3.1.2, the entropy maximum states
(either local or global) correspond to solutions with θ0 ¿ −1 lying
in the upper continuous-blue branch of Fig. 7, and ending at point (a)
where the first instability branch starts. Solutions in this unstable
branch (labelled in dotted-violet) are either minimum or saddle
points of entropy, and progressively increase their central degeneracy
from negative to positive until a core–halo profile arises (for θ0 &
10). More precisely, exactly at the point where the spiral starts to

11The plot of a single astrophysical caloric curve as Fig. 7 requires very
high resolution in order to achieve noise-free spiral features. The boundary
condition problem equations (8)–(12) and (18) are thus solved numerically
with a Levenberg–Marquardt least-squares minimization method, implying
a large iterative process (taking approximately few tens of hours of standard
desktop CPU time).
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Figure 7. Series of equilibrium solutions along the caloric curve for tidally
truncated configurations of mc2 = 48 keV fermions fulfilling (N̂ = 76.25,
W0 − θ0 = 24). The states within the continuous-blue branches are ther-
modynamically (and dynamically) stable (i.e. either local or global entropy
maxima), while the dotted-violet branches – between (a) and (b) and after (c)
– are unstable (i.e. either minimum or saddle point of entropy), according to
the Katz criterion. Solution (3) is stable and fulfils the virialization conditions
as required from the Press–Schechter formalism of Appendix B. The arising
of the second spiral of relativistic origin for high T∞ is characteristic of
caloric curves at a fixed N within GR, and implies the existence of a TP in an
M(ρ0) curve (see Section 4).

10-4 100 104
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100

105
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Figure 8. Density profiles for mc2 = 48 keV corresponding to the equilib-
rium states of the caloric curve in Fig. 7 with energy M̂ = 76.25308. Only
the profiles (1) (resembling a King distribution) and the core–halo one (3)
are stable, while profile (2) is thermodynamically unstable. Interestingly,
solutions like (3) were successfully applied to explain the DM halo in the
Milky Way in Argüelles et al. (2018). They are stable, extremely long-lived,
and fulfil the 6obs

0D relation as shown in Fig. 9, as well as the expected value of
the dispersion velocity σ h in CDM N-body simulations as shown in Fig. 10.

unwind, a mild degenerate core with θ0 = 6.7 becomes quantum
pressure supported being λB = 2lc. Confirming once more that the
gravothermal catastrophe typical of Boltzmannian distributions, is
avoided when the fermion degeneracy comes into play through the
Pauli exclusion principle. Solutions obtained for 10 . θ0 . 28, prior
to point (b), have a core–halo behaviour qualitatively similar as the
ones obtained in Ruffini et al. (2015), falling all within the unstable

Figure 9. The observationally inferred DM surface density 6obs
0D ∼

102 M¯ pc−2 (including 3σ errors in orange band; Donato et al. 2009) is
compared with the theoretically prediction 60D ∝ ρ(rpl)rh, for the full series
of equilibrium along the caloric curve of Fig. 7. Only King-like profiles
similar to (1) (see Fig. 8) and core–halo profiles like (3) are stable and agree
with 6obs

0D at the same time.

branch. The unstable branch ends at (b), once the caloric curve has
rotated as many anticlockwise times as clockwise rotations, and the
thermodynamic stability is recovered. Metastable solutions in this
new stable branch [as solution (3) within the continuous-blue curve]
are shown to be of astrophysical interest [see point (iii) below]. Such
a stability is lost at point (c) when the curve rotates clockwise once
again, thus becoming thermodynamically unstable all the way to the
second spiral of relativistic origin. The TP instability at the left end
of such a spiral, and the concept of gravitational collapse of the core
at the last stable point (c), is discussed in detail in Section 4.

(ii) The key difference with respect to the Section 3.1.2 case is
precisely in the second stable branch: It is much more extended in
energy and T̂∞ and therefore implies a larger family of metastable
(and stable) states. More importantly, it starts at (b) with central
degeneracies θ0 ≈ 30 and β0 ∼ 10−5 typical of astrophysical density
profiles (Argüelles et al. 2018, 2019a; Becerra-Vergara et al. 2020) for
such average halo mass. Indeed, the metastable solution (3) plotted
in Fig. 8 is of a perfect astrophysical applicability (see also the
item below), since it is similar to that of a Milky Way RAR DM
halo for mc2 = 48 keV, shown to perfectly fit the rotation curve data
(Argüelles et al. 2018, 2019b; Becerra-Vergara et al. 2020).
This is a remarkable result, since for the first time a core–halo
solution like (3) known to be of astrophysical applicability has now
been proven to fall inside the metastable branch while being ex-
tremely long-lived (as calculated in Appendix A) and thus reachable
in Nature. We believe this is not a coincidence; i.e. the fact that in
Argüelles et al. (2018, 2019b) and Becerra-Vergara et al. (2020)
it was shown that the existence of a DM core–halo profile where
the core can mimic a massive BH while the outer halo can explain
the rotation curve was already a smoking gun for its plausibility in
Nature.

(iii) There is a full family of solutions in the second stable branch
between (b) and (c) (corresponding to θ0 ≈ 31.5 and β0 ∈ [3.3 × 10−5,
5 × 10−5]), which are found to be of astrophysical interest; that is,
they lie within the allowed DM surface density 6obs

0D strip as shown
in Fig. 9, and agree with the expected N-body dispersion velocities
(σ h) as shown in Fig. 10. Interestingly, they cover inner-halo densities
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Figure 10. The dispersion velocity σ h of fermionic haloes with a core–halo
morphology lying along Fig. 7 is plotted against their effective temperature.
It is compared with the traditional isothermal relation (kBT/m)1/2, and with
the predicted σ h values arising from N-body simulations within a CDM
cosmology. Importantly, there exists a window of T around 104 K where the
fermionic core–halo profiles are thermodynamically stable, long-lived, and
astrophysically allowed in the sense of both the DM surface density relation
6obs

0D and the expected σ h from (CDM) N-body simulations.

at plateau roughly ρp ≈ 10−3–10−1 M¯ pc−3 and total sizes of R ≈
10–50 kpc. In particular, the solution (3) in Fig. 8 is the one having
the value of Rvir ≈ 29 kpc as required from the Press–Schechter
analysis within a self-consistent WDM cosmology (Appendix B).
Finally, solutions with larger T̂∞ (i.e. β0 & 5 × 10−5) towards the
relativistic regime approaching point (c) are all of no astrophysical
interest: The haloes are too diluted and extended to fit within the
allowed 60D as explicitly shown in Fig. 9.

Remark: Even if the above conclusions apply for average-sized
DM haloes, i.e. Mvir ∼ 1010 M¯, with fixed W0 − θ0 = 24, we have
repeated the stability analysis for other values of W0 − θ0 between
20 and 28 (for the same N̂ ). We have found that for W0 − θ0 . 20
there are no astrophysical solutions within the metastable branch:
They acquire inner-halo densities at plateau ρp & 1 M¯ pc−3 above
any reasonable value even for the smallest haloes (totally in line with
the analysis done in Argüelles et al. 2019a).

Interestingly, for W0 − θ0 = 24 there are no stable core–halo
solutions with a quantum core mass Mc . 107 M¯. Nevertheless,
for larger values of 24 < W0 − θ0 < 28 (and for the same N̂ ), it
is possible to obtain lower (stable) core masses of ∼106 M¯. The
relevance of such (smaller) fermionic core mass is obvious when
comparing with our Galaxy (though with a larger N by an order of
magnitude than the one adopted here), given it may represent an
alternative to the central BH scenario as proven in Argüelles et al.
(2018) and Becerra-Vergara et al. (2020).

Finally, there exists a threshold value of W0 − θ0 somewhere
between 20 and 22 where the metastable branch extends only up to
an energy value M̂ smaller than that of point (a) before becoming
unstable [i.e. last stable point (c) is to the left of point (a) in
energy]. This may imply important consequences regarding the
possible gravitational collapse (of gravothermal catastrophic nature)
of DM cores towards a BH as can be concluded from the remark in
Section 4.

3.3 The σ h–T relation of fermionic haloes

The dispersion velocity of the fermionic haloes (calculated as
the root-mean-square velocity at a given halo-scale) is a relevant
magnitude that can be compared with the one coming from N-
body simulations at virialization. Indeed, within the Lambda cold
dark matter (3CDM) cosmology, in Taylor & Navarro (2001) it
was calculated a phenomenological expression for the dispersion
velocity of the DM haloes as a function of the halo mass inside the
radius where the rotation curve peaks (dubbed here as σ h). Thus,
in Fig. 10 we compare the behaviour of such a dispersion velocity
(labelled in light blue, within the NFW concentration parameters c
as reported in Taylor & Navarro 2001), with respect to the one of
fermionic haloes lying along the caloric curve of Fig. 7, and having
M(Rvir) ≈ 5.4 × 1010 M¯ occurring at zvir ∼ 2 (see B and the above
section). The fermionic σ h values are plotted as a function of its
(effective) temperature T∞ ≡ T, and calculated for tidally truncated
fermionic solutions with a phase-space DF given by equation (1).
Such a σ h–T relation is explicitly shown in Fig. 10 for core–halo
solutions (i.e. θ0 & 10) lying along the caloric curve of Fig. 7; the very
same relation exists for the branch of diluted (King-like) solutions
with θ0 < −1. The reason for the existence of both branches of
solutions with the same σ h–T relation is that for each core–halo
solution along Fig. 7, there exists another one in the diluted regime
that closely matches the halo part of the former, inside which the
dispersion velocity is evaluated [see e.g. the behaviours between
solutions (1) and (3) in Fig. 8].

One important result from this analysis is the fact that the σ h–T
relation of fermionic haloes does not follow the traditional isothermal
trend σ ∝ (kBT/m)1/2. Instead, it deviates from it according to the
different behaviour of the caloric curve of Fig. 7 in which the
temperature covers a wide range of regimes, from relatively hot
to relatively cold, depending on the central degeneracy and cut-off
parameter (the latter two not present in the traditional isothermal
scenario); that is, for core–halo solutions starting with θ0 = 10 in
the caloric curve (just after the spiralling out at the top of Fig. 7),
the temperature increases with corresponding increase of σ h closely
following the Boltzmannian relation. This trend continues until the
first anticlockwise turn of the caloric curve [in the inner part of the
location of point (a)], where T decreases (and so does σ h). This
second trend ends when the caloric curve reaches the maximum
(from the inside curve), and so T starts to rise once more (in this case
with decreasing σ h), all the way until the onset of instability at point
(c).

The main conclusion from this analysis is that there exists a
window of effective T ∼ few 104 K falling within the range of
thermodynamically stable core–halo solutions, with corresponding
σ h values that roughly agree with the predicted window arising from
N-body simulations within a CDM cosmology as given in Taylor &
Navarro (2001). Interestingly, such very same range of T practically
coincides with the one of the astrophysical family of solutions (shown
in thick-blue in Fig. 10) in the sense of the DM surface density
relation of Fig. 9.

This dispersion velocity analysis allows us to link the temperature
of the DM fermions prior and after virialization, and to know which
values are the realistic ones (for a given particle mass) in the sense
of the expected σ h from simulations. Indeed, while typical DM
redshifting temperature of the fermions just prior halo formation
is about few Kelvin (i.e. at zvir = 10 as calculated from B for
resonantly produced sterile neutrinos), the effective T of the very
same particles in the fermionic haloes of ∼5 × 1010 M¯ must be
∼104 K. That temperature gap between prior and after relaxation
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can be understood in terms of the violent relaxation mechanism. It
mixes the fermion gas and makes the (effective) temperature of the
quasi-relaxed halo hotter as expected from the negative specific heat
acting on these kinds of self-gravitating systems.

3.4 Comparison with other works

We start by emphasizing that the stability results presented in
this section are completely original, since it is the first time they
are obtained for tidally truncated self-gravitating fermions at finite
temperature in GR, with realistic boundary conditions at virialization.
Nevertheless, it is important to compare the main conclusions
obtained in Section 3.2, with those of a similar stability analysis done
for self-gravitating fermions within Newtonian gravity in Chavanis
et al. (2015b) (see Appendix A for comparisons with other works
using the box-confined ansatz for fermions in GR).

In fig. 30 of that work, Chavanis et al. obtained a similar caloric
curve as the one obtained here in Fig. 7, though without the second
spiral of relativistic origin since they applied the Newtonian (non-
relativistic) theory of gravity. The importance of this comparison is
that both caloric curves have the similar features: Both (microcanon-
ical) stable branches are of similar features and are both applicable
to relatively large haloes. Indeed, in Chavanis et al. (2015b) they
did the analysis for a dimensionless parameter μ = 109 (not the
chemical potential), which can be easily shown to be equal to eW0−θ0 ,
thus implying a value for W0 − θ0 ≈ 21 close to the one chosen in
Section 3.2.

In fig. 45 of that work, they provided all the possible density
profiles at a given energy, similarly as done here in Fig. 8, though
they did for an energy value already within the spiral feature. They
showed basically three different kinds of profiles: (i) a King-like
profile belonging to the first stable branch dubbed as the ‘gaseous-
phase’ [similar to solution (1) in Fig. 8]; (ii) a core–halo profile
belonging to the unstable branch dubbed as the ‘embrionic-phase’;
and (iii) another kind of core–halo profile belonging to the second
stable branch and dubbed by Chavanis et al. as the ‘condensed-phase’
[similar to solution (3) in Fig. 8].

Up to this point both qualitative results about the thermodynamic
stability (i.e. the one given in Chavanis et al. 2015b and the one from
Section 3.2) are somewhat in line, though Chavanis et al. attempted
a very different conclusion with respect to the one obtained here
regarding the applicability to DM haloes. They concluded that (i)
either you have core–halo solutions belonging to the ‘embrionic-
phase’ (qualitatively similar as the ones obtained in Ruffini et al.
2015) but are thermodynamically unstable (i.e. unreachable) or (ii)
you get stable core–halo profiles belonging to the ‘condensed-phase’,
but cannot explain the DM content in large galaxies since the halo is
too extended and diluted for such a goal. While we generally agree on
conclusion (i) as shown in Sections 3.1 and 3.2, we totally disagree
with conclusion (ii). Moreover, we have proven in Section 3.2 that
such a conclusion is indeed wrong.

Such a discrepancy in the interpretation of the results is understood
when introducing a proper quantitative and dimensionfull analysis
of the profiles in relation to DM halo observables, together with
the quest for a full coverage of the energy values M̂ along the
metastable branch (not developed in Chavanis et al. 2015b); that is,
for a particle mass mc2 ∼ 50 keV there exists an accessible energy
window M̂ in which there are metastable (and long-lived) core–
halo profiles that acquire the observationally inferred inner-halo
densities (∼10−2 M¯ pc−3) and virial radii (∼ few 10 kpc) typical
of average-sized galaxies. Indeed, this observational correspondence

is evidenced through the 60D relation shown in Fig. 9 and further
explained in Section 3.2.

These kinds of thermodynamically stable core–halo profiles cor-
respond to the so-called ‘condensed-phase’ introduced in Chavanis
et al. (2015b), and have been already implemented in Argüelles et al.
(2018, 2019b) to provide an excellent fit to the Milky Way rotation
curve. Remarkably enough, the degenerate core of this last kind of
solutions (for particle masses in the range of ∼101–102 keV) can
mimic the massive BH in SgrA∗ (Argüelles et al. 2018; Becerra-
Vergara et al. 2020) as well, a result that is not possible for
‘embrionic-phase’ solutions as shown in Ruffini et al. (2015) (by
the way unstable).

Remark: In Chavanis et al. (2015b), the highly degenerate core
(i.e. T → 0) belonging to the ‘condensed-phase’ kind of stable
solutions was used as a potential candidate to explain the DM haloes
in dwarf galaxies for particle masses of ∼1 keV (as motivated by the
results in Destri, de Vega & Sanchez 2013).12 However, we notice
that from the discussion above, there is a priori no necessity to go to
such low fermion masses of ∼1 keV (or below) in order to explain the
DM haloes in dwarf galaxies. In other words, it is absolutely possible
to provide good fits to dispersion velocity data in such galaxy types,
using the overall stable core–halo profiles [like solution (3) in Fig. 8
but for lower Mvir ∼ 108 M¯], as shown in Argüelles et al. (2019a).
We thus claim, in views of the results here presented together with
the phenomenology for DM haloes made in Argüelles et al. (2018,
2019a) and Becerra-Vergara et al. (2020), that the semidegenerate
fermion regime (i.e. leading either to diluted or to core–halo profiles)
is enough to explain the plethora of DM haloes without the need to
invoke the (extreme) fully degenerate (T → 0) regime.

Moreover, such fully degeneracy paradigm for mc2 . 1 keV aimed
to be applicable to dSph DM haloes, and suffers from many problems
or tensions such as (a) Ly α forest constraints (Yèche et al. 2017),
(b) phase-space bounds and MW satellite counts (Horiuchi et al.
2014), and even (c) dispersion velocity fits in dwarfs since an extra
isothermal halo component has been shown in Randall et al. (2017)
to be needed in order to agree with data. Problems that naturally
disappear within our O(10 keV) fermionic approach.

4 G RAVI TATI ONA L C OLLAPSE AND TP
INSTABILITY

Fermionic core–halo solutions with N > NOV at virialization may
eventually become unstable (either thermodynamically and dynam-
ically) and undergo a gravitational core collapse as we show below.
Historically, the gravitational collapse of a degenerate and relativistic
‘star’ at a specific central density ρ0 was understood in terms of
the onset of thermodynamical (and dynamical) instability at a TP
(Harrison et al. 1965; Sorkin 1981; Friedman, Ipser & Sorkin 1988).
Such a TP is defined as the point where the total mass is a maximum
with respect to ρ0, i.e. dM/dρ0 = 0. Importantly, in Sorkin (1981)
and Schiffrin & Wald (2014) it was demonstrated that for any
EoS (e.g. not necessarily isentropic) the existence of a TP along
a smooth sequence of GR equilibrium states implies the presence of
a thermodynamic instability on one side of the TP.

However, TPs do not provide a necessary condition for thermo-
dynamic instability, and the onset of such an instability could occur

12More refined phenomenological analysis under such fully degenerate
regime indicates that sub-keV fermion masses are needed to provide decent
fits to dispersion velocity data in dwarf spheroidal galaxies (Domcke &
Urbano 2015).

MNRAS 502, 4227–4246 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/3/4227/6056505 by guest on 31 August 2021



On the formation and stability of DM haloes 4239

Figure 11. Series of equilibrium states with N > NOV are shown along a ρ0

versus M curve, in correspondence with the relativistic and degenerate end
of the caloric curve of Fig. 7. At difference with standard degenerate fermion
‘stars’, the last stable configuration (c) of self-gravitating fermions at finite
T∞ occurs just at the minimum of the curve and prior to the TP instability.

even without the existence of a TP at all [see point (a) in Fig. 1 with
N < NOV for an explicit example, and Schiffrin & Wald 2014 for a
general theoretical result]. Moreover, the onset of thermodynamical
(and dynamical) instability can occur prior to the TP in the ρ0

versus M curve, as first shown numerically in Takami, Rezzolla &
Yoshida (2011) for rotating perfect-fluid ‘stars’ (contrary to what is
historically expected in Friedman et al. 1988).

Importantly, for the first time we confirm such a conclusion but
for a perfect-fluid (neutral) fermionic non-rotating ‘star’, with an
EoS including for temperature effects as demonstrated below and in
Figs 11 and 7.

Moreover, we are able to localize the TP instability (i.e. the
maximum in a ρ0 versus M curve as in Fig. 11) in the left-lower
end of the caloric curve, where the spiral of relativistic origin rotates
clockwise (see the open red circle in Fig. 7). Clearly, such TP occurs
at a different energy with respect to the last stable configuration (c)
along the unstable branch of the caloric curve.

Thus, we have proven that for self-gravitating systems at finite
T∞ in GR, the TP instability does not coincide with the last
stable configuration occurring at (c). This original result bares an
important consequence regarding the concept of critical mass for
gravitational core collapse Mcr

c ∝ m3
p/m

2, where mp is the Planck
mass,13 traditionally explained in terms of the TP instability for
fully degenerate stars (see e.g. Shapiro & Teukolsky 1983). Such a
correspondence does not apply here, and instead, the Mcr

c value is
achieved at the last stable configuration (c) placed at the minimum
of the ρ0 versus M curve, thus occurring prior to the TP as can be
directly checked by comparing Figs 7 and 11.

Interestingly, such a last stable configuration acquiring the critical
core mass occurs instead at the maximum, but in a ρ0 versus Mc

curve as shown in Fig. 12. Indeed, the value of the core mass at the
TP is near an order of magnitude below the critical Mcr

c as can be seen
directly by comparing Figs 12 and 11. The right value of the critical
mass Mcr

c (i.e. the one associated with the last stable configuration

13See Argüelles & Ruffini (2014) for a numerical demonstration in GR on
the finite T effects in the critical core mass Mcr

c .

Figure 12. The last stable configuration (c) at the onset of the core collapse
[corresponding to point (c) in Fig. 7] is acquired at the maximum of a central
density versus core mass, and having a critical core mass of Mcr

c ≈ 2E8 M¯
for mc2 = 48 keV. The core mass at the TP is nearly an order of magnitude
below the critical mass.

and not with the TP) is of central importance for SMBH formation
and astrophysics in general. As a clear example, for mc2 = 48 keV
it is possible to form an SMBH of Mcr

c ≈ 2 × 108 M¯ (see Fig. 12)
at the centre of a realistic DM halo as explained in Section 3.2 and
in the remark below. The relevance of such a DM core-collapse
scenario is that it can occur in the high-redshift (z ∼ 10) Universe
at halo virialization (see Appendix B), without the need of prior star
formation or other BH seed mechanisms involving super-Eddington
accretion rates; that is, the thermodynamics of tidally truncated self-
gravitating fermions in a cosmological set-up can offer a powerful
tool for SMBH formation worthy for further investigation.

We have further calculated the central redshift [z0 = e−ν(0)/2 − 1]
of a light source at rest at the centre of a DM core (for all the solutions
along the caloric curve of Fig. 7), as a measure of how relativistic they
are. For the critical solution (c), it gives zcr

0 = 0.478 (at T̂∞ = 5.11 ×
10−3), while for the TP (unstable) core it gives zTP

0 = 3.16 (at T̂∞ =
4.24 × 10−3). The arising of thermodynamically (and dynamically)
unstable (i.e. collapsing to a BH) solutions for zcr

0 & 0.5 found here
for tidally truncated configurations of keV fermions (with N > NOV

in the high T regime) is in line with former results found in Rasio,
Shapiro & Teukolsky (1989) for relativistic clusters.

Remark 1: Since we do not solve the time evolution of the
fermionic configurations once they become thermodynamically (and
dynamically) unstable, the concept of gravitational collapse deserves
further explanation. In the caloric curves with N > NOV under study,
there are two kinds of possible gravitational collapses that may
arise. For a system starting at virialization in the diluted (stable)
regime before point (a), one can think that such a state evolves quasi-
stationary in time while it loses energy due to evaporation and (long-
range) collisions, until reaching the threshold energy of point (a). At
this critical energy, the configuration will evolve directly towards the
next accessible stable state just below (a) in the metastable branch,
and lead to the new core–halo configuration. Such limiting phase
transition, i.e. from diluted to a semidegenerate one occurring at
such critical energy, is usually called as a collapse of gravothermal
catastrophic nature (Chavanis & Alberti 2020).

If it keeps losing energy along the second stable branch, it will
eventually reach the last stable configuration at (c) (see Fig. 7),
below which there is no possible accessible state, and the system
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must collapse towards a massive BH (according to the core-collapse
criterion of relativistic origin explained above). For a further dis-
cussion including the different time-scales involved between the
two different collapsing processes, i.e. between the gravothermal
catastrophe at point (a) and the gravitational collapse of relativistic
origin occurring at (c), see Chavanis & Alberti (2020) and references
therein.

Remark 2: We notice that a complementary mathematical proof
about the onset of thermodynamical (and dynamical) stability in the
microcanonical ensemble may be obtained by explicitly calculating
the second-order variations of entropy and their sign changes,
following the work of Roupas (2013). However, even if in that work it
was explicitly calculated the expressions for δ2S for a self-gravitating
system of particles in GR under a perfect-fluid assumption, it was
done only for barotropic equations of state. The fermionic equations
of states used in this paper are of more general form, written only
parametrically; thus, more sophisticated calculations are needed
in the present case (if at all possible) in order to attempt such a
complementary proof.

5 C O N C L U S I O N S

We have studied the formation and stability of collisionless self-
gravitating system of fermions at finite T in GR, with applications to
the problem of virialization of DM haloes in a realistic cosmological
framework. Unlike the N-body numerical simulation approach, we
have assessed these issues by means of a thermodynamical approach
for self-gravitating fermions, which eventually maximize its coarse-
grained entropy. In particular, we have performed a thermodynamic
stability analysis in the microcanonical ensemble for solutions with
a given particle number N, at the moment of halo virialization in a
WDM cosmology, and further calculate the lifetime of the metastable
equilibrium states.

The advantage of our numerical approach is that it allows for
a detailed description of the relaxed haloes from the very centre to
periphery, not possible in N-body simulations due to finite inner-halo
resolution. In addition, it includes richer physical ingredients such
as (i) general relativity – necessary for a proper gravitational DM
core collapse to an SMBH, (ii) the quantum nature of the particles –
allowing for an explicit fermion mass dependence on the profiles, and
(iii) the Pauli principle self-consistently included in the phase-space
DF – giving place to novel core–halo profiles at (violent) relaxation.

Our approach allows us to link the behaviour and evolution of the
DM particles from the early Universe all the way to the late stages
of non-linear structure formation at virialization; that is, we start
by calculating the linear matter power spectrum for an O(10 keV)
DM sterile neutrino, and then use the corresponding Press–Schechter
formalism to obtain the virial halo mass, Mvir, with associated redshift
zvir (see Appendix B). The fermionic haloes are assumed to be formed
by fulfilling a maximum entropy production principle at virialization.
It allows us to obtain a most likely DF of Fermi–Dirac type as
first shown in Chavanis (1998) (generalizing Lynden-Bell results),
which is here applied to explain DM haloes. Moreover, such a DF is
used here to calculate the full family (from King-like to core–halo-
like) of fermionic equilibrium profiles in full GR, in agreement with
prior virial constraints. Finally, the stability, typical lifetime of such
equilibrium states, and their possible astrophysical applications are
studied within a thermodynamic approach.

The disadvantage of our procedure is that it does not explicitly
include for the accretion and merger processes in a time-dependent
manner as achieved in numerical simulations. However, we recall that
the violent relaxation mechanism (as the one applying here within

a maximum entropy production assumption) takes place subsequent
times at each merging process event, probabilistically included in the
Press–Schechter formalism through the mass variance σ (M).

Our approach is self-consistent, in the sense that the nature and
mass of the DM particle involved in the linear matter power spectrum
calculations (obtained within a CLASS code for WDM) are the very
same building block on the basis of virialized DM configurations with
its inherent effects in the core–halo profiles. It applies to spherical
and rather isolated DM configurations that just underwent a violent
relaxation process within an O(10 keV) WDM cosmology. Such
configurations can start forming in the high-z (∼10) Universe, though
they take place more ubiquitously at z ∼ 2, with boundary halo
conditions consistent with a Press–Schechter theory of non-linear
structure formation (see Appendix B).

We outline all the main theoretical results and their astrophysical
consequences obtained in this work as follows:

(i) Among all the GR spherically symmetric self-gravitating
systems ofO(10 keV)fermions confined in a spherical box, which
maximize the coarse-grained entropy at halo virialization in a WDM
cosmology, there does not exist any thermodynamically stable core–
halo configuration with halo masses of ∼109–1010 M¯, that is
able to agree with the observed DM surface density relation 60D.
Instead, diluted Fermi configurations (resembling pseudo-isothermal
spheres) do fulfil both the thermodynamic stability and the DM
halo 60D phenomenology in the above DM halo mass range.14 See
Section 3.1 for details.

(ii) Among all the GR spherically symmetric and tidally truncated
self-gravitating systems ofO(10 keV) fermions, which maximize the
coarse-grained entropy at halo virialization in a WDM cosmology,
there exist thermodynamically metastable core–halo configurations
that are long-lived and agree with the observed DM surface density
relation 60D and with the expected N-body dispersion velocities
(σ h) for ∼1010 M¯ haloes. Such kind of stable core–halo fermionic
profiles have effective temperatures of few 104 K, and are precisely
of the same kind as the ones applied recently in Argüelles et al. (2018,
2019a) and Becerra-Vergara et al. (2020) to explain the rotation curve
data in galaxies, with the DM core able to mimic the SMBHs at their
centres. See Section 3.2 for details.

(iii) The thermodynamic formalism for self-gravitating
O(10 keV) fermions introduced here allows for an SMBH
formation mechanism through the DM core collapse of relativistic
origin (see Section 4). Interestingly, it can start within the high-z
(∼10) Universe, without the need of prior star formation or any
BH seed mechanisms involving (likely unrealistic) super-Eddington
accretion rates. More generally, a dense quantum core (i.e. without
the singularity) at the centre of a stable and average-sized DM halo
can reach masses between ∼106 and 108 M¯ (see Section 3.2),
which may provide an alternative for the traditional SMBH scenario
(Argüelles et al. 2018, 2019a, b; Becerra-Vergara et al. 2020).

(iv) We have calculated for the first time the caloric curves for self-
gravitating tidally truncated O(10 keV) fermions at finite T within
GR, and applied to realistic DM haloes (i.e. sizes and masses).
Our results confirm and extend the double-spiral feature (the first
of quantum nature and the second of relativistic origin) in the caloric
curves with fixed N as recently obtained in Alberti & Chavanis
(2018) and Chavanis & Alberti (2020). With the precise shape of the

14This statement is expected to hold for any halo mass above ∼109 M¯, since
the central degeneracy parameter where metastability sets in (after point b)
is larger for larger total masses, thus implying core–halo profiles with even
more extended and diluted haloes clearly disfavoured by data.
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caloric curves, we have applied the Katz criterion for thermodynamic
stability (Appendix A), finding different families of stable as well
as astrophysical DM profiles. They either are King-like (similar to
Burkert) or develop a core–halo morphology able to fit the rotation
curve in galaxies (Argüelles et al. 2018, 2019a). In the first case, the
fermions are in the dilute regime (i.e. θ0 ¿ −1) and correspond
to a global maximum of entropy, while in the second case, the
degeneracy pressure (i.e. Pauli principle) is holding the quantum core
against gravity, and corresponds to a local maximum of entropy. Such
metastable states are extremely long-lived as shown in Appendix A,
and more likely to arise in Nature than the former as argued in
Chavanis (2005).

(v) We proved for the first time that for tidally truncated self-
gravitating systems of neutral fermions at finite T in GR, the
thermodynamical (and dynamical) instability occurs prior to the TP
in the ρ0 versus M curve, as explicited in Section 4. Indeed, the
critical mass of gravitational core collapse Mcr

c is achieved at the
last stable configuration (with lower energy with respect to the TP),
which interestingly coincides with the maximum but in a core mass
Mc versus ρ0 curve. Given that the value of Mc at the TP can differ by
an order of magnitude below the real Mcr

c , it shows the importance
of this result regarding the SMBH mass estimates, when applied to
astrophysics.

The DM fermion mass of O(10 keV) used in this work produces,
down to Mpc scales, the same 3CDM power spectrum, hence pro-
viding the expected large-scale structure (Boyarsky, Ruchayskiy &
Shaposhnikov 2009a). Moreover, since the fermion mass is >5 keV,
it is not in tension with constraints from the Lyman-α forest
(Boyarsky et al. 2009b; Viel et al. 2013; Iršič et al. 2017), nor with
the number of Milky Way satellites (Tollerud et al. 2008). Finally, on
inner halo scales, our O(10 keV) fermionic density profiles develope
an extended plateau (similar to Burkert profiles), thus not suffering
from the core-cusp problem associated to the standard 3CDM
cosmology (Bullock et al. 2017).

To conclude, we believe that the results shown in this paper may
provide new insights into the formation and evolution of galaxies.
Moreover, the degeneracy-pressure-supported core at the centre of
the stable DM profile, and its eventual core collapse, may play crucial
roles in helping us to understand the formation of SMBHs in the
high-z Universe or in mimicking its effects without the need of the
singularity at all. The astrophysical consequences of the analysis here
developed – together with the results recently presented in Argüelles
et al. (2018, 2019a) and Becerra-Vergara et al. (2020) – strongly
suggest that such DM core–halo morphologies may be a plausible
scenario within the late stages of non-linear structure formation,
which should start to be seriously considered in the field.
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APPENDIX A : THERMODYNAMIC STABILITY
CRITERION AND LIFETIMES OF
META STABLE STATES

A1 Thermodynamic stability: the Katz criterion

The thermodynamic stability analysis pertinent to this work (valid
either in the microcanonical or in the canonical ensembles) is carried
out following the criterion described by Katz (1978, 1979). This is a
powerful method based on the theory developed by Poincaré (1885),
which allows us to obtain the number of unstable modes only from
the topological properties of the series of equilibrium, without the
need to calculate the full eigenvalue problem of the perturbed system.
In this section, we first summarize the method in a rather generic and
formal manner, and then we provide a ‘rule of thumb’ on how to apply
it in an easy way depending on the ensemble under consideration.

Following Katz (1978, 1979), let f be some relevant function of
the configuration that finds itself at an extremum, say a maximum,
when the system is in a stable equilibrium, and x as a parameter that
runs continuously through the series of equilibria. Then, it is there
demonstrated that changes of stability for any individual perturbative
mode will occur, at a given point in the series, if and only if the
following two specific conditions are met:

(i) the slope of the ∂xf versus x curve is infinite (i.e. the tangent is
a vertical line), and

(ii) the sign of said slope shifts at that point.

Note that this will usually mean the presence of a multivalued ∂xf.
A vertical tangent at a specific point in the series is equivalent to

a mode eigenvalue being zero (Katz 1978, 1979). Near that point,
the sign of the eigenvalue is equal to that of the slope. A positive
(negative) eigenvalue means that the system is stable (unstable)
regarding perturbations in that mode. It is then immediate that when
conditions (i) and (ii) are met, a shift in stability occurs at the single
mode level.

A configuration is considered to be at a stable equilibrium
whenever all of the modes are stable. Conversely, instability of
a single mode suffices to make the whole configuration unstable.
Therefore, knowledge of the total number of unstable modes for one
single equilibrium is sufficient to determine the stability of all the
other equilibria in the family. The procedure thus consists in simply
locating a known stable point in the ∂xf versus x diagram, and then
following the curve, locating the points where conditions (i) and (ii)
are met, while counting the resulting number of unstable modes.

When working in the microcanonical ensemble, it is natural
to define f as the entropy of the system (f ≡ S) and x as the
thermodynamic parameter of the ensemble, the energy, which in GR
is equal to the (dimensionless) total mass of the system (x ≡ M̂). This
yields the derivative ∂xf ≡ ∂S

∂M̂
= T̂ −1

∞ (the inverse temperature).
Thus, the relevant curves in this context must be displayed through a
T −1

∞ versus M plot. However, in order to keep with conventions and
more easily compare with other works, we choose to plot T̂ −1

∞ versus
−M̂ instead throughout the paper. This simple reverses the meaning
of the sign of the slope near a vertical TP; a negative (positive) slope
now means a stable (unstable) mode.

Following the explained above (as e.g. in the microcanonical
ensemble) as well as Chavanis & Sommeria (1998) and Chavanis
et al. (2015b), we can state as a practical ‘rule of thumb’ the
following: (a) The arising of an unstable mode (when the negative
slope in the T −1

∞ versus −M curve becomes infinite just before turning
into positive) is equivalent to say that the caloric curve ‘rotates
clockwise’ and vice versa and (b) when the same curve ‘rotates
anticlockwise’, it implies that a stable mode has been regained (the
latter implying that a positive slope turned into negative just after
becoming vertical). In this sense, once in a given unstable branch
of the caloric curve (coming from an originally stable branch), it
is necessary as many anticlockwise turns of the curve as clockwise
passed, to regain the thermodynamic stability.

We exemplify this process for a box-confined case (i.e. N̂ =
0.38 < NOV and R̂ = 1000) in Fig. A1, where the stable branches of
solutions are plotted in continuous-blue, and the unstable branches
are displayed in dotted-violet. A qualitative analysis in the mi-
crocanonical ensemble that is sequential in its nature proceeds
as follows. When θ0 ¿ −1, the systems behave like a classical
Boltzmannian self-gravitating gas, robust in its stability (Lynden-Bell
& Wood 1968). Such solutions lie in upper continuous-blue curve
identified as the stable branch, up until the first clockwise turn takes
place (i.e. gaining an instability mode; see Fig. A1). At this point, the
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Figure A1. Series of equilibrium solutions along the caloric curve for box-
confined configurations of fermions with N̂ = 0.38 < NOV and R̂ = 103. For
such relatively small value of R̂, the curve develops a ‘dinosaur’s neck’, where
the gravothermal catastrophe typical of Boltzmannian systems is avoided
thanks to central degeneracy, as first shown in Newtonian gravity in Chavanis
& Sommeria (1998). Every time the curve rotates clockwise [point (a) in
the microcanonical ensemble], it loses a stability mode, which is regained
when it rotates anticlockwise [at point (b)] according to the Katz criterion of
thermodynamic stability. The stable (unstable) branches in relation with the
entropy maxima (minimum/saddle points) are shown in Fig. A2.

caloric curve spirals inwards in the unstable branch, corresponding
to the semidegenerate regime of solutions when θ0 is just turning
into positive. For this small R̂ case, this trend continues until the
curve rotates anticlockwise and the stability mode is regained.15

From this point and on (which for this rather small R̂ occurs at θ0

& 10), solutions acquire a dense core – diluted halo morphology
(see solution (3) in Fig. A3), where the central core is degeneracy-
pressure supported (due to the Pauli principle) and the atmosphere
is thermal-pressure supported. For N < NOV, this stability trend
continues for all accessible values of energy and temperature as θ0

increases.
Finding stable and metastable solutions via this procedure equates

to proving that such a solution corresponds either to a global or to
a local maximum of the entropy, respectively. Unstable solutions
correspond either to a minimum or saddle point of entropy. The
distinction between different entropy maxima can be ultimately made
by explicitly comparing entropy values for a given energy, as done
here in Fig. A2 in correspondence with Fig. A1. Metastable fermionic
solutions (i.e. local entropy maxima) are of great importance in
astrophysics as pointed out in Chavanis (2005). In particular, they
are shown to be extremely long-lived and thus reachable in Nature,
as proven here as well in Section A2 for the case of realistic DM
haloes in a cosmological set-up.

Finally, we make a short description of the gravitational phase
transitions occurring in these kinds of self-gravitating systems of
fermions at finite T∞, while we refer the reader to Bilić & Viollier
(1999), Chavanis (2006), and Chavanis & Alberti (2020) for a
broader discussion on the topic (where most of the examples in
this Appendix, as the ones displayed in Figs. A1-A6., were already

15For much larger system sizes (e.g. R̂ ∼ 107) as the ones of astrophysical
interest regarding DM halo application shown in Section 3, there are several
clockwise turns before the curve starts to unwind, thus requiring the same
amount of anticlockwise rotations before the stability is regained.

Figure A2. Normalized entropy S/N̂ (according to equation 17) with respect
to total energy −M̂ . Global entropy maxima are clearly distinguished from
local entropy maxima, indicating the stable and metastable branches of
solutions in Fig. A1. Minimum or saddle points of entropy correspond to the
dotted-violet part of the curve, in correspondence with the thermodynamically
unstable branch of Fig. A1. At the critical energy M̂c, a gravitational (first-
order) phase transition from a stable gaseous state - like solution (1)- to a
stable core–halo one -like solution (3)- may take place.

Figure A3. Density profiles corresponding to the equilibrium states of the
caloric curve in Fig. A1 with energy M̂ ≈ 0.38. Only the profiles like (1) and
the core–halo ones like (3) are thermodynamically stable, while profile (2)
is thermodynamically unstable. This profile has no application to DM haloes
since its boundary value R̂ is orders of magnitude below any realistic halo
size.

shown). Generally, the phase transitions (from a gaseous state to
another composed by a degenerate core surrounded by a diluted
halo) are manifested in the microcanonical (or canonical) ensembles,
through the presence of a multivaluation in the entropy S (or free
energy F), respectively. For relatively small-size systems as studied
here (R̂ = 103), we show in Fig. A2 the triangle-like shape with
the consequent multivaluation in S implying the existence of a
(microcanonical) first-order phase transition, occurring at a critical
energy of about ∼0.5 in dimensionless units. Interestingly, for
smaller size configurations (R̂ = 100) and similar N̂ , we show in
Fig. A6 that such a microcanonical phase transition is no longer
present, and S increases continuously with energy, while instead, in
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Figure A4. Series of equilibrium solutions along the caloric curve for box-
confined configurations of fermions with N̂ = 0.38 < NOV and R̂ = 102.
According to the Katz criterion (canonical ensemble), at the maximum (A) of
the caloric curve, it loses a stability mode, which is regained at the minimum
(B) of the curve. The stable (unstable) branches in relation with the minimum
(maximum/saddle points) of free energy are shown in Fig. A5. For such a low
boundary size R̂, the curve develops a N-shape showing no microcanonical
phase transition at all (at difference with Fig. A1).

the canonical ensemble of the same system, the free energy does
show a multivaluated shape. Indeed, in Fig. A5 we see that the free
energies of both stable branches equate at the critical temperature
T̂c = 0.0044, which indicates that a first-order phase transition takes
place at that point. Such an apparent discrepancy in the existence (or
not) of a gravitational phase transition is an explicit manifestation of
the famous ensemble inequivalence, typical of long-range interaction
systems.

A2 Lifetime of metastable configurations

Due to the long-range nature of the interaction among the self-
gravitating particles, it can be shown that the lifetime (τ ) of
metastable states (i.e. local entropy maxima) scales as eN, and
therefore they are extremely long-lived for astrophysical systems
with large N, and cannot be ignored with respect to global entropy
maximum states (Chavanis 2005).

Indeed, in Chavanis (2005) it was explicitly shown that in the
microcanonical ensemble, the lifetime of a metastable state can be
estimated by τμ ∼ eN1s = e1S, where 1S = |SM − SU| is the entropic
barrier of a system in a metastable state, which has to be overcome
in order to become unstable.16 However, in the canonical ensemble,
the corresponding lifetime scales as τ c ∼ eN1j = e1F, where 1F =
|FM − FU| is the free energy barrier between the same two states as
before and j is the free energy per particle. Interestingly, in Chavanis
(2005) it was possible to obtain (from a stochastic approach based
on a dynamical model for self-gravitating Brownian particles) a first-
principle justification of the full lifetime formula, which in the case
of the canonical ensemble reads

τc = π (kBT )2

√
CU|CM|

D
e(FM−FU)/kBT , (A1)

16This estimation is valid for any point in the metastable branch, except those
with the critical energy corresponding with the microcanonical stability shift
(Chavanis 2005), such as point (a).

Figure A5. Normalized free energy F/N̂ (according to equation 16) with
respect to dimensionless temperature T̂∞. The critical temperature T̂∞
indicates the place in the caloric curve in Fig. A4 where a (first-order)
canonical phase transition may occur. This very result was first found in
Bilić & Viollier (1999).

Figure A6. Normalized entropy S/N̂ with respect to dimensionless energy
−M̂ corresponding to the caloric curve of Fig. A4. The continuous (not
multivaluated) trend of the entropy indicates that no microcanonical phase
transition is present at difference with the canonical ensemble (see Fig. A5),
evidencing the ensemble inequivalence typical of long-range interaction
systems.

with CM and CU the specific heats of the metastable and unstable
states, respectively, kB is the Boltzmann constant, T is the fixed
temperature corresponding to the free energy barrier, and D is the
diffusion coefficient of the metastable configuration that in a mean
field approximation is D = 3M2c2/N. Therefore, the full caloric curve
together with the two (metastable and unstable) selected states at a
given temperature (or energy for the microcanonical ensemble) is
enough, in order to calculate τ .

Next, we provide the explicit calculations of the lifetimes of the
metastable states in different scenarios: First, we give the value of
τ c from equation () in terms of the caloric curve given in Fig. A4, as
a pedagogical example. We do it under the choice of R̂ = 100 and
N̂ = 0.38 (i.e. not applicable to DM haloes), for particular unstable
and metastable states (labelled with U and M, respectively) with a
temperature of T̂ = 0.0053 (or T = 6.4E5 K) as shown in Fig. A5.
This gives as a result a tremendously long-lived metastable state

MNRAS 502, 4227–4246 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/3/4227/6056505 by guest on 31 August 2021



On the formation and stability of DM haloes 4245

with τc = 7.8 × 10−28 e4.2×1071
s, which can be considered as ∞,

being 1j = 4.2 × 10−3 and N = 1074 fermions.
Finally, we estimate the lifetimes τμ ∼ eN1s of the metastable

states selected in the three cases analysed within the microcanonical
ensemble in Section 3. They are labelled as (5) for the case of Fig. 1,
and (3) in the cases of Figs 4 and 7, with the corresponding unstable
ones forming the entropic barrier as mentioned above. We first
calculate the barrier of entropy per particle 1s between the selected
states using equation (17), and then multiply by N. Interestingly, in all
the three cases of astrophysical interest studied here 1s & 0.2 (rising
up to ∼103 in the case of Fig. 4, while reaching a much lower value
of 0.24 in Fig. 7 given the rather close position between the given
unstable and metastable states), and N ∼ O(1070), thus making the
lifetimes τμ of these metastable states essentially infinite for all the
cases here studied.

APPENDIX B: D M H ALO FORMATION W I THI N
A W D M PA R A D I G M

A thermodynamical stability analysis of a quasi-relaxed system of
self-gravitating fermions has been performed in the microcanonical
ensemble within GR in Section 3. As explained in the introduction,
violent relaxation is the main underlying relaxation process able
to lead the fermionic halo into the steady state we observe, a
process occurring at late stages on non-linear structure formation.
The boundary conditions for the thermodynamical analysis of these
self-gravitating systems, e.g. particle number and total radius, are
valid after the virialization of the structure in the context of
hierarchical structure formation. Given a cosmological evolution
model, the Press–Schechter (PS) theory (Press & Schechter 1974)
or its subsequent extensions (see e.g. Mo, van den Bosch & White
2010) can be used to get the relevant astrophysical magnitudes at
formation such as virial mass and radius at a given collapse redshift
z∗ (z∗ ≡ zvir). Relating the mass of a given DM halo with its
spatial extent follows directly from the definitions of a virial radius
and the background density of the universe. However, estimating
a typical redshift in which the structure is formed becomes key
to the analysis, as the density is a time-dependent quantity. So,
our objective for this appendix is, given a (total) halo mass scale
M ≡ Mvir, to obtain an approximation to the spatial extent of the
system right after virialization is complete: rvir measured at the most
probable gravitational collapse time tvir. We use the Press–Schechter
formalism to obtain a good estimation on the most probable collapse
time for a given mass scale tPS(M). Then, we use this estimate to
obtain the virial radius of the system right after it virialized rvir[M,
tPS(M)].

A typical definition for the boundary of a halo is set by the ‘virial
radius’ r200: It is defined so that the mean density of the halo within
this radius is 200 times the critical density. The mass inside r200 is
used as a measure of the total mass of the halo, and is related to r200

(Binney & Tremaine 2008)

Mvir = 200
4

3
πr3

200ρc(t) = 100
H 2

0 r3
200(1 + z(t))3

G
, (B1)

where ρc is the critical density of the universe, H0 is the Hubble
constant, z is the redshift, G is the gravitational constant and we
have taken a flat, matter-dominated universe for simplicity. This
overdensity value is motivated by the spherical collapse model,
which suggests that regions in which the background density exceeds
approximately this value should be part of a virialized halo (Binney &
Tremaine 2008; Mo et al. 2010).

Figure B1. Characteristic collapse redshift z∗ as a function of substructure
mass Mvir. CDM models in black line and WDM thermal relic models
with mc2 = 10 keV and mc2 = 48 keV in red and magenta, respectively.
An additional dotted line represents the collapse redshift of 3σ overdensities
in CDM. The mass–virial radius combinations used for DM halo models in
Section 3 are marked on the plot with a green triangle and a blue dot.

In order to define a characteristic collapse redshift z∗ for a given
mass scale M, we turn to the Press–Schechter formalism (Press &
Schechter 1974), which provides a way of understanding how non-
linear collapsed structures form in a hierarchical way. According to
this model, haloes with mass M can only form in a significant number
when the mass variance σ (M), defined as (Binney & Tremaine 2008;
Mo et al. 2010)

σ 2(M) = 1

2π2

Z ∞

0
P (k)W 2(k, R)k2dk , (B2)

exceeds a critical value δc(t) = 1.69/D(t) given by spherical collapse,
where D(t) is the linear growth rate of perturbations, P(k) is the matter
power spectrum, and W(k, R) is a window function of characteristic
radius R (taken as a top-hat function here; see e.g. Mo et al. 2010).
This radius R is the Lagrangian radius corresponding to a mass scale
M. Thus, we can define a characteristic collapse mass M∗(z) by

σ (M∗) = δc(t) . (B3)

So, at redshift z haloes are formed in significant numbers for
masses M ≤ M∗. We can invert this relation so that, for a given
substructure mass M, we can obtain a typical collapse redshift
z∗(M): This relation can be seen in Fig. B1, together with two
selected values of Mvir = 6.2 × 109 M¯ (blue dot) and Mvir =
5.9 × 1010 M¯ (green triangle) for a WDM cosmology with
mc2 = 10 keV, corresponding with the values used in Section 3.1.
The value of Mvir = 5.4 × 1010M¯, at z∗ = 1.7 in the case of a
WDM cosmology with mc2 = 48 keV (not displayed in the plot), is
used in Section 3.2 and in Fig. 10. As the collapse mass M∗ indicates
the z in which most structures of such mass are collapsed, we also
plot in Fig. B1 the 3σ collapse mass defined as 3σ (M∗

3σ ) = δc(t) to
indicate the expected formation redshift of the earliest haloes (see e.g.
Binney & Tremaine 2008). For average- to low-mass haloes such as
the ones considered in Sections 3.1 and 3.2, the PS formalism expects
early halo formation at a redshift up to z ≈ 10 as shown in Fig. B1.

Once this typical collapse redshift is obtained, it is possible to
evaluate the relation between scale mass and radius (B1), using z∗(M)
to obtain an estimation of the virial radius of substructure of mass
M, evaluated at the time in which most of this substructure is already
collapsed. This is shown in Fig. B2 for the above selected values of
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Figure B2. Virial radius r200 at virialization time as a function of substructure
mass Mvir. CDM models in black line and WDM thermal relic models with
mc2 = 10 keV and mc2 = 48 keV in red and magenta, respectively. In blue
dotted line, the free streaming mass scale MS = 2 × 107 M¯. The green
triangle and blue dot correspond to the ones selected in Fig. B1 for the
astrophysical application of Section 3.

Mvir, implying rvir ≡ r200 = 11.1 kpc (blue dot), rvir = 29.7 kpc (green
triangle, for an mc2 = 10 keV cosmology), and rvir = 28.5 kpc (for
an mc2 = 48 keV cosmology, not displayed in the plot).

In Figs B2 and B1, the results obtained here using several different
cosmological models are compared. For 3CDM models, we simulate
the power spectrum P(k) using best-fitting parameters from Planck’s
2018 data release (Planck Collaboration VI 2020), and compare
these results with the ones obtained by replacing CDM for sterile
neutrino WDM components of 10 and 48 keV, leaving all other
cosmology parameters equal. In the latter, the power spectra are
simulated using CLASS version 2.7.2 (Lesgourgues & Tram 2011)

and sterile neutrino WDM phase-space distribution at production is
simulated using Venumadhav et al. (2016) with mixing angles of θ2 =
5 × 10−11 and 10−12 for the 10 and 48 keV models, respectively. We
can see in Fig. B2 that differences between CDM and WDM models
are insignificant with respect to this relation.

Also plotted in Fig. B2, we can see the corresponding free
streaming scale of the mc2 = 10 keV WDM model, indicating the
smallest non-suppressed structures in the power spectrum. Typically,
WDM models establish a cut-off in the power spectrum of metric
perturbations due to free steaming of particles. This implies that
the formation of objects under a certain length-scale is suppressed
and the number of small, low-mass haloes and satellite galaxies is
significantly lower. We plot an estimate to this mass scale using the
prescription in Viel et al. (2005) for sterile neutrino free streaming.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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