# Measurement of flow harmonics correlations with mean transverse momentum in lead-lead and proton-lead collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ with the ATLAS detector 

ATLAS Collaboration ${ }^{\star}$<br>CERN, 1211 Geneva 23, Switzerland

Received: 12 July 2019 / Accepted: 13 November 2019 / Published online: 3 December 2019
© CERN for the benefit of the ATLAS collaboration 2019


#### Abstract

To assess the properties of the quark-gluon plasma formed in ultrarelativistic ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the flow harmonics. The analysis uses data samples of lead-lead and proton-lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV , corresponding to total integrated luminosities of $22 \mu \mathrm{~b}^{-1}$ and $28 \mathrm{nb}^{-1}$, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the 2nd-, 3rd-, and 4th-order flow harmonics are measured in the lead-lead collisions as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution, which only weakly depends on the charged-particle momentum range. In the proton-lead collisions, the modified Pearson correlation coefficient measured for the 2nd-order flow harmonics shows only weak centrality dependence. The lead-lead data is qualitatively described by the predictions based on the hydrodynamical model.


## 1 Introduction

The large azimuthal anisotropy observed for particles produced in heavy-ion collisions at RHIC [1-4] and the LHC [58] is one of the main signatures of the formation of strongly interacting matter called quark-gluon plasma (QGP). A standard picture of an ultrarelativistic heavy-ion collision is that the initial, asymmetric 'almond' shape of the colliding nuclei's overlap region leads to the formation of pressure gradients in the QGP. These pressure gradients transform the
initial shape into an azimuthal anisotropy of the final-state particle distributions through a nearly ideal hydrodynamic evolution and subsequent QGP hadronisation process [9]. The azimuthal anisotropy is customarily decomposed into Fourier components with the amplitude of the $n$th term denoted by $v_{n}$ and known as a flow harmonic [10]. Theoretical hydrodynamical models successfully describe observed flow phenomena at low particle transverse momenta [11]. The properties of QGP were recently studied with measurements of correlations between flow harmonics of different order [12-16] as well as with analyses of event shapes [1620]. It is expected that in lead-lead $(\mathrm{Pb}+\mathrm{Pb})$ collisions the magnitudes of the azimuthal flow harmonics $[6,7]$ should be correlated with the mean transverse momentum $\left[p_{\mathrm{T}}\right]$ of the particles on an event-by-event basis [21]. In this paper, that correlation is called the $v_{n}-\left[p_{\mathrm{T}}\right]$ correlation. In proton-lead $(p+\mathrm{Pb})$ collisions, the measurements of multiparticle correlations [22] show evidence of collective phenomena. The spectra of identified particles in $p+\mathrm{Pb}$ collisions are consistent with a presence of the radial flow [23] while the nuclear modification factor at high $p_{\mathrm{T}}$ approaches unity [24]. Despite intensive studies, the mechanism responsible for the collective behaviour in small collision systems still remains unknown [9]. In $p+\mathrm{Pb}$ collisions the $v_{n}-\left[p_{\mathrm{T}}\right]$ correlation could provide constraints on the initial geometry of the particle source, thereby reducing the overall modelling uncertainty. According to the hydrodynamical model predictions [25], in $p+\mathrm{Pb}$ collisions the $v_{n}-\left[p_{\mathrm{T}}\right]$ correlation is sensitive to the distribution of energy deposition in the first stage of the collision. For a larger source a positive $v_{2}-\left[p_{\mathrm{T}}\right]$ correlation is expected while for a compact source the negative correlation is obtained. Simultaneous measurements of $v_{n}-$ [ $p_{\mathrm{T}}$ ] correlations in small and large systems may help disentangle the role of initial conditions and subsequent dynamical QGP evolution in final-state particle distributions.

[^0]To measure the strength of the $v_{n}-\left[p_{\mathrm{T}}\right]$ correlation, the Pearson correlation coefficient (PCC) $R$ [25] is used where

$$
\begin{equation*}
R=\frac{\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)}{\sqrt{\operatorname{Var}\left(v_{n}\{2\}^{2}\right)} \sqrt{\operatorname{Var}\left(\left[p_{\mathrm{T}}\right]\right)}} \tag{1}
\end{equation*}
$$

The term $v_{n}\{2\}^{2}$ is the square of the $n$ th-order flow harmonic obtained using the two-particle correlation method [26], $\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is the covariance between $v_{n}\{2\}^{2}$ and $\left[p_{\mathrm{T}}\right]$, and $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)$ and $\operatorname{Var}\left(\left[p_{\mathrm{T}}\right]\right)$ are the variances of the $v_{n}\{2\}^{2}$ and $\left[p_{\mathrm{T}}\right]$ distributions, respectively. Experimentally, however, the finite event-by-event charged-particle track multiplicity results in an additional broadening of the $v_{n}\{2\}^{2}$ and $\left[p_{\mathrm{T}}\right]$ distributions due to statistical fluctuations. Thus, the values of the respective variances are increased, especially for $\left[p_{\mathrm{T}}\right]$. The magnitude of this broadening depends on the choice of kinematic region and on detector performance, making direct comparisons between experimental results and with theoretical calculations difficult. To overcome this problem, a modified correlation coefficient $\rho$, less sensitive to the charged-particle multiplicity than $R$, was suggested in Ref. [25]. To reduce the auto-correlation effects and those due to the finite charged-particle multiplicity in an event, the variances of the $v_{n}\{2\}^{2}$ and $\left[p_{\mathrm{T}}\right]$ distributions are replaced by corresponding dynamical variables, which are more sensitive to intrinsic initial-state fluctuations. The variance of $v_{n}\{2\}^{2}$ is replaced by its dynamical counterpart [27]

$$
\begin{align*}
\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\mathrm{dyn}} & =v_{n}\{2\}^{4}-v_{n}\{4\}^{4} \\
& =\left\langle\operatorname{corr}_{n}\{4\}\right\rangle-\left\langle\operatorname{corr}_{n}\{2\}\right\rangle^{2} \tag{2}
\end{align*}
$$

where $\operatorname{corr}_{n}\{2\}$ and $\operatorname{corr}_{n}\{4\}$ are the two- and four-particle correlations [26] and where angular brackets denote that they are averaged over events. These correlations are described in detail in Sect. 4.

The variance of $\left[p_{\mathrm{T}}\right]$ is replaced by the dynamical $p_{\mathrm{T}}$ fluctuation magnitude $[28,29] c_{k}$ defined as

$$
\begin{equation*}
c_{k}=\left\langle\frac{1}{N_{\text {pair }}} \sum_{i} \sum_{j \neq i}\left(p_{\mathrm{T}, i}-\left\langle\left[p_{\mathrm{T}}\right]\right\rangle\right)\left(p_{\mathrm{T}, j}-\left\langle\left[p_{\mathrm{T}}\right]\right\rangle\right)\right\rangle \tag{3}
\end{equation*}
$$

where $\left\langle\left[p_{\mathrm{T}}\right]\right\rangle$ is the average $\left[p_{\mathrm{T}}\right]$ over the all analysed events. The modified PCC $\rho$ is thus defined as
$\rho=\frac{\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)}{\sqrt{\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\mathrm{dyn}}} \sqrt{c_{k}}}$.
It was demonstrated in Ref. [25] that the $\rho$ coefficient calculated using realistic and finite multiplicities provides a reliable estimate of the true value of $R$ found in the limit of infinite multiplicity, whereas the coefficient $R$, calculated using Eq. (1) for finite multiplicity underestimates the true value.

The ALICE experiment measured [20] that the chargedparticle $p_{\mathrm{T}}$ spectrum is correlated with the magnitude of the elliptic flow. It is measured to be harder in collisions with the higher second flow harmonics and softer in collisions where the elliptic flow is smaller. The magnitude of spectra modification is observed to increase with $p_{\mathrm{T}}$, starting to be significant at around 1 GeV and reaching a few percent at around 5 GeV . The modification is found to be most significant in the mid-central collisions, decreasing in the most central ones. The ALICE results suggest that the value of the correlation coefficient should be significant in mid-central and central collisions and that its magnitude and centrality dependence should be sensitive to the scale of intrinsic fluctuations of $v_{2}$ and $p_{\mathrm{T}}$. Including particles of higher $p_{\mathrm{T}}$ in the measurement is expected to result in increased values of the $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$. The $\left[p_{\mathrm{T}}\right]$ correlations with $v_{2}$ in peripheral $\mathrm{Pb}+\mathrm{Pb}$ collisions, $v_{3}$ and $v_{4}$ in wide centrality range as well as for the $v_{2}$ in high multiplicity $p+\mathrm{Pb}$ are unexplored by measurements.

This paper reports on the first measurement of the $\rho$ coefficient with the ATLAS detector in $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV . The $\mathrm{Pb}+\mathrm{Pb}$ data sample with a total integrated luminosity of $22 \mu \mathrm{~b}^{-1}$ was collected in 2015 , and the $p+\mathrm{Pb}$ sample with $28 \mathrm{nb}^{-1}$ in 2013.

This paper is organised as follows. Section 2 gives a brief description of the ATLAS detector. Details of the event selection and charged-particle reconstruction are provided in Sect. 3. Section 4 describes the analysis procedure for calculating the $\rho$ coefficient. Systematic uncertainties are described in Sect. 5 and Appendix A. Results are presented in Sect. 6, followed by a summary in Sect. 7.

## 2 Experimental setup

The ATLAS experiment [30] at the LHC is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near $4 \pi$ solid angle coverage. The inner detector (ID) covers the pseudorapidity ${ }^{1}$ range $|\eta|<2.5$ and is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field. The ID consists of silicon pixel, silicon microstrip (SCT), and straw tube tracking detectors. After the $2013 p+\mathrm{Pb}$ run, an additional pixel silicon layer, the insertable B-layer [31,31,32], was installed prior to the $5.02 \mathrm{TeV} \mathrm{Pb}+\mathrm{Pb}$ data-taking to attain more precise track-

[^1]ing. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator tile hadronic calorimeter covers the central pseudorapidity range $(|\eta|<1.7)$. The endcap and forward regions are instrumented with LAr calorimeters for EM and hadronic energy measurements up to $|\eta|=4.9$. The forward calorimeter (FCal) covers $3.2<|\eta|<4.9$ and is used for centrality estimation [10]. The minimumbias trigger scintillators (MBTS) are located on each side of the detector at $z= \pm 3.6 \mathrm{~m}$ and detect charged particles with $2.07<|\eta|<3.86$. The zero-degree calorimeter (ZDC), located in the LHC tunnel and covering $|\eta|>8.3$, is used for triggering on collision events and pile-up event rejection. It is calibrated to resolve an individual neutron originating from the collision spectators.

A two-level trigger system selects events [33,34]. The level-1 trigger is implemented in hardware and preselects up to $10^{5}$ events per second for further decisions by the high-level trigger (HLT). The software-based HLT tuned for $\mathrm{Pb}+\mathrm{Pb}$ collision data selects up to 1000 events per second for recording. This analysis primarily uses charged-particle tracks in the ID, but information from the central calorimeters and the ZDC is also used for triggering, event selection, and analysis.

## 3 Event and track selection

The $\mathrm{Pb}+\mathrm{Pb}$ data in this analysis were selected using two mutually exclusive minimum-bias triggers. Events with semi-central and central collisions were selected if the scalar sum of transverse energy in the entire ATLAS calorimeter system exceeded 50 GeV . Peripheral events, i.e. those with large impact parameter of the colliding Pb nuclei, fail the 50 GeV selection and were instead selected by requiring a deposition in the ZDC corresponding to at least one neutron and by requiring at least one track reconstructed in the HLT. Data in this analysis are required to come from periods when the entire detector was functioning normally. The events are required to have a reconstructed vertex within 100 mm of the nominal interaction point. The contribution from events containing more than one inelastic interaction (pile-up) is studied by exploiting correlations between the transverse energy measured in the $\mathrm{FCal}\left(\Sigma E_{\mathrm{T}}^{\mathrm{FCal}}\right)$ with the estimated number of neutrons in the ZDC , and with the number of tracks associated with a primary vertex [27,35]. The distribution of $\Sigma E_{\mathrm{T}}^{\mathrm{FCal}}$ and the distribution of the number of neutrons in events with more than one collision are broader than the corresponding distributions in events with only one collision. Pile-up events are suppressed by rejecting events with abnormally large values of either $\Sigma E_{\mathrm{T}}^{\mathrm{FCal}}$ or the number of neutrons in the ZDC compared with the charged-particle
multiplicity in the event. Approximately $0.2 \%$ of the events are rejected by these requirements.

The $p+\mathrm{Pb}$ data in this analysis were selected using minimum-bias triggers and high-multiplicity triggers (HMT). The minimum-bias trigger required signals in both sides of the MBTS system with a timing difference of less than 10 ns to eliminate non-collision backgrounds. The HMT required the total transverse energy in the calorimeter at level-one and the number of ID track candidates reconstructed in the HLT to be above predefined thresholds. Six combinations of thresholds were used to optimise data-taking during periods with different luminosities. Samples of events collected by these triggers are combined by applying event weights to reproduce the charged-particle multiplicity distribution of the minimum-bias trigger. Further details of the data selection are given in Refs. [22,36]. The average pile-up probability in the $p+\mathrm{Pb}$ dataset is approximately $3 \%$ but can be significantly larger in high-multiplicity events. Events with more than one reconstructed vertex are removed from the sample. Similarly to the $\mathrm{Pb}+\mathrm{Pb}$ dataset, to remove events where the two interaction vertices are too close to resolve as independent ones, the ZDC signal on the Pb fragmentation side is used. The distribution of the number of neutrons, which is broader in events with pile-up than that for the events without pile-up is exploited for that purpose [36]. The fraction of rejected events varies with the event activity and reaches a maximum of $10 \%$ for events with the highest multiplicities.

The analysis for both collision systems is performed in narrow bins of event activity defined by the charged-particle multiplicity $N_{\text {ch }}$ (described in Sect. 4), which estimates the collision centrality. In addition, the $\mathrm{Pb}+\mathrm{Pb}$ results are presented as a function of collision centrality expressed by the average number of nucleons participating in the collision, $N_{\text {part }}$, to allow comparison with theoretical predictions [37]. The centrality is estimated from the $\Sigma E_{\mathrm{T}}^{\mathrm{FCal}}$ distribution [6,10] using the Glauber model [38]. The number of events passing the selection requirements is $1.3 \times 10^{8}$ for $\mathrm{Pb}+\mathrm{Pb}$ within the $0-80 \%$ centrality interval. For the $p+\mathrm{Pb}$ system, about $0.64 \times 10^{8}$ events enter the analysis.

The charged-particle tracks reconstructed in the ID are required to satisfy selection criteria in order to suppress the contribution of incorrectly reconstructed tracks and secondary products of particle decays. The selection criteria include the requirement that the number of hits in the pixel and SCT detectors should be greater than two and eight, respectively, for the $\mathrm{Pb}+\mathrm{Pb}$ data and greater than one and six for the $p+\mathrm{Pb}$ data. The track impact parameters relative to the collision vertex in the transverse direction, $\left|d_{0}\right|$, and longitudinal direction, $\left|z_{0} \sin \theta\right|$, are required to be less than 1 mm for tracks in the $\mathrm{Pb}+\mathrm{Pb}$ data sample and less than 1.5 mm in the $p+\mathrm{Pb}$ sample. In addition, in $p+\mathrm{Pb}$ collisions, the track impact parameter significances must satisfy $\left|d_{0} / \sigma_{d_{0}}\right|<3$ and $\left|z_{0} \sin \theta / \sigma_{z}\right|<3$, where $\sigma_{d_{0}}$ and $\sigma_{z}$ are the uncertainties
in $d_{0}$ and $z_{0} \sin \theta$ determined from the covariance matrix of the track fit. The different selection criteria for $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ optimise the performance of the track reconstruction in differing running conditions.

Corrections needed due to track reconstruction effects are evaluated using $4 \times 10^{6} \mathrm{~Pb}+\mathrm{Pb}$ and $10^{7} p+\mathrm{Pb}$ minimumbias Monte Carlo (MC) events generated by the HIJING v1.38b [39] event generator. After the generation, an azimuthal flow is implemented using the afterburner technique [40], and the $p_{\mathrm{T}}$ spectrum is reweighted to match the data. Generated events were simulated in the detector by the GEANT 4-based [41] ATLAS detector simulation programs [42] and reconstructed using the same procedures and detector conditions as the data. Track reconstruction corrections are applied to each selected track using weights to account for the tracking efficiency $\epsilon$ and the fake-track fraction $f$. The efficiency is defined as the fraction of primary MC charged particles that are matched to reconstructed tracks, and $f$ is the fraction of tracks that are not matched to primary MC particles or are produced from random combinations of hits in the ID. A similar analysis procedure is described in Refs. [10,16]. The fake-track fraction and tracking efficiency are determined as functions of the track $p_{\mathrm{T}}$ and $\eta$ and of the track multiplicity in the event. Tracks included in the analysis are weighted with the factor $(1-f) / \epsilon$. An additional multiplicative weight evaluated from data is applied to the data to correct for detector non-uniformity in the azimuthal angle. These weights are obtained by requiring the tracks to be distributed uniformly in azimuth in all pseudorapidity slices of width 0.1 .

In the $\mathrm{Pb}+\mathrm{Pb}$ data, the contribution of fake tracks is largest in central collisions at the lowest analysed track $p_{\mathrm{T}}$ of 0.5 GeV and at the largest $|\eta|$, reaching up to $20 \%$. The faketrack rate is below $1 \%$ for tracks with $p_{\mathrm{T}}$ above 2 GeV and $|\eta|<1.5$. The tracking efficiency depends weakly on centrality, and in the most central events it is about $3 \%$ less than in more peripheral events. The efficiency increases with the track $p_{\mathrm{T}}$ from about $50 \%$ at the lowest analysed $p_{\mathrm{T}}$ to $70 \%$ above 2 GeV . It is highest at mid-rapidity and drops by about $15 \%$ for $|\eta|>1$. For $p+\mathrm{Pb}$ collisions, with $p_{\mathrm{T}}$ increasing from 0.3 to 1 GeV the efficiency increases from about $75 \%$ ( $60 \%$ ) to $83 \%$ ( $70 \%$ ) at $\eta \approx 0(|\eta|>2$ ). The $p+\mathrm{Pb}$ tracking efficiency is independent of the event's multiplicity for $N_{\text {ch }} \geq 10$, i.e. in the multiplicity range used in the analysis. The fake rate in $p+\mathrm{Pb}$ collisions is very low, below $1 \%$ (3\%) at $\eta \approx 0(|\eta|>2)$.

## 4 Correlation coefficient $\rho$

In each event, charged-particle tracks are grouped into three regions of subevents based on their pseudorapidity: region A with $-2.5<\eta<-0.75$, central region B with $|\eta|<$ 0.5 and region C with $0.75<\eta<2.5$. The $v_{n}^{2}$ for the
$n=2-4$ harmonics are calculated by correlating chargedparticle tracks from subevents A and C, which are separated in pseudorapidity to suppress non-flow contributions. Tracks in central region $B$ are used to obtain the mean value of the charged-particle transverse momentum in the event, $\left[p_{\mathrm{T}}\right]$, defined as
$\left[p_{\mathrm{T}}\right]=\frac{1}{\sum_{b} w_{b}} \sum_{b} w_{b} p_{\mathrm{T} b}$
where the summation is over tracks in region B , labelled by index $b$. The variable $c_{k}$ (Eq. (3)) is also calculated using tracks from region B. Here, and in following formulas, the weights $w$ include the fake-track fraction, efficiency, and azimuthal non-uniformity corrections, as discussed in Sect. 3.

The covariance term from the numerator of Eq. (4) is defined as

$$
\begin{align*}
& \operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right) \\
& \quad=\operatorname{Re}\left(\left\langle\frac{1}{\sum_{a, c} w_{a} w_{c}} \sum_{a, c} w_{a} w_{c} \mathrm{e}^{\mathrm{i} n \phi_{a}-\mathrm{i} n \phi_{c}}\left(\left[p_{\mathrm{T}}\right]-\left\langle\left[p_{\mathrm{T}}\right]\right\rangle\right)\right\rangle\right) \tag{5}
\end{align*}
$$

where $\phi$ is the azimuthal angle and indices $a$ and $c$ span the tracks in regions A and C, respectively.

The two- and four-particle correlations used to define the dynamical variance in Eq. (2), which enters the denominator of Eq. (4), are calculated as in Ref. [26]

$$
\begin{align*}
\left\langle\operatorname{corr}_{n}\{2\}\right\rangle & =\operatorname{Re}\left(\left\langle\frac{1}{\sum_{a, c} w_{a} w_{c}} \sum_{a, c} w_{a} w_{c} \mathrm{e}^{\mathrm{i} n \phi_{a}-\mathrm{i} n \phi_{c}}\right\rangle\right) \\
& =\operatorname{Re}\left(\left\langle q_{n, a} q_{n, c}^{*}\right\rangle\right) \tag{6}
\end{align*}
$$

where the $q_{a}$ and $q_{c}$ are the complex flow vectors of subevent A and subevent C, respectively, and the asterisk denotes the complex conjugate. The flow vectors are
$q_{n, a}=\frac{1}{\sum_{a} w_{a}} \sum_{a} w_{a} \mathrm{e}^{\mathrm{i} n \phi_{a}}$ and $q_{n, c}=\frac{1}{\sum_{c} w_{c}} \sum_{c} w_{c} \mathrm{e}^{\mathrm{i} n \phi_{c}}$.
The four-particle correlation is obtained from the expression
$\left\langle\operatorname{corr}_{n}\{4\}\right\rangle=\operatorname{Re}\left(\left\langle\frac{\left(Q_{n, a}^{2}-Q_{2 n, a}\right)\left(Q_{n, c}^{2}-Q_{2 n, c}\right)^{*}}{S_{a} S_{c}}\right\rangle\right)$,
where for subevent A
$Q_{n, a}=\sum_{a} w_{a} \mathrm{e}^{\mathrm{i} n \phi_{a}}, \quad Q_{2 n, a}=\sum_{a} w_{a}^{2} \mathrm{e}^{\mathrm{i} 2 n \phi_{a}}$,
$S_{a}=\left(\sum_{a} w_{a}\right)^{2}-\sum_{a} w_{a}^{2}$,
and similarly for subevent C. Equation (7) represents the sum $\sum \mathrm{e}^{\mathrm{i} n\left(\phi_{1}^{a}+\phi_{2}^{a}-\phi_{3}^{c}-\phi_{4}^{c}\right)}$ over all particles from subevents A and C normalised by the number of quadruplets without autocorrelations in each subevent.

The second factor in the denominator of Eq. (4), the mean $p_{\mathrm{T}}$ fluctuation in the event class $c_{k}$, is defined by Eq. (3) and in this analysis it is calculated as

$$
\begin{gathered}
c_{k}=\left\langle\frac { 1 } { ( \sum _ { b } w _ { b } ) ^ { 2 } - \sum _ { b } w _ { b } ^ { 2 } } \sum _ { b } \sum _ { b ^ { \prime } \neq b } w _ { b } \left( p_{\mathrm{T}, b}\right.\right. \\
\left.\left.-\left\langle\left[p_{\mathrm{T}}\right]\right\rangle\right) w_{b^{\prime}}\left(p_{\mathrm{T}, b^{\prime}}-\left\langle\left[p_{\mathrm{T}}\right]\right\rangle\right)\right\rangle .
\end{gathered}
$$

The summation indices $b$ and $b^{\prime}$ run over all charged particles in region $B$.

The correlation coefficient expressed by Eq. (4) is evaluated for the range $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ in $\mathrm{Pb}+\mathrm{Pb}$ collisions and $0.3<p_{\mathrm{T}}<2 \mathrm{GeV}$ in $p+\mathrm{Pb}$ collisions. These intervals, called 'main', contain a large number of soft particles and constitute the main result of the analysis which can be compared with hydrodynamical models. For each system, two additional $p_{\mathrm{T}}$ ranges are considered: $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ and $1<p_{\mathrm{T}}<2 \mathrm{GeV}$ in the analysis of $\mathrm{Pb}+\mathrm{Pb}$ collisions, and $0.3<p_{\mathrm{T}}<5 \mathrm{GeV}$ and $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ in $p+\mathrm{Pb}$ collisions. These ranges facilitate the study of the sensitivity of $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ to the high $p_{\mathrm{T}}$ part of the particle spectrum and to the lower charged-particle multiplicity from the higher minimum $p_{\mathrm{T}}$ value. The charged-particle $p_{\mathrm{T}}$ range $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ is common to both systems and can be used to compare the $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ results from $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions.

The quantities of interest, i.e. $\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$, $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}, c_{k}$, and $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$, are determined in bins of reconstructed track multiplicity $M_{\mathrm{AC}}$ measured in the combination of regions A and C . This is done to avoid a negative correlation between the multiplicity in subevents $\mathrm{A}+\mathrm{C}$ and B that occurs if the analysis is binned in multiplicity in the entire ID. Narrow $M_{\mathrm{AC}}$ bins are also chosen due to the sensitivity to multiplicity fluctuations of the multi-particle correlations that are used to obtain the $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ [27]. The events are grouped in fine bins with a width of ten in $M_{\mathrm{AC}}$ for $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ in the $\mathrm{Pb}+\mathrm{Pb}$ analysis and $0.3<p_{\mathrm{T}}<5 \mathrm{GeV}$ in the $p+\mathrm{Pb}$ analysis. It was crosschecked that the variables of interest obtained with a finer binning in $M_{\text {AC }}$ are consistent with the measurement with the nominal binning.

To enable comparisons with the theoretical predictions and with future experimental results, measurements obtained in $M_{\mathrm{AC}}$ are presented as a function of the ATLAS ID multiplicity $N_{\text {ch }}$ of $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ and $|\eta|<2.5$. They are projected from the $M_{\mathrm{AC}}$ values taking into account tracking efficiency and fake-track production as described in the pre-
vious section. A similar analysis procedure is described in Ref. [22]. For the $N_{\text {part }}$ dependencies in the $\mathrm{Pb}+\mathrm{Pb}$ system, the results measured in $M_{\text {AC }}$ multiplicity intervals are averaged, with weights equal to the probabilities to find any given $M_{\text {AC }}$ value in the centrality intervals.

The formulation of the modified PCC $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ requires that there should be at least two tracks in each region (A, B, and C). Further, $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ calculated according to Eq. (6) can be negative at low multiplicities due to statistical fluctuations, which renders Eq. (4) invalid because of the $\sqrt{ } \operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ term. For each $M_{\mathrm{AC}}$ bin, $p_{\mathrm{T}}$ interval, and harmonic, a criterion is applied that $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ needs to be positive at a level of at least one standard deviation of its statistical uncertainty. Results presented as a function of $N_{\text {ch }}$ are produced only for those $M_{\mathrm{AC}}$ intervals. For the $N_{\text {part }}$ dependencies in the $\mathrm{Pb}+\mathrm{Pb}$ system, it is additionally required for each centrality interval that the fraction of rejected events due to this criterion does not exceed $1 \%$.

## 5 Systematic uncertainties

The systematic uncertainty is estimated by varying individual aspects of the analysis. The systematic uncertainties for the main $p_{\mathrm{T}}$ interval are discussed for each collision system. Systematic uncertainties for the other $p_{\mathrm{T}}$ intervals behave consistently with the ones for the main $p_{\mathrm{T}}$ interval. Since the modified PCC $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is a ratio of quantities which are calculated using tracks, many variations largely cancel out and the resulting systematic uncertainties are small. To suppress the statistical fluctuations and to get more robust estimation of systematic uncertainties, they are averaged over several, wide ranges of the charged-particle multiplicity. For each uncertainty source and for each measurement point, the maximum variation from the baseline measurement is used. The total resulting uncertainty is the sum of the individual contributions combined in quadrature. The following sources of systematic uncertainties are considered.

Track selection The tracking performance has a relatively small impact on $v_{n}\{2\}$, but it directly affects the $\left[p_{\mathrm{T}}\right]$ and $c_{k}$ via the admixture of the fake tracks, especially at low $p_{\mathrm{T}}$. To assess the impact on $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$, the measurement is repeated with tracks selected with looser and tighter track quality criteria, thus increasing and decreasing the fake-track rate, respectively. The weights used in the evaluation of measured quantities take the modified selection into account. The loose track selection in the $\mathrm{Pb}+\mathrm{Pb}$ analysis relaxes requirements on the number of pixel and SCT hits to at least one and six, respectively. Additionally, the requirements on the transverse and longitudinal impact parameters of the track are relaxed to 1.5 mm . The tighter selection in the $\mathrm{Pb}+\mathrm{Pb}$ analysis tightens the requirement on the transverse and lon-
gitudinal impact parameters of the track to 0.5 mm . For the $p+\mathrm{Pb}$ analysis, the loose selection relaxes the requirements on the transverse and longitudinal impact parameters of the track to 2 mm and on the impact parameter significances to less than 4 . In the tight selection, the impact parameter values and their significances must be less than 1 mm and 2 , respectively. For each of the two track selections the absolute difference is calculated with respect to the baseline measurement: $\left|\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)^{\text {base }}-\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)^{\text {loose }}\right|$ or $\left|\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)^{\text {base }}-\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)^{\text {tight }}\right|$. The largest difference is taken as a systematic uncertainty.
Detector material Since the tracks that are used in the calculation of $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ are weighted by the inverse of the tracking efficiency, a bias in its estimation due to inaccurate modelling of the material in the detector may change the balance between low- and high $-p_{\mathrm{T}}$ tracks in the sums. Based on simulations, the estimated uncertainty in the detector description is obtained $[43,44]$. The resulting $p_{\mathrm{T}^{-}}$and $\eta$-dependent uncertainties in the track efficiency of up to $4 \%$ are used to determine the systematic uncertainty.
Tracking azimuthal uniformity In this analysis, the weighting factors $w$ correct for any non-uniformity in the azimuthal angle distribution of reconstructed tracks. The weights are obtained from the data by requiring azimuthal uniformity over the two-dimensional distribution of reconstructed tracks in the $\eta-\phi$ plane. The effect of that correction on the result is conservatively estimated by comparing the baseline measurement and the measurement obtained without applying this weight. The uncertainty is small, and it envelopes potential effects of imperfections in the weighting factors determination, including their dependence on the transverse momentum, collision centrality, run-by-run differences, on dead module maps or the vertex position.
Residual pile-up events The selection criteria discussed in Sect. 3 suppress the fraction of pile-up events accepted for analysis to almost zero in central $\mathrm{Pb}+\mathrm{Pb}$ collisions. To estimate the systematic uncertainty related to pile-up, the measurement is conservatively repeated without this event rejection, resulting in at most a $1 \%$ difference in the most central $\mathrm{Pb}+\mathrm{Pb}$ events for the $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ coefficient. The $p+\mathrm{Pb}$ data were taken with higher pile-up than the $\mathrm{Pb}+\mathrm{Pb}$ data. To estimate the impact of contamination by residual pile-up events, $p+\mathrm{Pb}$ results were obtained with only the vertex criteria applied. The variation covers the estimated residual pileup fraction in events of the highest track multiplicity [36].

Centrality selection The minimum-bias trigger is fully efficient for the $0-85 \%$ centrality interval. However, the total fraction of inelastic $\mathrm{Pb}+\mathrm{Pb}$ events selected is known only to $1 \%$ accuracy due to trigger inefficiency and possible sample contamination in more peripheral interactions. The centrality is estimated using the $\Sigma E_{T}^{\text {FCal }}$ distribution $[6,10]$ and the

Glauber model [38] to obtain the mapping from the observed $\Sigma E_{\mathrm{T}}^{\mathrm{FCal}}$ to the number of nucleons participating in the collision, $N_{\text {part }}$. The modified PCC uncertainty is evaluated by repeating the analysis with the altered centrality selections on the $\Sigma E_{\mathrm{T}}^{\text {FCal }}$ distribution, which results in $\pm 1 \%$ uncertainty in the total fraction of inelastic $\mathrm{Pb}+\mathrm{Pb}$ events. The centrality selection contributes mainly to uncertainties for peripheral collisions.

Figure 1 shows the magnitude of the systematic uncertainties $\delta \rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ for $n=2-4 \mathrm{in} \mathrm{Pb}+\mathrm{Pb}$ collisions as a function of $N_{\mathrm{ch}}$. In $\mathrm{Pb}+\mathrm{Pb}$ collisions, the systematic uncertainty of the measured correlation coefficients across different order harmonics and centralities is not dominated by a single source. One of the largest uncertainties comes from restoring the azimuthal uniformity, and dominates for the second order harmonic in the most central collisions and for the third and fourth order harmonics almost over the full centrality range. A sizeable contribution to the uncertainty for all three harmonics is due to the track selection. The impact of the detector material is rather small except for a significant contribution for the forth order harmonic in the most central events. The residual pile-up in $\mathrm{Pb}+\mathrm{Pb}$ collisions gives a negligible contribution. Figure 1d shows systematic uncertainties for $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ coefficients in $p+\mathrm{Pb}$ collisions for the main interval of $0.3<p_{\mathrm{T}}<2 \mathrm{GeV}$ as a function of event activity. In $p+\mathrm{Pb}$ interactions the largest uncertainty in the most active collisions ( $N_{\mathrm{ch}}>150$ ) originates from pile-up. The track selection is a source of sizeable uncertainty for this collision system, while the azimuthal uniformity correction procedure and the detector material have a small impact.

Details on the contributions to systematic uncertainties from different sources of $c_{k}, \operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ and $\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ are included in the Appendix.

## 6 Results

### 6.1 The constituents of the modified PCC

The constituents of the modified PCC, $c_{k}, \operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ and $\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ and are combined, using Eq. (4), to obtain $\rho$. Figure 2 shows the dynamical $p_{\mathrm{T}}$ fluctuation coefficient $c_{k}$ as a function of charged-particle multiplicity in $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collision systems for tracks in three different $p_{\mathrm{T}}$ intervals. A strong decrease of $c_{k}$ with increasing $N_{\mathrm{ch}}$ is observed in all measured results. A similar decrease was seen for $c_{k}$ in $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Pb}+\mathrm{Pb}$ data at lower centre-of-mass energies [28,29], evaluated for lower $p_{\mathrm{T}}$ range, $0.15<p_{\mathrm{T}}<2 \mathrm{GeV}$, not accessible with the ATLAS detector. For the same $N_{\mathrm{ch}}$, the $c_{k}$ values differ by an order of magnitude for different $p_{\mathrm{T}}$ ranges of tracks used in the analysis. For the intervals with the same lower $p_{\mathrm{T}}$ limit, the $c_{k}$

Fig. 1 The systematic uncertainty of $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ as a function of $N_{\text {ch }}$ measured with tracks from main $p_{\text {T }}$ intervals for each collision system for the a second, b third, and $\mathbf{c}$ fourth harmonics in $\mathrm{Pb}+\mathrm{Pb}$ collisions, and for $\mathbf{d}$ $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ in $p+\mathrm{Pb}$ collisions. The total uncertainty is also shown

values are higher for the interval with the larger upper $p_{\mathrm{T}}$ limit.

Figure 3 shows $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ for $n=2-4$ as function of $N_{\mathrm{ch}}$ for $\mathrm{Pb}+\mathrm{Pb}$ collisions. For low multiplicities, $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ increases with increasing $N_{\text {ch }}$, reaching a maximum at $N_{\text {ch }}$ of approximately 500 (1000) for $n=$ $2(n=3)$, respectively. At higher $N_{\text {ch }}$ values the variances decrease with multiplicity. The dynamical variance for $n=4$, measured for $N_{\mathrm{ch}} \gtrsim 500$, decreases with increas-
ing $N_{\text {ch. }}$. The ordering $\operatorname{Var}\left(v_{2}\{2\}^{2}\right)_{\text {dyn }}>\operatorname{Var}\left(v_{3}\{2\}^{2}\right)_{\text {dyn }}>$ $\operatorname{Var}\left(v_{4}\{2\}^{2}\right)_{\text {dyn }}$ and the multiplicity dependence of $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ are similar to the ordering and centrality dependence of $v_{n}\{2\}$ measured by ATLAS [10]. Also shown in Fig. 3 is $\operatorname{Var}\left(v_{2}\{2\}^{2}\right)_{\text {dyn }}$ for $p+\mathrm{Pb}$ collisions as a function of $N_{\text {ch }}$. The dependence is monotonic, similarly to $v_{2}\{2\}$ [45]. In both collision systems and for all harmonics, the same ordering of $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ depending on the $p_{\mathrm{T}}$ interval is

Fig. 3 The variance
$\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ for $n=2-4$ for $\mathbf{a}-\mathbf{c} \mathrm{Pb}+\mathrm{Pb}$ collisions and $\operatorname{Var}\left(v_{2}\{2\}^{2}\right)_{\text {dyn }}$ for $\mathbf{d} p+\mathrm{Pb}$ collisions for the three $p_{\mathrm{T}}$ intervals as a function of charged-particle multiplicity $N_{\text {ch }}$. The statistical and systematic uncertainties are shown as vertical error bars and boxes, respectively

observed. The largest variances are observed for the $p_{\mathrm{T}}$ intervals with an increased lower limit. This is expected as the $v_{n}\{2\}$ value increases strongly with $p_{\text {T }}$ below 3 GeV [10]. Additionally, the interval in which the upper limit on $p_{\mathrm{T}}$ is set to 5 GeV integrates the region with the highest values of $v_{n}\{2\}$ (which occur around 3 GeV ) and thus the values of the variance are expected to be larger than that for the main $p_{T}$ range.

In Fig. 4, the covariances $\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ are shown for the 2nd-, 3rd-, and 4th-order harmonics in $\mathrm{Pb}+\mathrm{Pb}$ collisions and for the second-order harmonics in $p+\mathrm{Pb}$ collisions. They are presented as a function of $N_{\mathrm{ch}}$ for three $p_{\mathrm{T}}$ intervals. Significant positive correlations between $v_{n}\{2\}$ and [ $p_{\mathrm{T}}$ ] are observed in the $\mathrm{Pb}+\mathrm{Pb}$ events. The measured covariances depend on the charged-particle multiplicity and the $p_{\mathrm{T}}$ range of the charged particles. In $\mathrm{Pb}+\mathrm{Pb}$ collisions, a strong dependence on the multiplicity is observed for $n=2$ and 4. The $\operatorname{cov}\left(v_{3}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ depends only weakly on $N_{\mathrm{ch}}$. A negative $\operatorname{cov}\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is measured at multiplicities $N_{\mathrm{ch}}<200$ and a negative $\operatorname{cov}\left(v_{3}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ for $1<p_{\mathrm{T}}<2 \mathrm{GeV}$ below $N_{\text {ch }}<1800$. The covariances $\operatorname{cov}\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ in $p+\mathrm{Pb}$ events are negative in the entire measured $N_{\mathrm{ch}}$ range and show weak $N_{\text {ch }}$ dependence. Unlike in $\mathrm{Pb}+\mathrm{Pb}$ events, the
$\operatorname{cov}\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ in $p+\mathrm{Pb}$ events have similar magnitudes for different $p_{\mathrm{T}}$ intervals.
6.2 The modified PCC

The modified PCC $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ for $n=2-4$ in $\mathrm{Pb}+\mathrm{Pb}$ collisions and for $n=2$ in $p+\mathrm{Pb}$ collisions is shown in Fig. 5. In $\mathrm{Pb}+\mathrm{Pb}$ collisions, the behaviour of $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is similar for all $p_{\mathrm{T}}$ intervals. It starts at negative values for $N_{\text {ch }}<200$ and rapidly increases with multiplicity up to $\sim 1500$ particles where the increase slows down and reaches the maximum at $N_{\mathrm{ch}} \approx 4500$ of $0.24-0.3$, depending on the $p_{\mathrm{T}}$ interval. At even higher $N_{\mathrm{ch}}$, the $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ value decreases rapidly. The significant correlation observed for mid-central events suggests a connection between anisotropic and radial [46] flows which might be attributed to stronger hydrodynamic response (larger pressure gradients) to the large initial-state eccentricities [47]. The modified PCC multiplicity dependence could reflect a balance between stronger radial flow observed in central collision and the larger initial eccentricity seen in peripheral interactions. The decrease observed in central collisions, for $N_{\mathrm{ch}} \gtrsim 5000$, might be related to the increased role of

Fig. 4 The covariance $\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ for $n=2-4$ in $\mathbf{a}-\mathbf{c} \mathrm{Pb}+\mathrm{Pb}$ collisions and $\operatorname{cov}\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ in $\mathbf{d} p+\mathrm{Pb}$ collisions for three $p_{\mathrm{T}}$ ranges as a function of the charged-particle multiplicity $N_{\text {ch }}$. The statistical and systematic uncertainties are shown as vertical error bars and boxes, respectively

initial-state fluctuations in anisotropic flow [27]. However, a complete understanding of this effect would require a more precise modelling of heavy ion collisions. The correlation coefficients calculated with the upper $p_{\mathrm{T}}$ limit of 2 GeV are $10-20 \%$ smaller than the values obtained with a $p_{\text {T }}$ limit of 5 GeV . The correlation coefficient $\rho\left(v_{3}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is evaluated in $\mathrm{Pb}+\mathrm{Pb}$ collisions for the same three $p_{\mathrm{T}}$ ranges. The magnitudes measured for $\rho\left(v_{3}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ are significantly smaller than those measured for $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ and similar to the magnitudes of $\rho\left(v_{4}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$. All three curves increase with $N_{\text {ch }}$ in the range of $1000<N_{\text {ch }}<5000$. At low values of $N_{\mathrm{ch}}$, a flattening of the trend can be noticed. In the most central collisions, a breakdown of the rise is seen, similarly to the $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$. Above $N_{\text {ch }} \sim 1500$, the curves for the two intervals with the same maximum $p_{\mathrm{T}}$ are consistent with each other and are below the curve for the interval which uses tracks with $p_{\mathrm{T}}$ up to 5 GeV . The largest values of $\rho\left(v_{4}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ are observed at $N_{\mathrm{ch}} \approx 1000$. For high $N_{\mathrm{ch}}$, $\rho\left(v_{4}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ decreases with $N_{\text {ch }}$ up to about $N_{\text {ch }} \approx 4000$ and rises slowly at higher values. The trends obtained for $p_{\mathrm{T}}$ intervals with the same minimum value are consistent above $N_{\text {ch }} \sim 1500$ as is the case for $\rho\left(v_{3}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$. The decrease for $N_{\text {ch }}<4000$ might be due to a contribution to $v_{4}$ from
a non-linear term containing $v_{2}^{2}$, decreasing with increasing centrality [13]. However, a theoretical modelling of the initial state and its subsequent evolution would be required to support this interpretation. Similarly to the $\rho\left(v_{3}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$, the $\rho\left(v_{4}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ correlations measured with the larger upper $p_{\mathrm{T}}$ limit have larger magnitudes. The results for the larger upper $p_{\mathrm{T}}$ limit show the sensitivity of the $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ coefficients to the high $p_{\mathrm{T}}$ part of the particle spectrum contaminated with non-flow correlations from jets. On the other hand, the correlations measured for the intervals with fixed upper $p_{\mathrm{T}} \operatorname{limit}(2 \mathrm{GeV})$ and varied lower $p_{\mathrm{T}}$ limits are similar, demonstrating insensitivity of the modified PCC coefficients to a significant change of the event charged-particle multiplicity as expected [25]. The fourth-order correlations are weaker than those for the second-order flow harmonic and for $N_{\text {ch }}>4000$ are comparable to $\rho\left(v_{3}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$. The results for all harmonics indicate a change in the trend in events with high $N_{\text {ch }}$ around 4500 , which suggests a change in the nature of the correlations in those events [47].

In $p+\mathrm{Pb}$ collisions, $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ exhibits much weaker $N_{\text {ch }}$ dependence than that in $\mathrm{Pb}+\mathrm{Pb}$ collisions. For the main $p_{\mathrm{T}}$ interval, the modified PCC assumes a negative value of approximately -0.1 and is almost constant within uncertain-

Fig. 5 The PCC
$\left.\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)\right)$ for $n=2-4$ in $\mathbf{a}-\mathbf{c} \mathrm{Pb}+\mathrm{Pb}$ collisions and $\mathbf{d}$ $p+\mathrm{Pb}$ collisions as a function of the charged-particle multiplicity $N_{\text {ch }}$ for three $p_{\text {T }}$ ranges. The statistical and systematic uncertainties are shown as vertical error bars and boxes, respectively

ties. Values for different lower $p_{\mathrm{T}}$ limits are similar, and the $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ magnitudes for the larger upper $p_{\mathrm{T}}$ limit are smaller. The magnitude (and sign) of the modified PCC in $p+\mathrm{Pb}$ collisions is expected to be related to the distribution of the energy deposition in the initial state, as predicted by the hydrodynamic model [25]. In hydrodynamics, in $p+\mathrm{Pb}$ collision, for small sources a higher initial pressure gradients and smaller eccentricities are expected to be generated. This mechanism could lead to the negative correlation of the final state observables, this is the mean transverse momentum and higher order flow harmonics. Thus, the negative value of the modified PCC for $v_{2}\{2\}$ in $p+\mathrm{Pb}$ and peripheral $\mathrm{Pb}+\mathrm{Pb}$ that is measured should provide valuable constraints for models describing the collectivity in small systems.

### 6.3 Comparison of $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ results

Figure 6 shows a comparison of $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ results shown in Figs. 2, 3, 4, 5 for the common $p_{\mathrm{T}}$ interval of $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$. The values of the $c_{k}$ (Fig. 6a) are similar for $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions in this $p_{\mathrm{T}}$ interval, while the behaviour of the dynamical variance $\operatorname{Var}\left(v_{2}\{2\}^{2}\right)_{\text {dyn }}$ (Fig. 6b) is very different due to the different initial eccentricities in the
overlap regions in $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions. Only a small rise with the multiplicity is observed for $p+\mathrm{Pb}$ collisions, which is in agreement with a slow increase of $v_{2}\{2\}$ with growing event activity [22,36,45]. For $N_{\mathrm{ch}} \approx 50$, the dynamical variances are comparable between $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions. The $N_{\text {ch }}$ dependence of $\operatorname{cov}\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is significantly different for $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions. A steady rise from negative to positive values with $N_{\text {ch }}$ is observed for peripheral $\mathrm{Pb}+\mathrm{Pb}$ collisions, and approximately constant values are obtained for $p+\mathrm{Pb}$ collisions. The $N_{\mathrm{ch}}$ dependence of $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is different for the two collision systems. Much weaker $N_{\mathrm{ch}}$ dependence of modified PCC is observed in $p+\mathrm{Pb}$ collisions compared to $\mathrm{Pb}+\mathrm{Pb}$ collisions. For $N_{\mathrm{ch}}<100$ the values of $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ are consistent between $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions. The negative $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ coefficients for the small systems in $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions may suggest a more compact source model [25]. The comparison of the systems underlines the importance of the initial stage in the correlations described by the $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ coefficient. The theoretical predictions for midcentral and central $\mathrm{Pb}+\mathrm{Pb}$ collisions suggests that for a large system an increase of the mean transverse momentum indicates a stronger transverse flow and a stronger collective

Fig. 6 Comparison of $\mathbf{a} c_{k}$, $\mathbf{b}$ $\operatorname{Var}\left(v_{2}\{2\}^{2}\right)_{\text {dyn }}, \mathbf{c}$ $\operatorname{cov}\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$, and the $\mathbf{d}$ $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ for the range $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ as a function of the charged-particle multiplicity $N_{\text {ch }}$. The statistical and systematic uncertainties are shown as vertical error bars and boxes, respectively

response to the initial geometry of the source, characterized by the positive value of the modified PCC.

### 6.4 Comparison to theoretical predictions

To compare the $\mathrm{Pb}+\mathrm{Pb}$ results with a theoretical prediction in Ref. [25], the $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ coefficients for $0.5<$ $p_{\mathrm{T}}<2 \mathrm{GeV}$ are obtained as a function of centrality intervals expressed by $N_{\text {part }}$ using the procedure described in Sect. 4. Figure 7 shows the $N_{\text {part }}$ dependence of $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ for $n=2-4$ in $\mathrm{Pb}+\mathrm{Pb}$ collisions. It resembles the trends observed in Fig. 5, which show the modified PCC as a function of $N_{\mathrm{ch}}$, a measure of event activity. The theoretical predictions of the $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ coefficient are based on a model in which the initial conditions were generated with nucleon positions by a MC Glauber model [48]. These initial conditions are then evolved using the pressure-driven 3+1D hydrodynamical simulations with viscous effects followed by the statistical particle emission to match multiplicities observed experimentally [37]. The modified Pearson correlation coefficient is then extracted from the final-state particles. The predictions for all harmonics are consistent with the
data within the large model uncertainties except for the most central collisions where the predictions underestimate the measured $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ and for the semi-peripheral collisions, for $N_{\text {part }} \sim 130$, where the predictions overestimate the $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ and underestimate $\rho\left(v_{4}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$.

## 7 Summary

The first measurement of the modified PCC $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$, which quantifies the correlation between the flow harmonics and the mean transverse momentum, is performed by ATLAS experiment at the LHC. The measurement uses $22 \mu \mathrm{~b}^{-1}$ of $\mathrm{Pb}+\mathrm{Pb}$ data and $28 \mathrm{nb}^{-1}$ of $p+\mathrm{Pb}$ data at the same centre-ofmass energy per nucleon pair of 5.02 TeV .

The correlation coefficient for several charged-particle $p_{\mathrm{T}}$ ranges is measured as a function of the number of charged particles $N_{\text {ch }}$ and, in $\mathrm{Pb}+\mathrm{Pb}$ collisions, the average number of nucleons participating in the collision, $N_{\text {part }}$. For the $2^{\text {nd }}-, 3^{\text {rd }}-$, and $4^{\text {th }}$-order harmonics, the measured quantities exhibit a dependence on the choice of charged-particle $p_{T}$ range. Measurements with an upper limit of 5 GeV on $p_{\mathrm{T}}$ indicate a stronger correlation than those with an upper limit

Fig. 7 The PCC
$\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ for $\mathbf{a} n=2$, $\mathbf{b}$ $n=3$, and $\mathbf{c} n=4$ in $\mathrm{Pb}+\mathrm{Pb}$ collisions as a function of $N_{\text {part }}$ for three $p_{\mathrm{T}}$ ranges. The statistical and systematic uncertainties are shown as vertical error bars and boxes, respectively. A comparison with model predictions [37] is also shown with a line added to guide the eye

of 2 GeV . For mid-central and central collisions, when varying the lower $p_{\mathrm{T}}$ limit, consistent values of $\rho\left(v_{3}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ and $\rho\left(v_{4}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ coefficients are obtained, whereas for the $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ coefficient a difference of $10-20 \%$ is seen. As a function of event activity, for $\mathrm{Pb}+\mathrm{Pb}$ collisions, a strong positive correlation $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is observed in mid-central and central collisions while negative values are measured for peripheral events. The correlation $\rho\left(v_{3}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is found to be weaker, yet non-zero. The values of $\rho\left(v_{4}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ are also positive in the studied centrality range. Non-monotonic behaviour is observed in central $\mathrm{Pb}+\mathrm{Pb}$ collisions. That trend observed for $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ in $\mathrm{Pb}+\mathrm{Pb}$ collisions is in line with expectations drawn from the ALICE results [20]. In $p+\mathrm{Pb}$ collisions, the value of $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is negative and approximately independent of $N_{\text {ch }}$.

The modified PCC is a valuable tool for studying the dynamics of heavy-ion collisions. It provides a reliable estimate of the magnitude of correlations calculated using finite multiplicities. In comparison with existing results, it allows quantitative comparisons between the experimental data and theoretical models. The precise measurements of this observable, presented in this paper, provide useful insights into the interplay of the azimuthal anisotropies (azimuthal flow)
and the mean event $p_{\mathrm{T}}$ (radial flow), providing input for a better understanding of QGP dynamics and for constraining the theoretical models. The obtained $\rho\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ coefficients for $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ were compared with a theoretical prediction based on the pressure-driven 3+1D hydrodynamical simulations with viscous effects. The predictions for all harmonics are consistent with the data within the large model uncertainties. The only exception are the most central collisions, where the predictions underestimate the measured $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ and the semi-peripheral collisions, where the predictions overestimate the $\rho\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ and underestimate $\rho\left(v_{4}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$. Sizeable positive correlations observed for non-peripheral $\mathrm{Pb}+\mathrm{Pb}$ collisions support a qualitatively expected scenario in which the azimuthal flow originates from the pressure gradients.

In small system collisions the magnitude of the transverse flow is expected to be very sensitive to the size of the initial source in the hydrodynamic model. In particular, in the compact source scenario in $p+\mathrm{Pb}$ collisions, the smaller source sizes are expected to yield larger transverse flow and smaller initial eccentricities. The negative sign of the modified PCC measured in $p+\mathrm{Pb}$ collisions seems to support the compact source scenario, and indicates the role of the initial conditions in these systems.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d' Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EUESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [49].

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors' comment: "All ATLAS scientific output is published in journals, and preliminary results are made available in Conference Notes. All are openly available, without restriction on use by external parties beyond copyright law and the standard conditions agreed by CERN. Data associated with journal publications are also made available: tables and data from plots (e.g. cross section values, likelihood profiles, selection efficiencies, cross section limits, ...) are stored in appropriate repositories such as HEPDATA (http:// hepdata.cedar.ac.uk/). ATLAS also strives to make additional material
related to the paper available that allows a reinterpretation of the data in the context of new theoretical models. For example, an extended encapsulation of the analysis is often provided for measurements in the framework of RIVET (http://rivet.hepforge.org/)." This information is taken from the ATLAS Data Access Policy, which is a public document that can be downloaded from http://opendata.cern.ch/record/413.]

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP ${ }^{3}$.

## Appendix

A Systematic uncertainty of $c_{k}, \operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ and $\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$

This section presents the systematic uncertainties of $c_{k}$, $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\mathrm{dyn}}$ and $\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ for the $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions at 5.02 TeV as a function of $N_{\text {ch }}$. Each figure shows individual contributions to the total uncertainty from sources described in Sect. 5, i.e. track selection, detector material, tracking azimuthal non-uniformity and residual pile-up events. Figure 8 shows contributions to the systematic uncertainty of $c_{k}$ measured with tracks from the main $p_{\text {T }}$ intervals in $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions. The contributions to the systematic uncertainty of $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ as a function of $N_{\mathrm{ch}}$ for each collision system for the second, third, and fourth order harmonics in $\mathrm{Pb}+\mathrm{Pb}$ collisions, and for $\operatorname{Var}\left(v_{2}\{2\}^{2}\right)_{\text {dyn }}$ in $p+\mathrm{Pb}$ collisions are shown in Fig. 9 . Figure 10 presents the corresponding systematic uncertainty of $\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ for the second, third, and fourth order harmonics in $\mathrm{Pb}+\mathrm{Pb}$ collisions, and for $\operatorname{cov}\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ in $p+\mathrm{Pb}$ collisions.

Fig. 8 The systematic uncertainty of $c_{k}$ as a function of $N_{\text {ch }}$ measured with tracks from main $p_{\text {T }}$ intervals in a $\mathrm{Pb}+\mathrm{Pb}$ collisions and in $\mathbf{b} p+\mathrm{Pb}$ collisions. The total uncertainty is also shown

(a)

(b)

Fig. 9 The systematic
uncertainty of $\operatorname{Var}\left(v_{n}\{2\}^{2}\right)_{\text {dyn }}$ as a function of $N_{\text {ch }}$ measured with tracks from main $p_{\text {T }}$ intervals for each collision system for the a second, $\mathbf{b}$ third, and $\mathbf{c}$ fourth order harmonics in $\mathrm{Pb}+\mathrm{Pb}$ collisions, and for $\mathbf{d}$ $\operatorname{Var}\left(v_{2}\{2\}^{2}\right)_{\text {dyn }}$ in $p+\mathrm{Pb}$
collisions. The total uncertainty is also shown

Fig. 10 The systematic uncertainty of $\operatorname{cov}\left(v_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ as a function of $N_{\mathrm{ch}}$ measured with tracks from main $p_{\text {T }}$ intervals for each collision system for the a second, b third, and $\mathbf{c}$ fourth order harmonics in $\mathrm{Pb}+\mathrm{Pb}$ collisions, and for $\mathbf{d}$ $\operatorname{cov}\left(v_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ in $p+\mathrm{Pb}$ collisions. The total uncertainty is also shown


## References

1. PHOBOS Collaboration, The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28 (2005). arXiv:nucl-ex/0410022
2. STAR Collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102 (2005). arXiv:nucl-ex/0501009
3. BRAHMS Collaboration, Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1 (2005). arXiv:nucl-ex/0410020
4. PHENIX Collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184 (2005). arXiv:nucl-ex/0410003
5. ALICE Collaboration, Elliptic flow of charged particles in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$. Phys. Rev. Lett. 105, 252302 (2010). arXiv:1011.3914 [nucl-ex]
6. ATLAS Collaboration, Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$ with the ATLAS detector. Phys. Lett. B 707, 330 (2012). arXiv:1108.6018 [hep-ex]
7. ATLAS Collaboration, Measurement of the azimuthal anisotropy for charged particle production in $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$ lead-lead collisions with the ATLAS detector. Phys. Rev. C 86, 014907 (2012). arXiv:1203.3087 [hep-ex]
8. CMS Collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV. Phys. Rev. C 87, 014902 (2013). arXiv:1204.1409 [hep-ex]
9. J. Schukraft, QM2017: status and key open questions in ultrarelativistic heavy-ion physics. Nucl. Phys. C 967, 1 (2017). arXiv:1705.02646 [nucl-ex]
10. ATLAS Collaboration, Measurement of the azimuthal anisotropy of charged particles produced in $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV} \mathrm{Pb}+\mathrm{Pb}$ collisions with the ATLAS detector. Eur. Phys. J. C 78, 997 (2018). arXiv:1808.03951 [nucl-ex]
11. S. Ryu et al., Importance of the bulk viscosity of QCD in ultrarelativistic heavy-ion collisions. Phys. Rev. Lett. 115, 132301 (2015). arXiv: 1502.01675 [nucl-th]
12. Z. Qiu, U. Heinz, Hydrodynamic event-plane correlations in $\mathrm{Pb}+$ Pb collisions at $\sqrt{s}=2.76$ ATeV. Phys. Lett. B 717, 261 (2012). arXiv:1208.1200 [nucl-th]
13. ATLAS Collaboration, Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=$ 2.76 TeV with the ATLAS detector. Phys. Rev. C 92, 034903 (2015). arXiv:1504.01289 [hep-ex]
14. D. Teaney, L. Yan, Triangularity and dipole dsymmetry in relativistic heavy ion collisions. Phys. Rev. C 83, 064904 (2011). arXiv: 1010.1876 [nucl-th]
15. R.S. Bhalerao, J.-Y. Ollitrault, S. Pal, Characterizing flow fluctuations with moments. Phys. Lett. B 742, 94 (2015). arXiv: 1411.5160 [nucl-th]
16. ATLAS Collaboration, Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=$ 2.76 TeV with the ATLAS detector at the LHC. JHEP 11183 (2013). arXiv:1305.2942 [hep-ex]
17. PHENIX Collaboration, Multiparticle azimuthal correlations for extracting event-by-event elliptic and triangular flow in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. Phys. Rev. C 99, 024903 (2019). arXiv:1804.10024 [nucl-ex]
18. PHOBOS Collaboration, Non-flow correlations and elliptic flow fluctuations in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. Phys. Rev. C 81, 034915 (2010). arXiv:1002.0534 [nucl-ex]
19. J. Schukraft, A. Timmins, S. Voloshin, Ultra-relativistic nuclear collisions: event shape engineering. Phys. Lett. B 719, 394 (2013). arXiv: 1208.4563 [nucl-ex]
20. ALICE Collaboration, Event-shape engineering for inclusive spectra and elliptic flow in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$. Phys. Rev. C 93, 034916 (2016). arXiv: 1507.06194 [hep-ex]
21. U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 63, 123 (2013). arXiv:1301.2826 [nucl-th]
22. ATLAS Collaboration, Measurement of multi-particle azimuthal correlations in $p p, p+\mathrm{Pb}$ and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions with the ATLAS detector. Eur. Phys. J. C 77, 428 (2017). arXiv: 1705.04176 [hep-ex]
23. ALICE Collaboration, Multiplicity dependence of pion, kaon, proton and lambda production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$. Phys. Lett. B 728, 25 (2014). arXiv: 1307.6796 [nucl-th]
24. ALICE Collaboration, Transverse momentum spectra and nuclear modification factors of charged particles in $\mathrm{pp}, \mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions at the LHC. JHEP 11, 013 (2018). arXiv:1802.09145 [nucl-ex]
25. P. Bozek, Transverse-momentum-flow correlations in relativistic heavy-ion collisions. Phys. Rev. C 93, 044908 (2016). arXiv: 1601.04513 [nucl-th]
26. J. Jia, M. Zhou, A. Trzupek, Revealing long-range multiparticle collectivity in small collision systems via subevent cumulants. Phys. Rev. C 96, 034906 (2017). arXiv: 1701.03830 [nucl-ex]
27. ATLAS Collaboration, Measurement of flow harmonics with multiparticle cumulants in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$ with the ATLAS detector. Eur. Phys. J. C 74, 3157 (2014). arXiv: 1408.4342 [hep-ex]
28. STAR Collaboration, Incident energy dependence of $p_{t}$ correlations at relativistic energies. Phys. Rev. C 72, 044902 (2005). arXiv:nucl-ex/0504031 [nucl-ex]
29. ALICE Collaboration, Event-by-event mean $p_{\mathbf{T}}$ fluctuations in pp and $\mathrm{Pb}-\mathrm{Pb}$ collisions at the LHC. Eur. Phys. J. C 74, 3077 (2014). arXiv: 1407.5530 [nucl-ex]
30. ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008)
31. ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report, ATLAS-TDR-19, 2010. https://cds.cern.ch/record/ 1291633 (Addendum: ATLAS-TDR-19-ADD-1, 2012, https://cds. cern.ch/record/1451888)
32. B. Abbott et al., Production and integration of the ATLAS Insertable B-Layer. JINST 13, T05008 (2018). arXiv:1803.00844 [physics.ins-det]
33. ATLAS Collaboration, Performance of the ATLAS Trigger System in 2010. Eur. Phys. J. C 72, 1849 (2012). arXiv: 1110.1530 [hep-ex]
34. ATLAS Collaboration, Performance of the ATLAS trigger system in 2015. Eur. Phys. J. C 77, 317 (2017). arXiv: 1611.09661 [hep-ex]
35. ATLAS Collaboration, Fluctuations of anisotropic flow in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ with the ATLAS detector (2019). arXiv: 1904.04808 [nucl-ex]
36. ATLAS Collaboration, Measurement of long-range pseudorapidity correlations and azimuthal harmonics in $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ proton-lead collisions with the ATLAS detector. Phys. Rev. C 90, 044906 (2014). arXiv: 1409.1792 [hep-ex]
37. P. Bozek, W. Broniowski, M. Rybczynski, Wounded quarks in $\mathrm{A}+$ A, p + A, and p + p collisions. Phys. Rev. C 94, 014902 (2016). arXiv:1604.07697 [nucl-th]
38. B. Alver, M. Baker, C. Loizides, P. Steinberg, The PHOBOS Glauber Monte Carlo (2008). arXiv:0805.4411v1
39. X.-N. Wang, M. Gyulassy, Hijing: a Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D 44, 3501 (1991)
40. J. Jia, S. Mohapatra, Disentangling flow and nonflow correlations via Bayesian unfolding of the event-by-event distributions of harmonic coefficients in ultrarelativistic heavy-ion collisions. Phys. Rev. C 88, 014907 (2013). arXiv:1304.1471 [nucl-ex]
41. S. Agostinelli et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003)
42. ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). arXiv:1005.4568 [physics.ins-det]
43. ATLAS Collaboration, Study of the material of the ATLAS inner detector for Run 2 of the LHC. JINST 12, P12009 (2017). arXiv: 1707.02826 [hep-ex]
44. ATLAS Collaboration, Charged-particle distributions in $\sqrt{s}=$ $13 \mathrm{TeV} p p$ interactions measured with the ATLAS detector at the LHC. Phys. Lett. B 758, 67 (2016). arXiv:1602.01633 [hep-ex]
45. ATLAS Collaboration, Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method
in $p p$ and $p+\mathrm{Pb}$ collisions with the ATLAS detector at the CERN Large Hadron Collider. Phys. Rev. C 97, 024904 (2018). arXiv:1708.03559 [hep-ex]
46. S. Voloshin, A.M. Poskanzer, R. Snellings, Collective phenomena in non-central nuclear collisions (2008). arXiv:0809.2949 [nuclex]
47. A. Mazeliauskas, D. Teaney, Fluctuations of harmonic and radial flow in heavy ion collisions with principal components. Phys. Rev. C 93, 024913 (2016). arXiv:1509.07492 [nucl-th]
48. C. Loizides, Glauber modeling of high-energy nuclear collisions at the subnucleon level. Phys. Rev. C 94, 024914 (2016). arXiv:1603.07375 [nucl-ex]
49. ATLAS Collaboration, ATLAS Computing Acknowledgements, ATL-GEN-PUB-2016-002. https://cds.cern.ch/record/2202407

## ATLAS Collaboration

G. Aad $^{101}$, B. Abbott ${ }^{128}$, D. C. Abbott ${ }^{102}$, A. Abed Abud ${ }^{70 a, 70 b}$, K. Abeling ${ }^{53}$, D. K. Abhayasinghe ${ }^{93}$, S. H. Abidi ${ }^{167}$, O. S. AbouZeid ${ }^{40}$, N. L. Abraham ${ }^{156}$, H. Abramowicz ${ }^{161}$, H. Abreu ${ }^{160}$, Y. Abulaiti ${ }^{6}$, B. S. Acharya ${ }^{66 a, 66 b, o}$, B. Achkar ${ }^{53}$, S. Adachi ${ }^{163}$, L. Adam ${ }^{99}$, C. Adam Bourdarios ${ }^{5}$, L. Adamczyk ${ }^{83 a}$, L. Adamek ${ }^{167}$, J. Adelman ${ }^{121}$, M. Adersberger ${ }^{114}$, A. Adiguzel ${ }^{12 \mathrm{c}, \mathrm{ak}}$, S. Adorni ${ }^{54}$, T. Adye ${ }^{144}$, A. A. Affolder ${ }^{146}$, Y. Afik ${ }^{160}$, C. Agapopoulou ${ }^{132}$, M. N. Agaras ${ }^{38}$, A. Aggarwal ${ }^{119}$, C. Agheorghiesei ${ }^{27 \mathrm{c}}$, J. A. Aguilar-Saavedra ${ }^{140 \mathrm{a}, 140 \mathrm{f}, \mathrm{aj}}$, F. Ahmadov ${ }^{79}$, W. S. Ahmed ${ }^{103}$, X. Ai ${ }^{18}$, G. Aielli ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, S. Akatsuka ${ }^{85}$, T. P. A. Åkesson ${ }^{96}$, E. Akilli ${ }^{54}$, A. V. Akimov ${ }^{110}$, K. Al Khoury ${ }^{132}$, G. L. Alberghi ${ }^{23 a, 23 b}$, J. Albert ${ }^{176}$, M. J. Alconada Verzini ${ }^{161}$, $\quad$ S. Alderweireldt ${ }^{36}$, M. Aleksa ${ }^{36}$, I. N. Aleksandrov ${ }^{79}$, C. Alexa ${ }^{27 b}$, D. Alexandre ${ }^{19}$, T. Alexopoulos ${ }^{10}$, A. Alfonsi ${ }^{120}$, F. Alfonsi ${ }^{23 a, 23 b}$, M. Alhroob ${ }^{128}$, B. Ali ${ }^{142}$, G. Alimonti ${ }^{68 \mathrm{a}}$, J. Alison ${ }^{37}$, S. P. Alkire ${ }^{148}$, C. Allaire ${ }^{132}$, B. M. M. Allbrooke ${ }^{156}$, B. W. Allen ${ }^{131}$, P. P. Allport ${ }^{21}$, A. Aloisio ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$, A. Alonso ${ }^{40}$, F. Alonso ${ }^{88}$, C. Alpigiani ${ }^{148}$, A. A. Alshehri ${ }^{57}$, M. Alvarez Estevez ${ }^{98}$, D. Álvarez Piqueras ${ }^{174}$, M. G. Alviggi ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$, Y. Amaral Coutinho ${ }^{80 b}$, A. Ambler ${ }^{103}$, L. Ambroz ${ }^{135}$, C. Amelung ${ }^{26}$, D. Amidei ${ }^{105}$, S. P. Amor Dos Santos ${ }^{140 \text { a }}$, S. Amoroso ${ }^{46}$, C. S. Amrouche ${ }^{54}$, F. An ${ }^{78}$, C. Anastopoulos ${ }^{149}$, N. Andari ${ }^{145}$, T. Andeen ${ }^{11}$, C. F. Anders ${ }^{61 b}$, J. K. Anders ${ }^{20}$, A. Andreazza ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, $\quad$ V. Andrei ${ }^{61 \mathrm{a}}$, $\quad$ C. R. Anelli ${ }^{176}$, $\quad$ S. Angelidakis $^{38}$, A. Angerami ${ }^{39}$, A. V. Anisenkov ${ }^{122 a, 122 b}$, A. Annovi ${ }^{71 \mathrm{a}}$, $\quad$ C. Antel ${ }^{61 \mathrm{a}}, \quad$ M. T. Anthony ${ }^{149}, \quad$ M. Antonelli ${ }^{51}$, $\quad$ D. J. A. Antrim ${ }^{171}$, F. Anulli ${ }^{72 \mathrm{a}}$, M. Aoki ${ }^{81}$, J. A. Aparisi Pozo ${ }^{174}$, L. Aperio Bella ${ }^{15 \mathrm{a}}$, G. Arabidze ${ }^{106}$, J. P. Araque ${ }^{140 \mathrm{a}}$, V. Araujo Ferraz ${ }^{80 \mathrm{~b}}$, R. Araujo Pereira ${ }^{80 \mathrm{~b}}$, C. Arcangeletti ${ }^{51}$, A. T. H. Arce ${ }^{49}$, F. A. Arduh ${ }^{88}$, J.-F. Arguin ${ }^{109}$, S. Argyropoulos ${ }^{77}$, J.-H. Arling ${ }^{46}$, A. J. Armbruster ${ }^{36}$, A. Armstrong ${ }^{171}$, O. Arnaez ${ }^{167}$, H. Arnold ${ }^{120}$, A. Artamonov ${ }^{111, *}$, G. Artoni ${ }^{135}$, S. Artz ${ }^{99}$, S. Asai ${ }^{163}$, N. Asbah ${ }^{59}$, E. M. Asimakopoulou ${ }^{172}$, L. Asquith ${ }^{156}$, J. Assahsah ${ }^{35 \mathrm{~d}}$, K. Assamagan ${ }^{29}$, R. Astalos ${ }^{28 \mathrm{a}}$, R. J. Atkin ${ }^{33 \mathrm{a}}$, M. Atkinson ${ }^{173}$, N. B. Atlay ${ }^{19}$, H. Atmani ${ }^{132}$, K. Augsten ${ }^{142}$, G. Avolio ${ }^{36}$, R. Avramidou ${ }^{60 \mathrm{a}}$, M. K. Ayoub ${ }^{15 \mathrm{a}}$, A. M. Azoulay ${ }^{168 \mathrm{~b}}$, G. Azuelos ${ }^{109, \text { az }}$, H. Bachacou ${ }^{145}$, K. Bachas ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, M. Backes ${ }^{135}$, F. Backman ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, P. Bagnaia ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, M. Bahmani ${ }^{84}$, H. Bahrasemani ${ }^{152}$, A. J. Bailey ${ }^{174}$, V. R. Bailey ${ }^{173}$, J. T. Baines ${ }^{144}$, M. Bajic ${ }^{40}$, C. Bakalis ${ }^{10}$, O. K. Baker ${ }^{183}$, P. J. Bakker ${ }^{120}$, D. Bakshi Gupta ${ }^{8}$, S. Balaji ${ }^{157}$, E. M. Baldin ${ }^{122 a, 122 b}$, P. Balek ${ }^{180}$, F. Balli ${ }^{145}$, W. K. Balunas ${ }^{135}$, J. Balz ${ }^{99}$, E. Banas ${ }^{84}$, A. Bandyopadhyay ${ }^{24}$, Sw. Banerjee ${ }^{181, j}$, A. A. E. Bannoura ${ }^{182}$, L. Barak ${ }^{161}$, W. M. Barbe ${ }^{38}$, E. L. Barberio ${ }^{104}$, D. Barberis ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$, M. Barbero ${ }^{101}$, G. Barbour ${ }^{94}$, T. Barillari ${ }^{115}$, M.-S. Barisits ${ }^{36}$, J. Barkeloo ${ }^{131}$, T. Barklow ${ }^{153}$, R. Barnea ${ }^{160}$, S. L. Barnes ${ }^{60 c}$, B. M. Barnett ${ }^{144}, \quad$ R. M. Barnett ${ }^{18}, \quad$ Z. Barnovska-Blenessy ${ }^{60 \mathrm{a}}$, A. Baroncelli ${ }^{60 \mathrm{a}}$, G. Barone ${ }^{29}$, A. J. Barr ${ }^{135}$, L. Barranco Navarro ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, F. Barreiro ${ }^{98}$, J. Barreiro Guimarães da Costa ${ }^{15 \mathrm{a}}$, S. Barsov ${ }^{138}$, ,
 R. L. Bates ${ }^{57}$, S. Batlamous ${ }^{35 e}$, J. R. Batley ${ }^{32}$, B. Batool ${ }^{151}$, M. Battaglia ${ }^{146}$, M. Bauce ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, F. Bauer ${ }^{145}$, K. T. Bauer ${ }^{171}$, H. S. Bawa ${ }^{31, \mathrm{~m}}$, J. B. Beacham ${ }^{49}$, T. Beau ${ }^{136}$, P. H. Beauchemin ${ }^{170}$, F. Becherer ${ }^{52}$, P. Bechtle ${ }^{24}$, H. C. Beck ${ }^{53}$, H. P. Beck ${ }^{20, \mathrm{~s}}$, K. Becker ${ }^{52}$, M. Becker ${ }^{99}$, C. Becot $^{46}$, A. Beddall ${ }^{12 \mathrm{~d}}$, A. J. Beddall ${ }^{12 \mathrm{a}}$, V. A. Bednyakov ${ }^{79}$, M. Bedognetti ${ }^{120}$, C. P. Bee ${ }^{155}$, T. A. Beermann ${ }^{76}$, M. Begalli ${ }^{80 b}$, M. Begel ${ }^{29}$, A. Behera ${ }^{155}$, J. K. Behr ${ }^{46}$, F. Beisiegel ${ }^{24}$, A. S. Bell ${ }^{94}$, G. Bella ${ }^{161}$, L. Bellagamba ${ }^{23 b}$, A. Bellerive ${ }^{34}$, P. Bellos ${ }^{9}$, K. Beloborodov ${ }^{122 a, 122 b}$, K. Belotskiy ${ }^{112}$, N. L. Belyaev ${ }^{112}$, D. Benchekroun ${ }^{35 a}$, N. Benekos ${ }^{10}$, Y. Benhammou ${ }^{161}$, D. P. Benjamin ${ }^{6}$, M. Benoit ${ }^{54}$, J. R. Bensinger ${ }^{26}$, S. Bentvelsen ${ }^{120}$, L. Beresford ${ }^{135}$, M. Beretta ${ }^{51}$, D. Berge ${ }^{46}$, E. Bergeaas Kuutmann ${ }^{172}$, N. Berger ${ }^{5}$, B. Bergmann ${ }^{142}$, L. J. Bergsten ${ }^{26}$, J. Beringer ${ }^{18}$, S. Berlendis ${ }^{7}$, N. R. Bernard ${ }^{102}$, G. Bernardi ${ }^{136}$, C. Bernius ${ }^{153}$, T. Berry ${ }^{93}$, P. Berta ${ }^{99}$, C. Bertella ${ }^{15 a}$, I. A. Bertram ${ }^{89}$, O. Bessidskaia Bylund ${ }^{182}$, N. Besson ${ }^{145}$, A. Bethani ${ }^{100}$, S. Bethke ${ }^{115}$, A. Betti ${ }^{24}$, A. J. Bevan ${ }^{92}$, J. Beyer ${ }^{115}$,
D. S. Bhattacharya ${ }^{177}$, R. Bi $^{139}$, R.M. Bianchi ${ }^{139}$, O. Biebel ${ }^{114}$, D. Biedermann ${ }^{19}$, R. Bielski ${ }^{36}$, K. Bierwagen ${ }^{99}$, N. V. Biesuz ${ }^{71 a, 71 b}$, M. Biglietti ${ }^{74 \mathrm{a}}$, T. R. V. Billoud ${ }^{109}$, M. Bindi ${ }^{53}$, A. Bingul ${ }^{12 \mathrm{~d}}$, C. Bini ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, S. Biondi ${ }^{23 \mathrm{a}, 23 \mathrm{~b}}$, M. Birman ${ }^{180}$, T. Bisanz ${ }^{53}$, J. P. Biswal ${ }^{161}$, D. Biswas ${ }^{181, j}$, A. Bitadze ${ }^{100}$, C. Bittrich ${ }^{48}$, K. Bjørke ${ }^{134}$, K. M. Black ${ }^{25}$, T. Blazek ${ }^{28 \mathrm{a}}$, I. Bloch ${ }^{46}$, C. Blocker ${ }^{26}$, A. Blue ${ }^{57}$, U. Blumenschein ${ }^{92}$, G. J. Bobbink ${ }^{120}$, V. S. Bobrovnikov ${ }^{122 a, 122 b}$, S. S. Bocchetta ${ }^{96}$, A. Bocci $^{49}$, D. Boerner ${ }^{46}$, D. Bogavac ${ }^{14}$, A. G. Bogdanchikov ${ }^{122 a, 122 b}$, C. Bohm ${ }^{45 a}$, V. Boisvert ${ }^{93}$, P. Bokan ${ }^{53,172}$, T. Bold ${ }^{83 a}$, A. S. Boldyrev ${ }^{113}$, A. E. Bolz ${ }^{61 b}$, M. Bomben ${ }^{136}$, M. Bona ${ }^{92}$, J. S. Bonilla ${ }^{131}$, M. Boonekamp ${ }^{145}$, H. M. Borecka-Bielska ${ }^{90}$, A. Borisov ${ }^{123}$, G. Borissov ${ }^{89}$, J. Bortfeldt ${ }^{36}$, D. Bortoletto ${ }^{135}$, D. Boscherini ${ }^{23 b}$, M. Bosman ${ }^{14}$, J. D. Bossio Sola ${ }^{103}$, K. Bouaouda ${ }^{35 a}$, J. Boudreau ${ }^{139}$, E. V. Bouhova-Thacker ${ }^{89}$, D. Boumediene ${ }^{38}$, S. K. Boutle ${ }^{57}$, A. Boveia ${ }^{126}$, J. Boyd ${ }^{36}$, D. Boye ${ }^{33 b, a t, ~ I . ~ R . ~ B o y k o ~}{ }^{79}$, A. J. Bozson ${ }^{93}$, J. Bracinik ${ }^{21}$, N. Brahimi ${ }^{101}$, G. Brandt ${ }^{182}$, O. Brandt ${ }^{32}$, F. Braren ${ }^{46}$, B. Brau ${ }^{102}$, J. E. Brau ${ }^{131, ~ W . ~ D . ~ B r e a d e n ~ M a d d e n ~}{ }^{57}$, K. Brendlinger ${ }^{46}$, L. Brenner ${ }^{46}$, R. Brenner ${ }^{172}$, S. Bressler ${ }^{180}$, B. Brickwedde ${ }^{99}$, D. L. Briglin ${ }^{21}$, D. Britton ${ }^{57}$, D. Britzger ${ }^{115 \text {, I. Brock }}{ }^{24}$, R. Brock ${ }^{106}$, G. Brooijmans ${ }^{39}$, W. K. Brooks ${ }^{147 \mathrm{~b}}$, E. Brost ${ }^{121}$, J. H. Broughton ${ }^{21}$, P. A. Bruckman de Renstrom ${ }^{84}$, D. Bruncko ${ }^{28 \mathrm{~b}}$, A. Bruni ${ }^{23 b}$, G. Bruni ${ }^{23 b}$, L. S. Bruni ${ }^{120}$, S. Bruno ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, B. H. Brunt ${ }^{32}$, M. Bruschi ${ }^{23 b}$, N. Bruscino ${ }^{139}$, P. Bryant ${ }^{37}$, L. Bryngemark ${ }^{96}$, T. Buanes ${ }^{17}$, Q. Buat ${ }^{36}$, P. Buchholz ${ }^{151}$, A. G. Buckley ${ }^{57}$, I. A. Budagov ${ }^{79}$, M. K. Bugge ${ }^{134}$, F. Bührer ${ }^{52}$, O. Bulekov ${ }^{112}$, T. J. Burch ${ }^{121}$, S. Burdin ${ }^{90}$, C. D. Burgard ${ }^{120}$, A. M. Burger ${ }^{129}$, B. Burghgrave ${ }^{8}$, K. Burka ${ }^{83 a}$, J. T. P. Burr ${ }^{46}$, C. D. Burton ${ }^{11}$, J. C. Burzynski ${ }^{102}$, V. Büscher ${ }^{99}$, E. Buschmann ${ }^{53}$, P. J. Bussey ${ }^{57}$, J. M. Butler ${ }^{25}$, C. M. Buttar ${ }^{57}$, J. M. Butterworth ${ }^{94}$, P. Butti ${ }^{36}$, W. Buttinger ${ }^{36}$, A. Buzatu ${ }^{158}$, A. R. Buzykaev ${ }^{122 a, 122 b}$, G. Cabras ${ }^{23 a, 23 b}$, S. Cabrera Urbán ${ }^{174}$, D. Caforio ${ }^{56}$, H. Cai ${ }^{173}$, V. M. M. Cairo ${ }^{153}$, O. Cakir ${ }^{4 \mathrm{a}}$, N. Calace ${ }^{36}$, P. Calafiura ${ }^{18}$, A. Calandri ${ }^{101}$, G. Calderini ${ }^{136}$, P. Calfayan ${ }^{65}$, G. Callea ${ }^{57}$, L. P. Caloba ${ }^{80 \mathrm{~b}}$, S. Calvente Lopez ${ }^{98}$, D. Calvet ${ }^{38}$, S. Calvet ${ }^{38}$, T. P. Calvet ${ }^{155}$, M. Calvetti ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, R. Camacho Toro ${ }^{136}$, S. Camarda ${ }^{36}$, D. Camarero Munoz ${ }^{98}$, P. Camarri ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, D. Cameron ${ }^{134}$, R. Caminal Armadans ${ }^{102}$, C. Camincher ${ }^{36}$, S. Campana ${ }^{36}$, M. Campanelli ${ }^{94}$, A. Camplani ${ }^{40}$, A. Campoverde ${ }^{151}$, V. Canale ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$, A. Canesse ${ }^{103}$, M. Cano Bret ${ }^{60 \mathrm{c}}$, J. Cantero ${ }^{129}$, T. Cao ${ }^{161}$, Y. Cao ${ }^{173}$, M. D. M. Capeans Garrido ${ }^{36}$, M. Capua ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$, R. Cardarelli ${ }^{73 \mathrm{a}}$, F. Cardillo ${ }^{149}$, G. Carducci ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$, I. Carli ${ }^{143}$, T. Carli ${ }^{36}$, G. Carlino ${ }^{69 \mathrm{a}}$, B. T. Carlson ${ }^{139}$, L. Carminati ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, R. M. D. Carney ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, S. Caron ${ }^{119}$, E. Carquin ${ }^{147 \mathrm{~b}}$, S. Carrá ${ }^{46}$, J. W. S. Carter ${ }^{167}$, M. P. Casado ${ }^{14, \mathrm{e}}$, A. F. Casha ${ }^{167}$, $\quad$ D. W. Casper ${ }^{171}$, $\quad$ R. Castelijn ${ }^{120}$, F. L. Castillo ${ }^{174}$, V. Castillo Gimenez ${ }^{174}$, N. F. Castro ${ }^{140 a, 140 \mathrm{e}}$, A. Catinaccio ${ }^{36}$, J. R. Catmore ${ }^{134}$, A. Cattai ${ }^{36}$, J. Caudron ${ }^{24}$, V. Cavaliere ${ }^{29}$, E. Cavallaro ${ }^{14}$, M. Cavalli-Sforza ${ }^{14}$, V. Cavasinni ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, E. Celebi ${ }^{12 \mathrm{~b}}$, F. Ceradini ${ }^{74 \mathrm{a}, 74 \mathrm{~b}}$, L. Cerda Alberich ${ }^{174}$, K. Cerny ${ }^{130}$, A. S. Cerqueira ${ }^{80 \mathrm{a}}$, A. Cerri ${ }^{156}$, L. Cerrito ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, F. Cerutti ${ }^{18}$, A. Cervelli ${ }^{23 \mathrm{a}, 23 \mathrm{~b}}$, S. A. Cetin ${ }^{12 \mathrm{~b}}$, Z. Chadi ${ }^{35 \mathrm{a}}$, D. Chakraborty ${ }^{121}$, S. K. Chan ${ }^{59}$, W. S. Chan ${ }^{120}$, W. Y. Chan ${ }^{90}$, J. D. Chapman ${ }^{32}$, B. Chargeishvili ${ }^{159 b}$, D. G. Charlton ${ }^{21}$, T. P. Charman ${ }^{92}$, C. C. Chau ${ }^{34}$, S. Che ${ }^{126}$, S. Chekanov ${ }^{6}$, S. V. Chekulaev ${ }^{168 a}$, G. A. Chelkov ${ }^{79, \text { ay }}$, M. A. Chelstowska ${ }^{36}$, B. Chen ${ }^{78}$, C. Chen ${ }^{60 a}$, C. H. Chen ${ }^{78}$, H. Chen ${ }^{29}$, J. Chen ${ }^{60 \mathrm{a}}$, J. Chen ${ }^{39}$, S. Chen ${ }^{137}$, S. J. Chen ${ }^{15 \mathrm{c}}$, X. Chen ${ }^{15 \mathrm{~b}, \mathrm{ax}}$, Y. Chen ${ }^{82}$, Y.-H. Chen ${ }^{46}$, H. C. Cheng ${ }^{63 \mathrm{a}}$, H. J. Cheng ${ }^{15 a, 15 \mathrm{~d}}$, A. Cheplakov ${ }^{79}$, E. Cheremushkina ${ }^{123}$, R. Cherkaoui El Moursli ${ }^{35 \mathrm{e}}$, E. Cheu ${ }^{7}$, K. Cheung ${ }^{64}$, T. J. A. Chevalérias ${ }^{145}$, L. Chevalier ${ }^{145}$, V. Chiarella ${ }^{51}$, G. Chiarelli ${ }^{71 \mathrm{a} a}$, G. Chiodini ${ }^{67 \mathrm{a}}$, A. S. Chisholm ${ }^{21}$, A. Chitan ${ }^{27 b}$, I. Chiu ${ }^{163}$, Y. H. Chiu ${ }^{176}$, M. V. Chizhov ${ }^{79}$, K. Choi ${ }^{65}$, A. R. Chomont ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, S. Chouridou ${ }^{162}$, Y. S. Chow ${ }^{120}$, M. C. Chu ${ }^{63 a}$, X. Chu ${ }^{15 a}$, J. Chudoba ${ }^{141}$, A. J. Chuinard ${ }^{103}$, J. J. Chwastowski ${ }^{84}$, L. Chytka ${ }^{130}$, D. Cieri ${ }^{115}$, K. M. Ciesla ${ }^{84}$, D. Cinca ${ }^{47}$, V. Cindro ${ }^{91}$, I. A. Cioară ${ }^{27 \mathrm{~b}}$, A. Ciocio ${ }^{18}$, F. Cirotto ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$, Z. H. Citron ${ }^{180, \mathrm{k}}$, M. Citterio ${ }^{68 \mathrm{a}}$, D. A. Ciubotaru ${ }^{27 \mathrm{~b}}$, B. M. Ciungu ${ }^{167}$, A. Clark ${ }^{54}$, M. R. Clark ${ }^{39}$, P. J. Clark ${ }^{50}$, C. Clement ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, Y. Coadou ${ }^{101}$, M. Cobal ${ }^{66 a, 66 c}$, A. Coccaro ${ }^{55 b}$, J. Cochran ${ }^{78}$, H. Cohen ${ }^{161}$, A. E. C. Coimbra ${ }^{36}$, L. Colasurdo ${ }^{119}$, B. Cole ${ }^{39}$, A. P. Colijn ${ }^{120}$, J. Collot ${ }^{58}$, P. Conde Muiño ${ }^{140 \mathrm{a}, \mathrm{f}}$, E. Coniavitis ${ }^{52}$, S. H. Connell ${ }^{33 \mathrm{~b}}$, I. A. Connelly ${ }^{57}$, S. Constantinescu ${ }^{27 \mathrm{~b}}$, F. Conventi ${ }^{69 a, a a a}$, A. M. Cooper-Sarkar ${ }^{135}$, F. Cormier ${ }^{175}$, K. J. R. Cormier ${ }^{167}$, L. D. Corpe ${ }^{94}$, M. Corradi ${ }^{72 a, 72 b}$, E. E. Corrigan ${ }^{96}$, F. Corriveau ${ }^{103 \text {,af }, ~ A . ~ C o r t e s-G o n z a l e z ~}{ }^{36}$, M. J. Costa ${ }^{174}$, F. Costanza ${ }^{5}$, D. Costanzo ${ }^{149}$, G. Cowan ${ }^{93}$, J. W. Cowley ${ }^{32}$, J. Crane ${ }^{100}$, K. Cranmer ${ }^{124}$, S. J. Crawley ${ }^{57}$, R. A. Creager ${ }^{137}$, S. Crépé-Renaudin ${ }^{58}$, F. Crescioli ${ }^{136}$, M. Cristinziani ${ }^{24}$, V. Croft ${ }^{120}$, G. Crosetti ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$, A. Cueto ${ }^{5}$, T. Cuhadar Donszelmann ${ }^{149}$, A. R. Cukierman ${ }^{153}$, S. Czekierda ${ }^{84}$, P. Czodrowski ${ }^{36}$, M. J. Da Cunha Sargedas De Sousa ${ }^{60 \mathrm{~b}}$, J. V. Da Fonseca Pinto ${ }^{80 \mathrm{~b}}$, C. Da Via ${ }^{100}$, W. Dabrowski ${ }^{83 a}$, T. Dado ${ }^{28 a}$, S. Dahbi ${ }^{35 \mathrm{e}}$, T. Dai ${ }^{105}$, C. Dallapiccola ${ }^{102}$, M. Dam ${ }^{40}$, G. D'amen ${ }^{29}$, V. D'Amico ${ }^{74 a, 74 b}$, J. Damp ${ }^{99}$, J. R. Dandoy ${ }^{137}$, M. F. Daneri ${ }^{30}$, N. P. Dang ${ }^{181, j}$, N. S. Dann ${ }^{100}$, M. Danninger ${ }^{175}$, V. Dao ${ }^{36}$, G. Darbo ${ }^{55 b}$, O. Dartsi ${ }^{5}$, A. Dattagupta ${ }^{131}$, T. Daubney ${ }^{46}$, S. D'Auria ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, W. Davey ${ }^{24}$, C. David ${ }^{46}$, T. Davidek ${ }^{143}$, D. R. Davis ${ }^{49}$, I. Dawson ${ }^{149}$, K. De ${ }^{8}$, R. De Asmundis ${ }^{69 a}$, M. De Beurs ${ }^{120}$, S. De Castro ${ }^{23 a, 23 b}$, S. De Cecco ${ }^{72 a}, 72 \mathrm{~b}$, N. De Groot ${ }^{119}$, P. de Jong ${ }^{120}$, H. De la Torre ${ }^{106}$, A. De Maria ${ }^{15 c}$, D. De Pedis ${ }^{72 \mathrm{a}}$, A. De Salvo ${ }^{72 \mathrm{a}}$, U. De Sanctis ${ }^{73 a}$, ${ }^{73 \mathrm{~b}}$, M. De Santis ${ }^{73 \mathrm{a}}$, 73 b , A. De Santo ${ }^{156}$, K. De Vasconcelos Corga ${ }^{101}$, J. B. De Vivie De Regie ${ }^{132}$, C. Debenedetti ${ }^{146}$, D. V. Dedovich ${ }^{79}$, A. M. Deiana ${ }^{42}$, M. Del Gaudio ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$, J. Del Peso ${ }^{98}$, Y. Delabat Diaz ${ }^{46}$, D. Delgove ${ }^{132}$, F. Deliot ${ }^{145, r}$, C. M. Delitzsch ${ }^{7}$, M. Della Pietra ${ }^{69 a}$, 69b $\quad$ D. Della Volpe ${ }^{54}$, A. Dell'Acqua ${ }^{36}$, L. Dell'Asta ${ }^{73 a, 73 b}$, M. Delmastro ${ }^{5}$, C. Delporte ${ }^{132}$, P. A. Delsart ${ }^{58}$, D. A. DeMarco ${ }^{167}$, S. Demers ${ }^{183}$, M. Demichev ${ }^{79}$, G. Demontigny ${ }^{109}$, S. P. Denisov ${ }^{123}$, D. Denysiuk ${ }^{120}$,
L. D'Eramo ${ }^{136}$, D. Derendarz ${ }^{84}$, J. E. Derkaoui ${ }^{35 d}$, F. Derue ${ }^{136}$, P. Dervan ${ }^{90}$, K. Desch ${ }^{24}$, C. Deterre ${ }^{46}$, K. Dette ${ }^{167}$, C. Deutsch ${ }^{24}$, M. R. Devesa ${ }^{30}$, P. O. Deviveiros ${ }^{36}$, A. Dewhurst ${ }^{144}$, F. A. Di Bello ${ }^{54}$, A. Di Ciaccio ${ }^{73 a}$, 73b , L. Di Ciaccio ${ }^{5}$, W. K. Di Clemente ${ }^{137}$, C. Di Donato ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$, A. Di Girolamo ${ }^{36}$, G. Di Gregorio ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, B. Di Micco ${ }^{74 a, 74 b}$, R. Di Nardo ${ }^{102}$, K. F. Di Petrillo ${ }^{59}$, R. Di Sipio ${ }^{167}$, D. Di Valentino ${ }^{34}$, C. Diaconu ${ }^{101}$, F. A. Dias ${ }^{40}$, T. Dias Do Vale ${ }^{140 a}$, M. A. Diaz ${ }^{147 a}$, J. Dickinson ${ }^{18}$, E. B. Dieh1 ${ }^{105}$, J. Dietrich ${ }^{19}$, S. Díez Cornell ${ }^{46}$, A. Dimitrievska ${ }^{18}$, W. Ding ${ }^{15 b}$, J. Dingfelder ${ }^{24}$, F. Dittus ${ }^{36}$, F. Djama ${ }^{101}$, T. Djobava ${ }^{159 b}$, J. I. Djuvsland ${ }^{17}$, M. A. B. Do Vale ${ }^{80 c}$, M. Dobre ${ }^{27 b}$, D. Dodsworth ${ }^{26}$, C. Doglioni ${ }^{96}$, J. Dolejsi ${ }^{143}$, Z. Dolezal ${ }^{143}$, M. Donadelli8 ${ }^{80 d}$, B. Dong ${ }^{60 \mathrm{c}}$, J. Donini ${ }^{38}$, A. D'onofrio ${ }^{92}$, M. D'Onofrio ${ }^{90}$, J. Dopke ${ }^{144}$, A. Doria ${ }^{69 \mathrm{a}}$, M. T. Dova ${ }^{88}$, A. T. Doyle ${ }^{57}$, E. Drechsler ${ }^{152}$, E. Dreyer ${ }^{152}$, T. Dreyer ${ }^{53}$, A. S. Drobac ${ }^{170}$, Y. Duan ${ }^{60 b}$, F. Dubinin ${ }^{110}$, M. Dubovsky ${ }^{28 a}$, A. Dubreuil ${ }^{54}$, E. Duchovni ${ }^{180}$, G. Duckeck ${ }^{114}$, A. Ducourthial ${ }^{136}$, O. A. Ducu ${ }^{109}$, D. Duda ${ }^{115}$, A. Dudarev ${ }^{36}$, A. C. Dudder ${ }^{99}$, E. M. Duffield ${ }^{18}$, L. Duflot ${ }^{132}$, M. Dührssen ${ }^{36}$, C. Dülsen ${ }^{182}$, M. Dumancic ${ }^{180}$, A. E. Dumitriu ${ }^{27 \mathrm{~b}}$, A. K. Duncan ${ }^{57}$, M. Dunford ${ }^{61 \mathrm{a}}$, A. Duperrin ${ }^{101}$, H. Duran Yildiz ${ }^{4 \mathrm{a}}$, M. Düren ${ }^{56}$, A. Durglishvili ${ }^{159 b}$, D. Duschinger ${ }^{48}$, B. Dutta ${ }^{46}$, D. Duvnjak ${ }^{1}$, G. I. Dyckes ${ }^{137}$, M. Dyndal ${ }^{36}$, S. Dysch ${ }^{100}$, B. S. Dziedzic ${ }^{84}$, K. M. Ecker ${ }^{115}$, R. C. Edgar ${ }^{105}$, M. G. Eggleston ${ }^{49}$, T. Eifert ${ }^{36}$, G. Eigen ${ }^{17}$, K. Einsweiler ${ }^{18}$, T. Ekelof ${ }^{172}$, H. El Jarrari ${ }^{35 e}$, M. El Kacimi ${ }^{35 \mathrm{c}}$, R. El Kosseifi ${ }^{101}$, V. Ellajosyula ${ }^{172}$, M. Ellert ${ }^{172}$, F. Ellinghaus ${ }^{182}$, A. A. Elliot ${ }^{92}$, N. Ellis ${ }^{36}$, J. Elmsheuser ${ }^{29}$, M. Elsing ${ }^{36}$, D. Emeliyanov ${ }^{144}$, A. Emerman ${ }^{39}$, Y. Enari ${ }^{163}$, M. B. Epland ${ }^{49}$, J. Erdmann ${ }^{47}$, A. Ereditato ${ }^{20}$, M. Errenst ${ }^{36}$, M. Escalier ${ }^{132}$, C. Escobar ${ }^{174}$, O. Estrada Pastor ${ }^{174}$, E. Etzion ${ }^{161}$, H. Evans ${ }^{65}$, A. Ezhilov ${ }^{138}$, F. Fabbri ${ }^{57}$, L. Fabbri ${ }^{23 a}{ }^{23 b}$, V. Fabiani ${ }^{119}$, G. Facini ${ }^{94}$, R. M. Faisca Rodrigues Pereira ${ }^{140 a}$, R. M. Fakhrutdinov ${ }^{123}$, S. Falciano ${ }^{72 a}$, P. J. Falke ${ }^{5}$, S. Falke ${ }^{5}$, J. Faltova ${ }^{143}$, Y. Fang ${ }^{15 a}$, Y. Fang ${ }^{15 a}$, G. Fanourakis ${ }^{44}$, M. Fanti ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, M. Faraj ${ }^{66 \mathrm{a}, 66 \mathrm{c}, \mathrm{v}}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{74 \mathrm{a}}$, E. M. Farina ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$, T. Farooque ${ }^{106}$, $\quad$ S. Farrell ${ }^{18}$, $\quad$ S. M. Farrington ${ }^{50}$, P. Farthouat ${ }^{36}$, F. Fassi ${ }^{35 \mathrm{e}}$, $\quad$ P. Fassnacht ${ }^{36}$, D. Fassouliotis ${ }^{9}$, M. Faucci Giannelli ${ }^{50}$, W. J. Fawcett ${ }^{32}$, L. Fayard ${ }^{132}$, O. L. Fedin ${ }^{138, p}$, W. Fedorko ${ }^{175}$, M. Feickert ${ }^{42}$, L. Feligioni ${ }^{101}$, A. Fell ${ }^{149}$, C. Feng ${ }^{60 b}$, E. J. Feng ${ }^{36}$, M. Feng ${ }^{49}$, M. J. Fenton ${ }^{57}$, A. B. Fenyuk ${ }^{123}$, J. Ferrando ${ }^{46}$, A. Ferrante ${ }^{173}$, A. Ferrari ${ }^{172}$, P. Ferrari ${ }^{120}$, R. Ferrari ${ }^{70 \mathrm{a}}$, D. E. Ferreira de Lima ${ }^{61 b}$, A. Ferrer ${ }^{174}$, D. Ferrere ${ }^{54}$,
 F. Fischer ${ }^{114}$, W. C. Fisher ${ }^{106}$, I. Fleck ${ }^{151}$, P. Fleischmann ${ }^{105}$, R. R. M. Fletcher ${ }^{137}$, T. Flick ${ }^{182}$, B. M. Flierl ${ }^{114}$, L. Flores ${ }^{137}$, L. R. Flores Castillo ${ }^{63 a}$, F. M. Follega ${ }^{75 a}, 75$ b , N. Fomin ${ }^{17}$, J. H. Foo ${ }^{167}$, G. T. Forcolin ${ }^{75 a}, 75$ b , A. Formica ${ }^{145}$, F. A. Förster ${ }^{14}$, A. C. Forti ${ }^{100}$, A. G. Foster ${ }^{21}$, M. G. Foti ${ }^{135}$, D. Fournier ${ }^{132}$, H. Fox ${ }^{89}$, P. Francavilla ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, S. Francescato ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, , M. Franchini ${ }^{23 a, 23 b}$, S. Franchino ${ }^{61 a}$, D. Francis ${ }^{36}$, L. Franconi ${ }^{20}$, M. Franklin ${ }^{59}$, A. N. Fray ${ }^{92}$, P. M. Freeman ${ }^{21}$, B. Freund ${ }^{109}$, W. S. Freund ${ }^{80 \mathrm{~b}}$, E. M. Freundlich ${ }^{47}$, D. C. Frizzell ${ }^{128}$, D. Froidevaux ${ }^{36}$, J. A. Frost ${ }^{135}$, C. Fukunaga ${ }^{164}$, E. Fullana Torregrosa ${ }^{174}$, E. Fumagalli ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$, T. Fusayasu ${ }^{116}$, J. Fuster ${ }^{174}$, A. Gabrielli ${ }^{23 \mathrm{a}, 23 \mathrm{~b}}$, A. Gabrielli ${ }^{18}$, G. P. Gach ${ }^{83 \mathrm{a}}$, S. Gadatsch ${ }^{54}$, P. Gadow ${ }^{115}$, G. Gagliardi ${ }^{55 a, 55 b}$, L. G. Gagnon ${ }^{109}$, C. Galea ${ }^{27 \mathrm{~b}}$, B. Galhardo ${ }^{140 \mathrm{a}}$, G. E. Gallardo ${ }^{135}$, E. J. Gallas ${ }^{135}$, B. J. Gallop ${ }^{144}$, G. Galster ${ }^{40}$, R. Gamboa Goni ${ }^{92}$, K. K. Gan ${ }^{126}$, S. Ganguly ${ }^{180}$, J. Gao ${ }^{60 a}$, Y. Gao ${ }^{50}$, Y. S. Gao ${ }^{31, \mathrm{~m}}$, C. García ${ }^{174}$, J. E. García Navarro ${ }^{174}$, J. A. García Pascual ${ }^{15 a}$, C. Garcia-Argos ${ }^{52}$, M. Garcia-Sciveres ${ }^{18}$, R. W. Gardner ${ }^{37}$, N. Garelli ${ }^{153}$, S. Gargiulo ${ }^{52}$, V. Garonne ${ }^{134}$, A. Gaudiello ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$, G. Gaudio ${ }^{70 \mathrm{a}}$, I. L. Gavrilenko ${ }^{110}$, A. Gavrilyuk ${ }^{111}$, C. Gay ${ }^{175}$, G. Gaycken ${ }^{46}$, E. N. Gazis ${ }^{10}$, A. A. Geanta ${ }^{27 \mathrm{~b}}$, C. M. Gee ${ }^{146}$, C. N. P. Gee ${ }^{144}$, J. Geisen ${ }^{53}$, M. Geisen ${ }^{99}$, M. P. Geisler ${ }^{61 \mathrm{a}}$, C. Gemme ${ }^{55 \mathrm{~b}}$, M. H. Genest ${ }^{58}$, C. Geng ${ }^{105}$, S. Gentile ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, S. George ${ }^{93}$, T. Geralis ${ }^{44}$, L. O. Gerlach ${ }^{53}$, P. Gessinger-Befurt ${ }^{99}$, G. Gessner ${ }^{47}$, S. Ghasemi ${ }^{151}$, M. Ghasemi Bostanabad ${ }^{176}$, A. Ghosh ${ }^{132}$, A. Ghosh ${ }^{77}$, B. Giacobbe ${ }^{23 b}$, S. Giagu ${ }^{72 a, 72 b}$, N. Giangiacomi ${ }^{23 a, 23 b}$, P. Giannetti ${ }^{71 \mathrm{a}}$, A. Giannini ${ }^{69 a, 69 b}$, G. Giannini ${ }^{14}$, S. M. Gibson ${ }^{93}$, M. Gignac ${ }^{146}$, D. Gillberg ${ }^{34}$, G. Gilles ${ }^{182}$, D. M. Gingrich ${ }^{3, a z}$, M. P. Giordani ${ }^{66 a, 66 c}$, F. M. Giorgi ${ }^{23 b}$, P. F. Giraud ${ }^{145}$, G. Giugliarelli ${ }^{66 a, 66 c}$, D. Giugni ${ }^{68 \mathrm{a}}$, F. Giuli ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, S. Gkaitatzis ${ }^{162}$, I. Gkialas ${ }^{9}$, h, E. L. Gkougkousis ${ }^{14}$, P. Gkountoumis ${ }^{10}$, L. K. Gladilin ${ }^{113}$, C. Glasman ${ }^{98}$, J. Glatzer ${ }^{14}$, P. C. F. Glaysher ${ }^{46}$, A. Glazov ${ }^{46}$, G. R. Gledhill ${ }^{131}$, M. Goblirsch-Kolb ${ }^{26}$, D. Godin ${ }^{109}$, S. Goldfarb ${ }^{104}$, T. Golling ${ }^{54}$, D. Golubkov ${ }^{123}$, A. Gomes ${ }^{140 \mathrm{a}, 140 \mathrm{~b}}$, R. Goncalves Gama ${ }^{53}$, R. Gonçalo ${ }^{140 \mathrm{a}, 140 \mathrm{~b}}$, G. Gonella ${ }^{52}$, L. Gonella ${ }^{21}$, A. Gongadze ${ }^{79}$, F. Gonnella ${ }^{21}$, J. L. Gonski ${ }^{59}$, S. González de la $\mathrm{Hoz}^{174}$, S. Gonzalez-Sevilla ${ }^{54}$, G. R. Gonzalvo Rodriguez ${ }^{174}$, L. Goossens ${ }^{36}$, P. A. Gorbounov ${ }^{111}$, H. A. Gordon ${ }^{29}$, B. Gorini ${ }^{36}$, E. Gorini ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, A. Gorišek ${ }^{91}$, A. T. Goshaw ${ }^{49}$, M. I. Gostkin ${ }^{79}$, C. A. Gottardo ${ }^{119}$, M. Gouighri ${ }^{35 b}$, D. Goujdami ${ }^{35 c}$, A. G. Goussiou ${ }^{148}$, N. Govender ${ }^{33 b}$, C. Goy ${ }^{5}$, E. Gozani ${ }^{160}$, I. Grabowska-Bold ${ }^{83 a}$, E. C. Graham ${ }^{90}$, J. Gramling ${ }^{171}$, E. Gramstad ${ }^{134}$, S. Grancagnolo ${ }^{19}$, M. Grandi ${ }^{156}$, V. Gratchev ${ }^{138}$, P. M. Gravila ${ }^{27 f}$, F. G. Gravili ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, C. Gray ${ }^{57}$, H. M. Gray ${ }^{18}$, C. Grefe ${ }^{24}$, K. Gregersen ${ }^{96}$, I. M. Gregor ${ }^{46}$, P. Grenier ${ }^{153}$, K. Grevtsov ${ }^{46}$, C. Grieco ${ }^{14}$, N. A. Grieser ${ }^{128}$, J. Griffiths ${ }^{8}$, A. A. Grillo ${ }^{146}$, K. Grimm ${ }^{31,1}$, S. Grinstein ${ }^{14, \text { aa }}$, J.-F. Grivaz ${ }^{132}$, S. Groh ${ }^{99}$, E. Gross ${ }^{180}$, J. Grosse-Knetter ${ }^{53}$, Z. J. Grout ${ }^{94}$, C. Grud ${ }^{105}$, A. Grummer ${ }^{118}$, L. Guan ${ }^{105}$, W. Guan ${ }^{181}$, J. Guenther ${ }^{36}$, A. Guerguichon ${ }^{132}$, J. G. R. Guerrero Rojas ${ }^{174}$, F. Guescini ${ }^{115}$, D. Guest ${ }^{171}$, R. Gugel ${ }^{52}$, T. Guillemin ${ }^{5}$, S. Guindon ${ }^{36}$, U. Gul ${ }^{57}$, J. Guo ${ }^{60 \mathrm{c}}$, W. Guo ${ }^{105}$, Y. Guo ${ }^{60 \mathrm{a}, \mathrm{t}}$, Z. Guo ${ }^{101}$, R. Gupta ${ }^{46}$, S. Gurbuz ${ }^{12 \mathrm{c}}$, G. Gustavino ${ }^{128}$, M. Guth ${ }^{52}$, P. Gutierrez ${ }^{128}$, C. Gutschow ${ }^{94}$, C. Guyot ${ }^{145}$, C. Gwenlan ${ }^{135}$, C. B. Gwilliam ${ }^{90}$, A. Haas ${ }^{124}$, C. Haber ${ }^{18}$, H. K. Hadavand ${ }^{8}$, N. Haddad ${ }^{35 e}$, A. Hadef ${ }^{60 \mathrm{a}}$, S. Hageböck ${ }^{36}$, M. Haleem ${ }^{177}$, J. Haley ${ }^{129}$, G. Halladjian ${ }^{106}$, G. D. Hallewell ${ }^{101}$, K. Hamacher ${ }^{182}$, P. Hamal ${ }^{130}$, K. Hamano ${ }^{176}$, H. Hamdaoui ${ }^{35 e}$, G. N. Hamity ${ }^{149}$,
K. Han ${ }^{60 \mathrm{a}, \mathrm{am}}$, L. $\operatorname{Han}^{60 \mathrm{a}}, \quad$ S. $\operatorname{Han}^{15 \mathrm{a}, 15 \mathrm{~d}}, \quad$ Y. F. $\operatorname{Han}^{167}, \quad$ K. Hanagaki ${ }^{81, y}, ~ M$. Hance $^{146}, \quad$ D. M. Handl ${ }^{114}$, B. Haney ${ }^{137}$, R. Hankache ${ }^{136}$, E. Hansen ${ }^{96}$, J. B. Hansen ${ }^{40}$, J. D. Hansen ${ }^{40}$, M. C. Hansen ${ }^{24}$, P. H. Hansen ${ }^{40}$, E. C. Hanson ${ }^{100}$, K. Hara ${ }^{169}$, T. Harenberg ${ }^{182}$, S. Harkusha ${ }^{107}$, P. F. Harrison ${ }^{178}$, N. M. Hartmann ${ }^{114}$, Y. Hasegawa ${ }^{150}$, A. Hasib ${ }^{50}$, S. Hassani ${ }^{145}$, S. Haug ${ }^{20}$, $\quad$ R. Hauser ${ }^{106}$, L. B. Havener ${ }^{39}$, M. Havranek ${ }^{142}$, C. M. Hawkes ${ }^{21}$, R. J. Hawkings ${ }^{36}$, D. Hayden ${ }^{106}$, C. Hayes ${ }^{155}$, $\quad$ R. L. Hayes ${ }^{175}$, C. P. Hays ${ }^{135}$, J. M. Hays ${ }^{92}, \quad$ H. S. Hayward ${ }^{90}$, S. J. Haywood ${ }^{144}$, F. He ${ }^{60 a}$, M. P. Heath ${ }^{50}$, V. Hedberg ${ }^{96}$, L. Heelan ${ }^{8}$, S. Heer ${ }^{24}$, K. K. Heidegger ${ }^{52}$, W. D. Heidorn ${ }^{78}$, J. Heilman ${ }^{34}$, S. Heim ${ }^{46}$, T. Heim ${ }^{18}$, B. Heinemann ${ }^{46, a u}$, J. J. Heinrich ${ }^{131}$, L. Heinrich ${ }^{36}$, C. Heinz ${ }^{56}$, J. Hejbal ${ }^{141}$, L. Helary ${ }^{61 b}$, A. Held ${ }^{175}$, S. Hellesund ${ }^{134}$, C. M. Helling ${ }^{146}$, S. Hellman ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, C. Helsens ${ }^{36}$, R. C. W. Henderson ${ }^{89}$, Y. Heng ${ }^{181}$, S. Henkelmann ${ }^{175}$, A. M. Henriques Correia ${ }^{36}$, G. H. Herbert ${ }^{19}$, H. Herde ${ }^{26}$, V. Herget ${ }^{177}$, Y. Hernández Jiménez ${ }^{33 \mathrm{c}}$, H. Herr ${ }^{99}$, M. G. Herrmann ${ }^{114}$, T. Herrmann ${ }^{48}$, G. Herten ${ }^{52}$, R. Hertenberger ${ }^{114}$, L. Hervas ${ }^{36}$, T. C. Herwig ${ }^{137}$, G. G. Hesketh ${ }^{94}$, N. P. Hessey ${ }^{168 \mathrm{a}}$, A. Higashida ${ }^{163}$, S. Higashino ${ }^{81}$, E. Higón-Rodriguez ${ }^{174}$, K. Hildebrand ${ }^{37}$, E. Hill ${ }^{176}$, J. C. Hill $^{32}$, K. K. Hill ${ }^{29}$, K. H. Hiller ${ }^{46}$, S. J. Hillier ${ }^{21}$, M. Hils ${ }^{48}$, I. Hinchliffe ${ }^{18}$, F. Hinterkeuser ${ }^{24}$, M. Hirose ${ }^{133}$, S. Hirose ${ }^{52}$, D. Hirschbuehl ${ }^{182}$, B. Hiti ${ }^{91}$, O. Hladik ${ }^{141}$, D. R. Hlaluku ${ }^{33 \mathrm{c}}$, X. Hoad ${ }^{50}$, J. Hobbs ${ }^{155}$, N. Hod ${ }^{180}$, M. C. Hodgkinson ${ }^{149}$, A. Hoecker ${ }^{36}$, F. Hoenig ${ }^{114}$, D. Hohn ${ }^{52}$, D. Hohov ${ }^{132}$, T. R. Holmes ${ }^{37}$, M. Holzbock ${ }^{114}$, L. B. A. H. Hommels ${ }^{32}$, S. Honda ${ }^{169}$, T. M. Hong ${ }^{139}$, A. Hönle ${ }^{115}$, B. H. Hooberman ${ }^{173}$, W. H. Hopkins ${ }^{6}$, Y. Horii ${ }^{117}$,
 I. Hristova ${ }^{19}$, J. Hrivnac ${ }^{132}$, A. Hrynevich ${ }^{108}$, T. Hryn'ova ${ }^{5}$, P. J. Hsu ${ }^{64}$, S.-C. Hsu ${ }^{148}$, Q. Hu ${ }^{29}$, S. Hu ${ }^{60 \mathrm{c}}$, D. P. Huang ${ }^{94}$, Y. Huang ${ }^{60 a}$, Y. Huang ${ }^{15 a}$, Z. Hubacek ${ }^{142}$, F. Hubaut ${ }^{101}$, M. Huebner ${ }^{24}$, F. Huegging ${ }^{24}$, T. B. Huffman ${ }^{135}$, M. Huhtinen ${ }^{36}$, R. F. H. Hunter ${ }^{34}$, P. Huo ${ }^{155}$, A. M. Hupe ${ }^{34}$, N. Huseynov ${ }^{79, \text { ah }}$, J. Huston ${ }^{106}$, J. Huth ${ }^{59}$, R. Hyneman ${ }^{105}$, S. Hyrych ${ }^{28 a}$, G. Iacobucci ${ }^{54}$, G. Iakovidis ${ }^{29}$, I. Ibragimov ${ }^{151}$, L. Iconomidou-Fayard ${ }^{132}$, Z. Idrissi ${ }^{35 e}$, P. Iengo ${ }^{36}$, R. Ignazzi ${ }^{40}$, O. Igonkina ${ }^{120, \text { ac,* }}$, R. Iguchi ${ }^{163}$, T. Iizawa ${ }^{54}$, Y. Ikegami ${ }^{81}$, M. Ikeno ${ }^{81}$, D. Iliadis ${ }^{162}$, N. Ilic ${ }^{119, u}$, F. Iltzsche ${ }^{48}$, G. Introzzi ${ }^{70 a, 70 b}$, M. Iodice ${ }^{74 a}$, K. Iordanidou ${ }^{168 a}$, V. Ippolito $^{72 a, 72 b}$, M. F. Isacson ${ }^{172}$, M. Ishino ${ }^{163}$, W. Islam ${ }^{129}$, C. Issever ${ }^{135}$, S. Istin ${ }^{160}$, F. Ito ${ }^{169}$, J. M. Iturbe Ponce ${ }^{63 \mathrm{a}}$, R. Iuppa ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$, A. Ivina ${ }^{180}$, H. Iwasaki ${ }^{81}$, J. M. Izen ${ }^{43}$, V. Izzo ${ }^{69 \text { a }}$, P. Jacka ${ }^{141}$, P. Jackson ${ }^{1}$, R. M. Jacobs ${ }^{24}$, B. P. Jaeger ${ }^{152}$, V. Jain ${ }^{2}$, G. Jäkel ${ }^{182}$, K. B. Jakobi ${ }^{99}$, K. Jakobs ${ }^{52}$, S. Jakobsen ${ }^{76}$, T. Jakoubek ${ }^{141}$, J. Jamieson ${ }^{57}$, K. W. Janas ${ }^{83 \mathrm{a}}$, R. Jansky ${ }^{54}$, J. Janssen ${ }^{24}$, M. Janus ${ }^{53}$, P. A. Janus ${ }^{83 a}$, G. Jarlskog ${ }^{96}$, N. Javadov ${ }^{79, \text { ah }}$, T. Javůrek ${ }^{36}$, M. Javurkova ${ }^{52}$, F. Jeanneau ${ }^{145}$, L. Jeanty ${ }^{131}$, J. Jejelava ${ }^{159 \text { a,ai }, ~ A . ~ J e l i n s k a s ~}{ }^{178}$, P. Jenni ${ }^{52, b}$, J. Jeong ${ }^{46}$, N. Jeong ${ }^{46}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{181}$, J. Jia ${ }^{155}$, H. Jiang ${ }^{78}$, Y. Jiang ${ }^{60 \mathrm{a}}$, Z. Jiang ${ }^{153, q}$, S. Jiggins ${ }^{52}$, F. A. Jimenez Morales ${ }^{38}$, J. Jimenez Pena ${ }^{115}$, S. Jin ${ }^{15 c}$, A. Jinaru ${ }^{27 \mathrm{~b}}$, O. Jinnouchi ${ }^{165}$, H. Jivan ${ }^{33 \mathrm{c}}$, P. Johansson ${ }^{149}$, K. A. Johns ${ }^{7}$, C. A. Johnson ${ }^{65}$, K. Jon-And ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, R. W. L. Jones ${ }^{89}$, S. D. Jones ${ }^{156}$, S. Jones ${ }^{7}$, T. J. Jones ${ }^{90}$, J. Jongmanns ${ }^{61 \mathrm{a}}$, P. M. Jorge ${ }^{140 \mathrm{a}}$, J. Jovicevic ${ }^{36}$, X. Ju ${ }^{18}$, J. J. Junggeburth ${ }^{115}$, A. Juste Rozas ${ }^{14, a \mathrm{aa}}$, A. Kaczmarska ${ }^{84}$, M. Kado ${ }^{72 a, 72 b}$, H. Kagan ${ }^{126}$, M. Kagan ${ }^{153}$, C. Kahra ${ }^{99}$, T. Kaji ${ }^{179}$, E. Kajomovitz ${ }^{160}$, C. W. Kalderon ${ }^{96}$, A. Kaluza ${ }^{99}$, A. Kamenshchikov ${ }^{123}$, M. Kaneda ${ }^{163}$, L. Kanjir ${ }^{91}$, Y. Kano ${ }^{163}$, V. A. Kantserov ${ }^{112}$, J. Kanzaki ${ }^{81}$, L. S. Kaplan ${ }^{181}$, D. Kar ${ }^{33 \mathrm{c}}$, K. Karava ${ }^{135}$, M. J. Kareem ${ }^{168 b}$, S. N. Karpov ${ }^{79}$, Z. M. Karpova ${ }^{79}$, V. Kartvelishvili ${ }^{89}$, A. N. Karyukhin ${ }^{123}$, L. Kashif ${ }^{181}$, R. D. Kass ${ }^{126}$, A. Kastanas ${ }^{45 a, 45 b}$, C. Kato ${ }^{60 \mathrm{c}, 60 \mathrm{~d}}$, J. Katzy ${ }^{46}$, K. Kawade ${ }^{150}$, K. Kawagoe ${ }^{87}$, T. Kawaguchi ${ }^{117}$, T. Kawamoto ${ }^{163}$, G. Kawamura ${ }^{53}$, E. F. Kay ${ }^{176}$, V. F. Kazanin ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, R. Keeler ${ }^{176}$, R. Kehoe ${ }^{42}$, J. S. Keller ${ }^{34}$, E. Kellermann ${ }^{96}$, D. Kelsey ${ }^{156}$, J. J. Kempster ${ }^{21}$, J. Kendrick ${ }^{21}$, O. Kepka ${ }^{141}$, S. Kersten ${ }^{182}$, B. P. Kerševan ${ }^{91}$, S. Ketabchi Haghighat ${ }^{167}$, M. Khader ${ }^{173}$, F. Khalil-Zada ${ }^{13}$, M. Khandoga ${ }^{145}$, A. Khanov ${ }^{129}$, A. G. Kharlamov ${ }^{122 a, 122 b}$, T. Kharlamova ${ }^{122 a, 122 b}$, E. E. Khoda ${ }^{175}$, A. Khodinov ${ }^{166}$, T. J. Khoo ${ }^{54}$, E. Khramov ${ }^{79}$, J. Khubua ${ }^{159 b}$, S. Kido ${ }^{82}$, M. Kiehn ${ }^{54}$, C. R. Kilby ${ }^{93}$, Y. K. Kim ${ }^{37}$, N. Kimura ${ }^{94}$, O. M. Kind ${ }^{19}$, B. T. King ${ }^{90, *}$, D. Kirchmeier ${ }^{48}$, J. Kirk ${ }^{144}$, A. E. Kiryunin ${ }^{115}$, T. Kishimoto ${ }^{163}$, D. P. Kisliuk ${ }^{167}$, V. Kitali ${ }^{46}$, O. Kivernyk ${ }^{5}$, T. Klapdor-Kleingrothaus ${ }^{52}$, M. Klassen ${ }^{61 \mathrm{a}}$, M. H. Klein ${ }^{105}$, M. Klein ${ }^{90}$, U. Klein ${ }^{90}$, K. Kleinknecht ${ }^{99}$, P. Klimek ${ }^{121}$, A. Klimentov ${ }^{29}$, T. Klingl ${ }^{24}$, T. Klioutchnikova ${ }^{36}$, F. F. Klitzner ${ }^{114}$, P. Kluit ${ }^{120}$, S. Kluth ${ }^{115}$, E. Kneringer ${ }^{76}$, E. B. F. G. Knoops ${ }^{101}$, A. Knue ${ }^{52}$, D. Kobayashi ${ }^{87}$, T. Kobayashi ${ }^{163}$, M. Kobel ${ }^{48}$, M. Kocian ${ }^{153}$, P. Kodys ${ }^{143}$, P. T. Koenig ${ }^{24}$, T. Koffas ${ }^{34}$, N. M. Köhler ${ }^{36}$, T. Koi ${ }^{153}$, M. Kolb ${ }^{61 b}$, I. Koletsou ${ }^{5}$, T. Komarek ${ }^{130}$,
 N. Konstantinidis ${ }^{94}$, B. Konya ${ }^{96}$, R. Kopeliansky ${ }^{65}$, S. Koperny ${ }^{83 a}$, K. Korcyl ${ }^{84}$, K. Kordas ${ }^{162}$, G. Koren ${ }^{161}$, A. Korn ${ }^{94}$, I. Korolkov ${ }^{14}$, E. V. Korolkova ${ }^{149}$, N. Korotkova ${ }^{113}$, O. Kortner ${ }^{115}$, S. Kortner ${ }^{115}$, T. Kosek ${ }^{143}$, V. V. Kostyukhin ${ }^{166}$, A. Kotwal ${ }^{49}$, A. Koulouris ${ }^{10}$, A. Kourkoumeli-Charalampidi ${ }^{70 a}$, 70b , C. Kourkoumelis ${ }^{9}$, E. Kourlitis ${ }^{149}$, V. Kouskoura ${ }^{29}$, A. B. Kowalewska ${ }^{84}$, R. Kowalewski ${ }^{176}$, C. Kozakai ${ }^{163}$, W. Kozanecki ${ }^{145}$, A. S. Kozhin ${ }^{123}$, V. A. Kramarenko ${ }^{113}$, G. Kramberger ${ }^{91}$, D. Krasnopevtsev ${ }^{60 a}$, M. W. Krasny ${ }^{136}$, A. Krasznahorkay ${ }^{36}$, D. Krauss ${ }^{115}$, J. A. Kremer ${ }^{83 a}$, J. Kretzschmar ${ }^{90}$, P. Krieger ${ }^{167}$, F. Krieter ${ }^{114}$, A. Krishnan ${ }^{61 b}$, K. Krizka ${ }^{18}$, K. Kroeninger ${ }^{47}$, H. Kroha ${ }^{115}$, J. Kroll ${ }^{141}$, J. Kroll ${ }^{137}$, J. Krstic ${ }^{16}$, U. Kruchonak ${ }^{79}$, H. Krüger ${ }^{24}$, N. Krumnack ${ }^{78}$, M. C. Kruse ${ }^{49}$, J. A. Krzysiak ${ }^{84}$, T. Kubota ${ }^{104}$, O. Kuchinskaia ${ }^{166}$, S. Kuday ${ }^{4 b}$, J. T. Kuechler ${ }^{46}$, S. Kuehn ${ }^{36}$, A. Kugel ${ }^{61 \mathrm{a}}$, T. Kuhl ${ }^{46}$, V. Kukhtin ${ }^{79}$, R. Kukla ${ }^{101}$, Y. Kulchitsky ${ }^{107, \text { al }}$, S. Kuleshov ${ }^{147 b}$, Y. P. Kulinich ${ }^{173}$, M. Kuna $^{58}$, T. Kunigo ${ }^{85}$, A. Kupco ${ }^{141}$, T. Kupfer ${ }^{47}$, O. Kuprash ${ }^{52}$,
H. Kurashige ${ }^{82}$, L. L. Kurchaninov ${ }^{168 \mathrm{a}}$, Y. A. Kurochkin ${ }^{107}$, A. Kurova ${ }^{112}$, M. G. Kurth ${ }^{15 a, 15 d}$, E. S. Kuwertz ${ }^{36}$, M. Kuze ${ }^{165}$, A. K. Kvam ${ }^{148}$, J. Kvita ${ }^{130}$, T. Kwan ${ }^{103}$, A. La Rosa ${ }^{115}$, L. La Rotonda ${ }^{41 a, 41 b}$, F. La Ruffa ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$, C. Lacasta ${ }^{174}$, F. Lacava ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, D. P. J. Lack ${ }^{100}$, H. Lacker ${ }^{19}$, D. Lacour ${ }^{136}$, E. Ladygin ${ }^{79}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{136}$, T. Lagouri ${ }^{33 \mathrm{c}}$, S. Lai ${ }^{53}$, S. Lammers ${ }^{65}$, W. Lampl ${ }^{7}$, C. Lampoudis ${ }^{162}$, E. Lançon ${ }^{29}$, U. Landgraf ${ }^{52}$, M. P. J. Landon ${ }^{92}$, M. C. Lanfermann ${ }^{54}$, V. S. Lang ${ }^{46}$, J. C. Lange ${ }^{53}$, R. J. Langenberg ${ }^{36}$, A. J. Lankford ${ }^{171}$, F. Lanni ${ }^{29}$, K. Lantzsch ${ }^{24}$, A. Lanza ${ }^{70 \mathrm{a}}$, A. Lapertosa ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$, S. Laplace ${ }^{136}$, J. F. Laporte ${ }^{145}$, T. Lari ${ }^{68 \mathrm{a}}$, F. Lasagni Manghi ${ }^{23 a, 23 b}$, M. Lassnig ${ }^{36}$, T. S. Lau ${ }^{63 \mathrm{a}}, \quad$ A. Laudrain ${ }^{132}$, A. Laurier ${ }^{34}$, M. Lavorgna ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}, \quad$ S. D. Lawlor ${ }^{93}$, M. Lazzaroni ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, $\quad$ B. Le ${ }^{104}$, E. Le Guirriec ${ }^{101}$, M. LeBlanc ${ }^{7}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{58}$, A. C. A. Lee ${ }^{94}$, C. A. Lee ${ }^{29}$, G. R. Lee ${ }^{17}$, L. Lee ${ }^{59}$, S. C. Lee ${ }^{158}$, S. J. Lee ${ }^{34}$, B. Lefebvre ${ }^{168 \mathrm{a}}$, M. Lefebvre ${ }^{176}$, F. Legger ${ }^{114}$, C. Leggett ${ }^{18}$, K. Lehmann ${ }^{152}$, N. Lehmann ${ }^{182}$, G. Lehmann Miotto ${ }^{36}$, W. A. Leight ${ }^{46}$, A. Leisos ${ }^{162, \text { z }}$, M. A. L. Leite ${ }^{80 \mathrm{~d}}$, C. E. Leitgeb ${ }^{114}$, R. Leitner ${ }^{143}$, D. Lellouch ${ }^{180, *}$, K. J. C. Leney ${ }^{42}$, T. Lenz ${ }^{24}$, B. Lenzi ${ }^{36}$, R. Leone ${ }^{7}$, S. Leone ${ }^{71 a}$, C. Leonidopoulos ${ }^{50}$, A. Leopold ${ }^{136}$, G. Lerner ${ }^{156}$, C. Leroy ${ }^{109}$, R. Les ${ }^{167}$, C. G. Lester ${ }^{32}$, M. Levchenko ${ }^{138}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{105}$, L. J. Levinson ${ }^{180}$,
 Q. Y. Li ${ }^{60 \mathrm{a}}$, S. $\mathrm{Li}^{60 \mathrm{c}, 60 \mathrm{~d}}, \mathrm{X} . \mathrm{Li}^{46}, ~ Y . \mathrm{Li}^{46}$, Z. $\mathrm{Li}^{60 \mathrm{~b}}$, Z. Liang ${ }^{15 \mathrm{a}}$, B. Liberti ${ }^{73 \mathrm{a}}$, A. Liblong ${ }^{167}$, K. Lie ${ }^{63 \mathrm{c}}$, C. Y. Lin $^{32}$, K. Lin $^{106}$, T. H. Lin ${ }^{99}$, R. A. Linck ${ }^{65}$, J. H. Lindon ${ }^{21}$, A. L. Lionti ${ }^{54}$, E. Lipeles ${ }^{137}$, A. Lipniacka ${ }^{17}$, M. Lisovyi ${ }^{61 b}$, T. M. Liss ${ }^{173, a w}$, A. Lister ${ }^{175}$, A. M. Litke ${ }^{146}$, J. D. Little ${ }^{8}$, B. Liu ${ }^{78}$, B. L. Liu ${ }^{6}$, H. B. Liu ${ }^{29}$, H. Liu ${ }^{105}$, J. B. Liu ${ }^{60 a}$,
 J. Llorente Merino ${ }^{152}$, S. L. Lloyd ${ }^{92}$, C. Y. Lo ${ }^{63 b}$, F. Lo Sterzo ${ }^{42}$, E. M. Lobodzinska ${ }^{46}$, P. Loch ${ }^{7}$, S. Loffredo ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, T. Lohse ${ }^{19}$, K. Lohwasser ${ }^{149}$, M. Lokajicek ${ }^{141}$, J. D. Long ${ }^{173}$, R. E. Long ${ }^{89}$, L. Longo ${ }^{36}$, K. A. Looper ${ }^{126}$, J. A. Lopez ${ }^{147 \mathrm{~b}}$, I. Lopez Paz ${ }^{100}$, A. Lopez Solis ${ }^{149}$, J. Lorenz ${ }^{114}$, N. Lorenzo Martinez ${ }^{5}$, M. Losada ${ }^{22}$, P. J. Lösel ${ }^{114}$, A. Lösle ${ }^{52}$, X. Lou ${ }^{46}$, X. Lou ${ }^{15 a}$, A. Lounis ${ }^{132}$, J. Love ${ }^{6}$, P. A. Love ${ }^{89}$, J. J. Lozano Bahilo ${ }^{174}$, M. Lu ${ }^{60 a}$, Y. J. Lu ${ }^{64}$, H. J. Lubatti ${ }^{148}$, C. Luci $^{72 \mathrm{a}, 72 \mathrm{~b}}$, A. Lucotte ${ }^{58}$, C. Luedtke ${ }^{52}$, F. Luehring ${ }^{65}$, I. Luise ${ }^{136}$, L. Luminari ${ }^{72 \mathrm{a}}$, B. Lund-Jensen ${ }^{154}$, M. S. Lutz ${ }^{102}$, D. Lynn $^{29}$, R. Lysak ${ }^{141}$, E. Lytken ${ }^{96}$, F. Lyu ${ }^{15 \mathrm{a}}$, V. Lyubushkin ${ }^{79}$, T. Lyubushkina ${ }^{79}$, H. Ma ${ }^{29}$, L. L. Ma ${ }^{60 \mathrm{~b}}$, Y. Ma ${ }^{60 \mathrm{~b}}$, G. Maccarrone ${ }^{51}$, A. Macchiolo ${ }^{115}$, C. M. Macdonald ${ }^{149}$, J. Machado Miguens ${ }^{137}$, D. Madaffari ${ }^{174}$, R. Madar ${ }^{38}$, W. F. Mader ${ }^{48}$, N. Madysa ${ }^{48}$, J. Maeda ${ }^{82}$, S. Maeland ${ }^{17}$, T. Maeno ${ }^{29}$, M. Maerker ${ }^{48}$, A. S. Maevskiy ${ }^{113}$, V. Magerl ${ }^{52}$,
 Y. Makida ${ }^{81}$, N. Makovec ${ }^{132}$, B. Malaescu ${ }^{136}$, Pa. Malecki ${ }^{84}$, V. P. Maleev ${ }^{138}$, F. Malek ${ }^{58}$, U. Mallik ${ }^{77}$, D. Malon ${ }^{6}$, C. Malone ${ }^{32}$, S. Maltezos ${ }^{10}$, S. Malyukov ${ }^{79}$, J. Mamuzic ${ }^{174}$, G. Mancini ${ }^{51}$, I. Mandić ${ }^{91}$, L. Manhaes de Andrade Filho ${ }^{80 a}$, I. M. Maniatis ${ }^{162}$, J. Manjarres Ramos ${ }^{48}$, K. H. Mankinen ${ }^{96}$, A. Mann ${ }^{114}$, A. Manousos ${ }^{76}$, B. Mansoulie ${ }^{145}$, I. Manthos ${ }^{162}$, S. Manzoni ${ }^{120}$, A. Marantis ${ }^{162}$, G. Marceca ${ }^{30}$, L. Marchese ${ }^{135}$, G. Marchiori ${ }^{136}$, M. Marcisovsky ${ }^{141}$, C. Marcon ${ }^{96}$, C. A. Marin Tobon ${ }^{36}$, M. Marjanovic ${ }^{38}$, Z. Marshall ${ }^{18}$, M. U. F. Martensson ${ }^{172}$, S. Marti-Garcia ${ }^{174}$, C. B. Martin ${ }^{126}$, T. A. Martin ${ }^{178}$, V. J. Martin ${ }^{50}$, B. Martin dit Latour ${ }^{17}$, L. Martinelli ${ }^{74 a, 74 b}$, M. Martinez ${ }^{14, \text { aa }}$, V. I. Martinez Outschoorn ${ }^{102}$, S. Martin-Haugh ${ }^{144}$, V. S. Martoiu ${ }^{27 b}$, A. C. Martyniuk ${ }^{94}$, A. Marzin ${ }^{36}$, S. R. Maschek ${ }^{115}$, L. Masetti ${ }^{99}$, T. Mashimo ${ }^{163}$, R. Mashinistov ${ }^{110}$, J. Masik ${ }^{100}$, A. L. Maslennikov ${ }^{122 a, 122 b}$, L. Massa ${ }^{73 a, 73 b}$, P. Massarotti ${ }^{69 a}$, 69b , P. Mastrandrea ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, A. Mastroberardino ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$, T. Masubuchi ${ }^{163}$, $\quad$ D. Matakias ${ }^{10}$, $\quad$ A. Matic ${ }^{114}$, P. Mättig ${ }^{24}$, J. Maurer ${ }^{27 b}$, B. Maček ${ }^{91}$, D. A. Maximov ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}, \quad$ R. Mazini ${ }^{158}$, $\quad$ I. Maznas ${ }^{162}$, $\quad$ S. M. Mazza ${ }^{146}, \quad$ S. P. Mc Kee ${ }^{105}$, T. G. McCarthy ${ }^{115}$, W. P. McCormack ${ }^{18}$, E. F. McDonald ${ }^{104}$, J. A. Mcfayden ${ }^{36}$, G. Mchedlidze ${ }^{159 b}$, M. A. McKay ${ }^{42}$, K. D. McLean ${ }^{176}$, S. J. McMahon ${ }^{144}$, P. C. McNamara ${ }^{104}$, C. J. McNicol ${ }^{178}$, R. A. McPherson ${ }^{176, \text { af }}$, J. E. Mdhluli ${ }^{33 c}$, Z. A. Meadows ${ }^{102}$, S. Meehan ${ }^{36}$, T. Megy ${ }^{52}$, S. Mehlhase ${ }^{114}$, A. Mehta ${ }^{90}$, T. Meideck ${ }^{58}$, B. Meirose ${ }^{43}$, D. Melini ${ }^{174}$, B. R. Mellado Garcia ${ }^{33 \mathrm{c}}$, J. D. Mellenthin ${ }^{53}$, M. Melo ${ }^{28 a}$, F. Meloni ${ }^{46}$, A. Melzer ${ }^{24}$, S. B. Menary ${ }^{100}$, E. D. Mendes Gouveia ${ }^{140 a, 140 e}$, L. Meng ${ }^{36}$, X. T. Meng ${ }^{105}$, S. Menke ${ }^{115}$, E. Meoni ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$, S. Mergelmeyer ${ }^{19}$, S. A. M. Merkt ${ }^{139}$, C. Merlassino ${ }^{20}$, P. Mermod ${ }^{54}$, L. Merola ${ }^{69 a, 69 b}$, C. Meroni ${ }^{68 a}$, O. Meshkov ${ }^{113,110}$, J. K. R. Meshreki ${ }^{151}$, A. Messina ${ }^{72 a, 72 b}$, J. Metcalfe ${ }^{6}$, A. S. Mete ${ }^{171}$, C. Meyer ${ }^{65}$, J. Meyer ${ }^{160}$, J.-P. Meyer ${ }^{145}$, H. Meyer Zu Theenhausen ${ }^{61 a}$, F. Miano ${ }^{156}$, M. Michetti ${ }^{19}$, R. P. Middleton ${ }^{144}$, L. Mijović ${ }^{50}$, G. Mikenberg ${ }^{180}$, M. Mikestikova ${ }^{141}$, M. Mikuž ${ }^{91}$, H. Mildner ${ }^{149}$, M. Milesi ${ }^{104}$, A. Milic ${ }^{167}$, D. A. Millar ${ }^{92}$, D. W. Miller ${ }^{37}$, A. Milov ${ }^{180}$, $\quad$ D. A. Milstead ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}, \quad$ R. A. Mina ${ }^{153, \mathrm{q}}, \quad$ A. A. Minaenko ${ }^{123}$, M. Miñano Moya ${ }^{174}$, I. A. Minashvili ${ }^{159 b}$, A. I. Mincer ${ }^{124}$, B. Mindur ${ }^{83 \mathrm{a}}$, M. Mineev ${ }^{79}$, Y. Minegishi ${ }^{163}$, L. M. Mir ${ }^{14}$, A. Mirto ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, K. P. Mistry ${ }^{137}$, T. Mitani ${ }^{179}$, J. Mitrevski ${ }^{114}$, V. A. Mitsou ${ }^{174}$, M. Mittal ${ }^{60 \mathrm{c}}$, O. Miu ${ }^{167}$, A. Miucci ${ }^{20}$, P. S. Miyagawa ${ }^{149}$, A. Mizukami ${ }^{81}$, J. U. Mjörnmark ${ }^{96}$, T. Mkrtchyan ${ }^{184}$, M. Mlynarikova ${ }^{143}$, T. Moa ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, K. Mochizuki ${ }^{109}$, P. Mogg ${ }^{52}$, S. Mohapatra ${ }^{39}$, R. Moles-Valls ${ }^{24}$, M. C. Mondragon ${ }^{106}$, K. Mönig ${ }^{46}$, J. Monk ${ }^{40}$, E. Monnier ${ }^{101}$, A. Montalbano ${ }^{152}$, J. Montejo Berlingen ${ }^{36}$, M. Montella ${ }^{94}$, F. Monticelli ${ }^{88}$, S. Monzani ${ }^{68 \text { a }}$, N. Morange ${ }^{132}$, D. Moreno ${ }^{22}$, M. Moreno Llácer ${ }^{36}$, C. Moreno Martinez ${ }^{14}$, P. Morettini ${ }^{55 b}$, M. Morgenstern ${ }^{120}$, S. Morgenstern ${ }^{48}$, D. Mori ${ }^{152}$, M. Morii ${ }^{59}$, M. Morinaga ${ }^{179}$, V. Morisbak ${ }^{134}$, A. K. Morley ${ }^{36}$, G. Mornacchi ${ }^{36}$, A. P. Morris ${ }^{94}$, L. Morvaj ${ }^{155}$, P. Moschovakos ${ }^{36}$, B. Moser ${ }^{120}$, M. Mosidze ${ }^{159 b}$, T. Moskalets ${ }^{145}$, H. J. Moss ${ }^{149}$, J. Moss ${ }^{31, \mathrm{n}}$, E. J. W. Moyse ${ }^{102}$, S. Muanza ${ }^{101}$, J. Mueller ${ }^{139}$,
R. S. P. Mueller ${ }^{114}$, D. Muenstermann ${ }^{89}$, G. A. Mullier ${ }^{96}$, J. L. Munoz Martinez ${ }^{14}$, F. J. Munoz Sanchez ${ }^{100}$, P. Murin ${ }^{28 b}$, W. J. Murray ${ }^{144,178}$, A. Murrone ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, M. Muškinja ${ }^{18}$, C. Mwewa ${ }^{33 \mathrm{a}}$, A. G. Myagkov ${ }^{123, a q}$, J. Myers ${ }^{131}$, M. Myska ${ }^{142}$, B. P. Nachman ${ }^{18}$, O. Nackenhorst ${ }^{47}, \quad$ A. Nag Nag ${ }^{48}, \quad$ K. Nagai ${ }^{135}, \quad$ K. Nagano ${ }^{81}, \quad$ Y. Nagasaka ${ }^{62}, \quad$ M. Nagel ${ }^{52}$, J. L. Nagle ${ }^{29}$, E. Nagy ${ }^{101}$, A. M. Nairz ${ }^{36}$, Y. Nakahama ${ }^{117}$, K. Nakamura ${ }^{81}$, T. Nakamura ${ }^{163}$, I. Nakano ${ }^{127}$, H. Nanjo ${ }^{133}$, F. Napolitano ${ }^{61 \mathrm{a}}$, R. F. Naranjo Garcia ${ }^{46}$, R. Narayan ${ }^{42}$, I. Naryshkin ${ }^{138}$, T. Naumann ${ }^{46}$, G. Navarro ${ }^{22}$, H. A. Neal ${ }^{105, *}$, P. Y. Nechaeva ${ }^{110}$, F. Nechansky ${ }^{46}$, T. J. Neep ${ }^{21}$, A. Negri ${ }^{70,}{ }^{70 b}$, M. Negrini ${ }^{23 b}$, C. Nellist ${ }^{53}$, M. E. Nelson ${ }^{135}$, S. Nemecek ${ }^{141}$, P. Nemethy ${ }^{124}, \quad$ M. Nessi ${ }^{36, \mathrm{~d}}, \quad$ M. S. Neubauer ${ }^{173}$, M. Neumann ${ }^{182}$, P. R. Newman ${ }^{21}$, Y. S. Ng ${ }^{19}$, Y. W. Y. $\mathrm{Ng}^{171}$, B. Ngair ${ }^{35 \mathrm{e}}$, H. D. N. Nguyen ${ }^{101}$, T. Nguyen Manh ${ }^{109}$, E. Nibigira ${ }^{38}$, R. B. Nickerson ${ }^{135}$, R. Nicolaidou ${ }^{145}$, D. S. Nielsen ${ }^{40}$, J. Nielsen ${ }^{146}$, N. Nikiforou ${ }^{11}$, V. Nikolaenko ${ }^{123, \text { aq }}$, I. Nikolic-Audit ${ }^{136}$, K. Nikolopoulos ${ }^{21}$, P. Nilsson ${ }^{29}$, H. R. Nindhito ${ }^{54}$, Y. Ninomiya ${ }^{81}$, A. Nisati ${ }^{72 \mathrm{a}}$, N. Nishu ${ }^{60 \mathrm{c}}$, R. Nisius ${ }^{115}$, I. Nitsche ${ }^{47}$, T. Nitta ${ }^{179}$, T. Nobe ${ }^{163}$, Y. Noguchi ${ }^{85}$, I. Nomidis ${ }^{136}$, M. A. Nomura ${ }^{29}$, M. Nordberg ${ }^{36}$, N. Norjoharuddeen ${ }^{135}$, T. Novak ${ }^{91}$, O. Novgorodova ${ }^{48}$, R. Novotny ${ }^{142}$, L. Nozka ${ }^{130}$, K. Ntekas ${ }^{171}$, E. Nurse ${ }^{94}$, F. G. Oakham ${ }^{34, a z}$, H. Oberlack ${ }^{115}$, J. Ocariz ${ }^{136}$, A. Ochi ${ }^{82}$, I. Ochoa ${ }^{39}$, J. P. Ochoa-Ricoux ${ }^{147 \mathrm{a}}$, K. O’Connor ${ }^{26}$, S. Oda ${ }^{87}$, S. Odaka ${ }^{81}$, S. Oerdek ${ }^{53}$, A. Ogrodnik ${ }^{83 a}$, A. Oh ${ }^{100}$, S. H. Oh ${ }^{49}$, C. C. Ohm ${ }^{154}$, H. Oide ${ }^{165}$, M. L. Ojeda ${ }^{167}$, H. Okawa ${ }^{169}$, Y. Okazaki ${ }^{85}$, Y. Okumura ${ }^{163}$, T. Okuyama ${ }^{81}$, A. Olariu ${ }^{27 \mathrm{~b}}$, L. F. Oleiro Seabra ${ }^{140 \mathrm{a}}$, S. A. Olivares Pino ${ }^{147 \mathrm{a}}$, D. Oliveira Damazio ${ }^{29}$, J. L. Oliver ${ }^{1}$, M. J. R. Olsson ${ }^{171}$, A. Olszewski ${ }^{84}$, J. Olszowska ${ }^{84}$, D. C. O’Neil ${ }^{152}$, A. P. O'neill ${ }^{135}$, A. Onofre ${ }^{140 \mathrm{a}, 140 \mathrm{e}}$, P. U. E. Onyisi ${ }^{11}$, H. Oppen ${ }^{134}$, M. J. Oreglia ${ }^{37}$, G. E. Orellana ${ }^{88}$, D. Orestano ${ }^{74 a, 74 b}$, N. Orlando ${ }^{14}$, R. S. Orr ${ }^{167}$, V. O’Shea ${ }^{57}$, R. Ospanov ${ }^{60 a}$, G. Otero y Garzon ${ }^{30}$, H. Otono ${ }^{87}$, P. S. Ott ${ }^{61 \mathrm{a}}$, M. Ouchrif ${ }^{35 \mathrm{~d}}$, J. Ouellette ${ }^{29}$, F. Ould-Saada ${ }^{134}$, A. Ouraou ${ }^{145}$, Q. Ouyang ${ }^{15 \mathrm{a}}$, M. Owen ${ }^{57}$, R.E. Owen ${ }^{21}$, V. E. Ozcan ${ }^{12 \mathrm{c}}$, N. Ozturk ${ }^{8}$, J. Pacalt ${ }^{130}$, H. A. Pacey ${ }^{32}$, K. Pachal ${ }^{49}$, A. Pacheco Pages ${ }^{14}$, C. Padilla Aranda ${ }^{14}$, S. Pagan Griso ${ }^{18}$, M. Paganini ${ }^{183}$, G. Palacino ${ }^{65}$, S. Palazzo ${ }^{50}$, S. Palestini ${ }^{36}$, M. Palka ${ }^{83 b}$, D. Pallin ${ }^{38}$, I. Panagoulias ${ }^{10}$, C. E. Pandini ${ }^{36}$, J. G. Panduro Vazquez ${ }^{93}$, P. Pani ${ }^{46}$, G. Panizzo ${ }^{66 a, 66 c}$, L. Paolozzi ${ }^{54}$, C. Papadatos ${ }^{109}$, K. Papageorgiou ${ }^{9, h}$, S. Parajuli ${ }^{43}$, A. Paramonov ${ }^{6}$, D. Paredes Hernandez ${ }^{63 b}$, S. R. Paredes Saenz ${ }^{135}$, B. Parida ${ }^{166}$, T. H. Park ${ }^{167}$, A. J. Parker ${ }^{31}$, M. A. Parker ${ }^{32}$, F. Parodi ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$, E. W. P. Parrish ${ }^{121}$, J. A. Parsons ${ }^{39}$, U. Parzefall ${ }^{52}$, L. Pascual Dominguez ${ }^{136}$, V. R. Pascuzzi ${ }^{167}$, J. M. P. Pasner ${ }^{146}$, E. Pasqualucci ${ }^{72 a}$, S. Passaggio ${ }^{55 b}$, F. Pastore ${ }^{93}$, P. Pasuwan ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, S. Pataraia ${ }^{99}$, J. R. Pater ${ }^{100}$, A. Pathak ${ }^{181, \mathrm{j}}$, T. Pauly ${ }^{36}$, B. Pearson ${ }^{115}$, M. Pedersen ${ }^{134}$,
 M. M. Perego ${ }^{132}$, A. P. Pereira Peixoto ${ }^{140 \mathrm{a}}$, D. V. Perepelitsa ${ }^{29}$, F. Peri ${ }^{19}$, L. Perini ${ }^{68 a, 68 b}$, H. Pernegger ${ }^{36}$, S. Perrella ${ }^{69 a, 69 b}$, K. Peters ${ }^{46}$, R. F. Y. Peters ${ }^{100}$, B. A. Petersen ${ }^{36}$, T. C. Petersen ${ }^{40}$, E. Petit ${ }^{101}$, A. Petridis ${ }^{1}$, C. Petridou ${ }^{162}$, P. Petroff ${ }^{132}$, M. Petrov ${ }^{135}$, F. Petrucci ${ }^{74 a, 74 b}$, M. Pettee ${ }^{183}$, N. E. Pettersson ${ }^{102}$, K. Petukhova ${ }^{143}$, A. Peyaud ${ }^{145}$, R. Pezoa ${ }^{147 b}$, L. Pezzotti ${ }^{70 a, 70 b}$, T. Pham ${ }^{104}$, F. H. Phillips ${ }^{106}$, P. W. Phillips ${ }^{144}$, M. W. Phipps ${ }^{173}$, G. Piacquadio ${ }^{155}$, E. Pianori ${ }^{18}$, A. Picazio ${ }^{102}$, R. H. Pickles ${ }^{100}$, R. Piegaia ${ }^{30}$, D. Pietreanu ${ }^{27 b}$, J. E. Pilcher ${ }^{37}$, A. D. Pilkington ${ }^{100}$, M. Pinamonti ${ }^{73 a}$, 73 b , J. L. Pinfold ${ }^{3}$, M. Pitt $^{161}$, L. Pizzimento ${ }^{73 a, 73 b}$, M.-A. Pleier ${ }^{29}$, V. Pleskot ${ }^{143}$, E. Plotnikova ${ }^{79}$, P. Podberezko ${ }^{122 a, 122 b}$, R. Poettgen ${ }^{96}$, R. Poggi ${ }^{54}$, L. Poggioli ${ }^{132}$, I. Pogrebnyak ${ }^{106}$, D. Pohl ${ }^{24}$, I. Pokharel ${ }^{53}$, G. Polesello ${ }^{70 a}$, A. Poley ${ }^{18}$, A. Policicchio ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, R. Polifka ${ }^{143}$, A. Polini ${ }^{23 \mathrm{~b}}$, C. S. Pollard ${ }^{46}$, V. Polychronakos ${ }^{29}$, D. Ponomarenko ${ }^{112}$, L. Pontecorvo ${ }^{36}$, S. Popa ${ }^{27 \mathrm{a}}$, G. A. Popeneciu ${ }^{27 \mathrm{~d}}$, L. Portales ${ }^{5}$, D. M. Portillo Quintero ${ }^{58}$, S. Pospisi1 ${ }^{142}$, K. Potamianos ${ }^{46}$, I. N. Potrap ${ }^{79}$, C. J. Potter ${ }^{32}$, H. Potti ${ }^{11}$, T. Poulsen ${ }^{96}$, J. Poveda ${ }^{36}$, T. D. Powell ${ }^{149, ~ G . ~ P o w n a l l ~}{ }^{46}$, M. E. Pozo Astigarraga ${ }^{36}$, P. Pralavorio ${ }^{101}$, S. Prell ${ }^{78}$, D. Price ${ }^{100}$, M. Primavera ${ }^{67 a}$, S. Prince ${ }^{103}$, M. L. Proffitt ${ }^{148}$, N. Proklova ${ }^{112}$, K. Prokofiev ${ }^{63 c}$,
 Y. Qin ${ }^{100}$, A. Quadt ${ }^{53}$, M. Queitsch-Maitland ${ }^{46}$, A. Qureshi ${ }^{1}$, M. Racko ${ }^{28 \mathrm{a}}$, P. Rados ${ }^{104}$, F. Ragusa ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, G. Rahal ${ }^{97}$, J. A. Raine ${ }^{54}$, S. Rajagopalan ${ }^{29}$, A. Ramirez Morales ${ }^{92}$, K. Ran ${ }^{15 a, 15 d}$, T. Rashid ${ }^{132}$, S. Raspopov ${ }^{5}$, D. M. Rauch ${ }^{46}$, F. Rauscher ${ }^{114}$, S. Rave ${ }^{99}$, B. Ravina ${ }^{149}$, I. Ravinovich ${ }^{180}$, J. H. Rawling ${ }^{100}$, M. Raymond ${ }^{36}$, A. L. Read ${ }^{134}$, N. P. Readioff ${ }^{58}$, M. Reale ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, D. M. Rebuzzi ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$, A. Redelbach ${ }^{177}$, G. Redlinger ${ }^{29}$, K. Reeves ${ }^{43}$, L. Rehnisch ${ }^{19}$, J. Reichert ${ }^{137}$, D. Reikher ${ }^{161}$, A. Reiss ${ }^{99}$, A. Rej ${ }^{151}$, C. Rembser ${ }^{36}$, M. Renda ${ }^{27 b}$, M. Rescigno ${ }^{72 \mathrm{a}}$, S. Resconi ${ }^{68 \mathrm{a}}$, E. D. Resseguie ${ }^{137}$, S. Rettie ${ }^{175}$, E. Reynolds ${ }^{21}$, O. L. Rezanova ${ }^{122 a, 122 b}$, P. Reznicek ${ }^{143}$, E. Ricci ${ }^{75 a}$, 75b, R. Richter ${ }^{115}$, S. Richter ${ }^{46}$, E. Richter-Was ${ }^{83 \mathrm{~b}}$, O. Ricken ${ }^{24}$, M. Ridel ${ }^{136}$, P. Rieck ${ }^{115}$, C. J. Riegel ${ }^{182}$, O. Rifki ${ }^{46}$, M. Rijssenbeek ${ }^{155}$, A. Rimoldi ${ }^{70 a, 70 b}$, M. Rimoldi ${ }^{46}$, L. Rinaldi ${ }^{23 b}$, G. Ripellino ${ }^{154}$, I. Riu ${ }^{14}$, J. C. Rivera Vergara ${ }^{176}$, F. Rizatdinova ${ }^{129}$, E. Rizvi ${ }^{92}$, C. Rizzi ${ }^{36}$, R. T. Roberts ${ }^{100}$, S. H. Robertson ${ }^{103, a f}$, M. Robin ${ }^{46}$, D. Robinson ${ }^{32}$, J. E. M. Robinson ${ }^{46}$, C. M. Robles Gajardo ${ }^{147 b}$, A. Robson ${ }^{57}$, A. Rocchi ${ }^{73 a, 73 b}$, E. Rocco ${ }^{99}$, C. Roda ${ }^{71 a}$, 71b, $\quad$ S. Rodriguez Bosca ${ }^{174}$, A. Rodriguez Perez ${ }^{14}$, D. Rodriguez Rodriguez ${ }^{174}$, A. M. Rodríguez Vera ${ }^{168 \mathrm{~b}}$, S. Roe ${ }^{36}$, O. Røhne ${ }^{134}$, R. Röhrig ${ }^{115}$, C. P. A. Roland ${ }^{65}$, J. Roloff ${ }^{59}$, A. Romaniouk ${ }^{112}$, M. Romano ${ }^{23 a, 23 b}$, N. Rompotis ${ }^{90}$, M. Ronzani ${ }^{124}$, L. Roos ${ }^{136}$, S. Rosati ${ }^{72 \mathrm{a}}$, K. Rosbach ${ }^{52}$, G. Rosin ${ }^{102}$, B. J. Rosser ${ }^{137}$, E. Rossi ${ }^{46}$, E. Rossi ${ }^{74 a, 74 b}$, E. Rossi ${ }^{69 a, 69 b}$, L. P. Rossi ${ }^{55 b}$, L. Rossini ${ }^{68 a, 68 b}$, R. Rosten ${ }^{14}$, M. Rotaru ${ }^{27 b}$, J. Rothberg ${ }^{148}$, D. Rousseau ${ }^{132}$, G. Rovelli ${ }^{70 a}, 70 \mathrm{~b}$, A. Roy ${ }^{11}$, D. Roy ${ }^{33 \mathrm{c}}$, A. Rozanov ${ }^{101}$, Y. Rozen ${ }^{160}$, X. Ruan ${ }^{33 \mathrm{c}}$, F. Rubbo ${ }^{153}$, F. Rühr ${ }^{52}$, A. Ruiz-Martinez ${ }^{174}$, A. Rummler ${ }^{36}$, Z. Rurikova ${ }^{52}$, N. A. Rusakovich ${ }^{79}$, H. L. Russell ${ }^{103}$,
L. Rustige ${ }^{38,47}$, J. P. Rutherfoord ${ }^{7}$, E. M. Rüttinger ${ }^{149}$, M. Rybar ${ }^{39}$, G. Rybkin ${ }^{132}$, E. B. Rye ${ }^{134}$, A. Ryzhov ${ }^{123}$, P. Sabatini ${ }^{53}$, G. Sabato ${ }^{120}$, S. Sacerdoti ${ }^{132}$, H. F.-W. Sadrozinski ${ }^{146}$, R. Sadykov ${ }^{79}$, F. Safai Tehrani ${ }^{72 \mathrm{a}}$, B. Safarzadeh Samani ${ }^{156}$, P. Saha ${ }^{121}$, S. Saha ${ }^{103}$, M. Sahinsoy ${ }^{61 \mathrm{a}}$, A. Sahu ${ }^{182}$, M. Saimpert ${ }^{46}$, M. Saito ${ }^{163}$, T. Saito ${ }^{163}$, H. Sakamoto ${ }^{163}$, A. Sakharov ${ }^{124, a p}$, D. Salamani ${ }^{54}$, G. Salamanna ${ }^{74 a, 74 b}$, J. E. Salazar Loyola ${ }^{147 b}$, P. H. Sales De Bruin ${ }^{172}$, A. Salnikov ${ }^{153}$, J. Salt ${ }^{174}$, D. Salvatore ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$, F. Salvatore ${ }^{156}$, A. Salvucci ${ }^{63 \mathrm{a}, 63 \mathrm{~b}, 63 \mathrm{c}}$, A. Salzburger ${ }^{36}$, J. Samarati ${ }^{36}$, D. Sammel ${ }^{52}$, D. Sampsonidis ${ }^{162}$, D. Sampsonidou ${ }^{162}$, J. Sánchez ${ }^{174}$, A. Sanchez Pineda ${ }^{66 a, 66 c}$, H. Sandaker ${ }^{134}$, C. O. Sander ${ }^{46}$, I. G. Sanderswood ${ }^{89}$, M. Sandhoff ${ }^{182}$, C. Sandoval ${ }^{22}$, D. P. C. Sankey ${ }^{144}$, M. Sannino ${ }^{55 a, 55 b}$, Y. Sano ${ }^{117}$, A. Sansoni ${ }^{51}$, C. Santoni ${ }^{38}$, H. Santos ${ }^{140 a, 140 b}$, S. N. Santpur ${ }^{18}$, A. Santra ${ }^{174}$, A. Sapronov ${ }^{79}$, J. G. Saraiva ${ }^{140 a, 140 d}$, O. Sasaki ${ }^{81}$, K. Sato ${ }^{169}$, F. Sauerburger ${ }^{52}$, E. Sauvan ${ }^{5}$, P. Savard ${ }^{167, a z}$, N. Savic ${ }^{115}$, R. Sawada ${ }^{163}$, C. Sawyer ${ }^{144}$, L. Sawyer ${ }^{95, \text { an }}$, C. Sbarra ${ }^{23 b}$, A. Sbrizzi ${ }^{23 a}$, T. Scanlon ${ }^{94}$, J. Schaarschmidt ${ }^{148}$, P. Schacht ${ }^{115}$, B. M. Schachtner ${ }^{114}$, D. Schaefer ${ }^{37}$, L. Schaefer ${ }^{137}$, J. Schaeffer ${ }^{99}$, S. Schaepe ${ }^{36}$, U. Schäfer ${ }^{99}$, A. C. Schaffer ${ }^{132}$, D. Schaile ${ }^{114}$, R. D. Schamberger ${ }^{155}$, N. Scharmberg ${ }^{100}$, V. A. Schegelsky ${ }^{138}$, D. Scheirich ${ }^{143}$, F. Schenck ${ }^{19}$, M. Schernau ${ }^{171}$, C. Schiavi ${ }^{55 a}$, 55 b, S. Schier ${ }^{146}$, L. K. Schildgen ${ }^{24}$, Z. M. Schillaci ${ }^{26}$, E. J. Schioppa ${ }^{36}$, M. Schioppa ${ }^{41 a, 41 b}$, K. E. Schleicher ${ }^{52}$, S. Schlenker ${ }^{36}$, K. R. Schmidt-Sommerfeld ${ }^{115}$, K. Schmieden ${ }^{36}$, C. Schmitt ${ }^{99}$, S. Schmitt ${ }^{46}$, S. Schmitz ${ }^{99}$, J. C. Schmoeckel ${ }^{46}$, U. Schnoor ${ }^{52}$, L. Schoeffel ${ }^{145}$, A. Schoening ${ }^{61 b}$, P. G. Scholer ${ }^{52}$, E. Schopf ${ }^{135}$, M. Schott ${ }^{99}$, J. F. P. Schouwenberg ${ }^{119}$, J. Schovancova ${ }^{36}$, S. Schramm ${ }^{54}$, F. Schroeder ${ }^{182}$, A. Schulte ${ }^{99}$, H.-C. Schultz-Coulon ${ }^{61 a}$, M. Schumacher ${ }^{52}$, B. A. Schumm ${ }^{146}$, Ph. Schune ${ }^{145}$, A. Schwartzman ${ }^{153}$, T. A. Schwarz ${ }^{105}$, Ph. Schwemling ${ }^{145}$, R. Schwienhorst ${ }^{106}$, A. Sciandra ${ }^{146}$, G. Sciolla ${ }^{26}$, M. Scodeggio ${ }^{46}$, M. Scornajenghi ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$, F. Scuri ${ }^{71 \mathrm{a}}$, F. Scutti ${ }^{104}$, L. M. Scyboz ${ }^{115}$, C. D. Sebastiani ${ }^{72 a, 72 b}$, P. Seema ${ }^{19}$, S. C. Seidel ${ }^{118}$, A. Seiden ${ }^{146}$, B. D. Seidlitz ${ }^{29}$, T. Seiss ${ }^{37}$, J. M. Seixas ${ }^{80 b}$, G. Sekhniaidze ${ }^{69 a}$, K. Sekhon ${ }^{105}$, S. J. Sekula ${ }^{42}$, N. Semprini-Cesari ${ }^{23 a, 23 b}$, S. Sen ${ }^{49}$, S. Senkin ${ }^{38}$, C. Serfon ${ }^{76}$, L. Serin ${ }^{132}$, L. Serkin ${ }^{66 a, 66 b}$, M. Sessa ${ }^{60 a}$, H. Severini ${ }^{128}$, T. Šfiligoj ${ }^{91}$, F. Sforza ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$, A. Sfyrla ${ }^{54}$, E. Shabalina ${ }^{53}$, J. D. Shahinian ${ }^{146}$, N. W. Shaikh ${ }^{45 a, 45 b}$, D. Shaked Renous ${ }^{180}$, L. Y. Shan ${ }^{15 \mathrm{a}}$, R. Shang ${ }^{173}$, J. T. Shank ${ }^{25}$, M. Shapiro ${ }^{18}$, A. Sharma ${ }^{135}$, A. S. Sharma ${ }^{1}$, P. B. Shatalov ${ }^{111}$, K. Shaw ${ }^{156}$, S. M. Shaw ${ }^{100}$, A. Shcherbakova ${ }^{138}$, M. Shehade ${ }^{180}$, Y. Shen ${ }^{128}$, N. Sherafati ${ }^{34}$, A. D. Sherman ${ }^{25}$, P. Sherwood ${ }^{94}$, L. Shi ${ }^{158, a v}$, S. Shimizu ${ }^{81}$, C. O. Shimmin ${ }^{183}$, Y. Shimogama ${ }^{179}$, M. Shimojima ${ }^{116}$, I. P. J. Shipsey ${ }^{135}$, S. Shirabe ${ }^{87}$, M. Shiyakova ${ }^{79, \text { ad }}$, J. Shlomi ${ }^{180}$, A. Shmeleva ${ }^{110}$, M. J. Shochet ${ }^{37}$, J. Shojaii ${ }^{104}$, D. R. Shope ${ }^{128, ~ S . ~ S h r e s t h a ~}{ }^{126}$, E. M. Shrif ${ }^{33 c}$, E. Shulga ${ }^{180}$, P. Sicho ${ }^{141}$, A. M. Sickles ${ }^{173}$, P. E. Sidebo ${ }^{154}$, E. Sideras Haddad ${ }^{33 \mathrm{c}}$, O. Sidiropoulou ${ }^{36}$, A. Sidoti ${ }^{23 a, 23 b}$, F. Siegert ${ }^{48}$, Dj. Sijacki ${ }^{16}$, M. Jr. Silva ${ }^{181}$, M. V. Silva Oliveira ${ }^{80 a}$, S. B. Silverstein ${ }^{45 a}$, S. Simion ${ }^{132}$, E. Simioni ${ }^{99}$, R. Simoniello ${ }^{99}$, S. Simsek ${ }^{12 b}$, P. Sinervo ${ }^{167}$, V. Sinetckii ${ }^{113,110}$, N. B. Sinev ${ }^{131}$, M. Sioli ${ }^{23 a, 23 b}$, I. Siral ${ }^{105}$, S. Yu. Sivoklokov ${ }^{113}$, J. Sjölin ${ }^{45 a, 45 b}$, E. Skorda ${ }^{96}$, P. Skubic ${ }^{128}$, M. Slawinska ${ }^{84}$, K. Sliwa ${ }^{170}$, R. Slovak ${ }^{143}$, V. Smakhtin ${ }^{180}$, B. H. Smart ${ }^{144}$, J. Smiesko ${ }^{28 a}$, N. Smirnov ${ }^{112}$, S. Yu. Smirnov ${ }^{112}$, Y. Smirnov ${ }^{112}$, L. N. Smirnova ${ }^{113, w}$, O. Smirnova ${ }^{96}$, J. W. Smith ${ }^{53}$, M. Smizanska ${ }^{89}$, K. Smolek ${ }^{142}$, A. Smykiewicz ${ }^{84}$, A. A. Snesarev ${ }^{110}$, H. L. Snoek ${ }^{120}$, I. M. Snyder ${ }^{131}$, S. Snyder ${ }^{29}$, R. Sobie ${ }^{176, \text { af }, ~ A . ~ S o f f e r ~}{ }^{161}$, A. Søgaard ${ }^{50}$, F. Sohns ${ }^{53}$, C. A. Solans Sanchez ${ }^{36}$, E. Yu. Soldatov ${ }^{112}$, U. Soldevila ${ }^{174}$, A. A. Solodkov ${ }^{123}$, A. Soloshenko ${ }^{79}$, O. V. Solovyanov ${ }^{123}$, V. Solovyev ${ }^{138}$, P. Sommer ${ }^{149}$, H. Son ${ }^{170}$, W. Song ${ }^{144}$, W. Y. Song ${ }^{168 b}$, A. Sopczak ${ }^{142}$, F. Sopkova ${ }^{28 b}$, C. L. Sotiropoulou ${ }^{71 a, 71 b}$, S. Sottocornola ${ }^{70 a}$, 70b , R. Soualah ${ }^{66 a, 66 c, g}$, A. M. Soukharev ${ }^{122 a, 122 b}$, D. South ${ }^{46}$, S. Spagnolo ${ }^{67 a, 67 b}$, M. Spalla ${ }^{115}$, M. Spangenberg ${ }^{178}$, F. Spanò ${ }^{93}$, D. Sperlich ${ }^{52}$, T. M. Spieker ${ }^{61 \mathrm{a}}$, R. Spighi ${ }^{23 b}$, G. Spigo $^{36}$, M. Spina ${ }^{156}$, D. P. Spiteri ${ }^{57}$, M. Spousta ${ }^{143}$, A. Stabile ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, B. L. Stamas ${ }^{121}$, R. Stamen ${ }^{61 \mathrm{a}}$, M. Stamenkovic ${ }^{120}$, E. Stanecka ${ }^{84}$, B. Stanislaus ${ }^{135}$, M. M. Stanitzki ${ }^{46}$, M. Stankaityte ${ }^{135}$, B. Stapf $^{120}$, E. A. Starchenko ${ }^{123}$, G. H. Stark ${ }^{146}$, J. Stark ${ }^{58}$, S. H. Stark ${ }^{40}$, P. Staroba ${ }^{141}$, P. Starovoitov ${ }^{61 \text { a }}$, S. Stärz ${ }^{103}$, R. Staszewski ${ }^{84}$, G. Stavropoulos ${ }^{44}$, M. Stegler ${ }^{46}$, P. Steinberg ${ }^{29}$, A. L. Steinhebel ${ }^{131}$, B. Stelzer ${ }^{152}$, H. J. Stelzer ${ }^{139}$, O. Stelzer-Chilton ${ }^{168 a}$, H. Stenzel ${ }^{56}$, T. J. Stevenson ${ }^{156}$, G. A. Stewart ${ }^{36}$, M. C. Stockton ${ }^{36}$, G. Stoicea ${ }^{27 \mathrm{~b}}$, M. Stolarski ${ }^{140 \mathrm{a}}$, S. Stonjek ${ }^{115}$, A. Straessner ${ }^{48}$, J. Strandberg ${ }^{154}$, S. Strandberg ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, M. Strauss ${ }^{128}$, P. Strizenec ${ }^{28 \mathrm{~b}}$, R. Ströhmer ${ }^{177}$, D. M. Strom ${ }^{131}$, R. Stroynowski ${ }^{42}$, A. Strubig ${ }^{50}$, S. A. Stucci ${ }^{29}$, B. Stugu ${ }^{17}$, J. Stupak ${ }^{128}$, N. A. Styles ${ }^{46}$, D. Su ${ }^{153}$, S. Suchek ${ }^{61 \mathrm{a}}$, V. V. Sulin ${ }^{110, ~ M . ~ J . ~ S u l l i v a n ~}{ }^{90}$, D. M. S. Sultan ${ }^{54}$, S. Sultansoy ${ }^{4 c}$, T. Sumida ${ }^{85}$, S. Sun ${ }^{105}$, X. Sun ${ }^{3}$, K. Suruliz ${ }^{156}$, C. J. E. Suster ${ }^{157}$, M. R. Sutton ${ }^{156}$, S. Suzuki ${ }^{81}$, M. Svatos ${ }^{141}$, M. Swiatlowski ${ }^{37}$, S. P. Swift ${ }^{2}$, T. Swirski ${ }^{177}$, A. Sydorenko ${ }^{99}$, I. Sykora ${ }^{28 a}$, M. Sykora ${ }^{143}$, T. Sykora ${ }^{143}$, D. Ta ${ }^{99}$, K. Tackmann ${ }^{46, a b}$, J. Taenzer ${ }^{161}$, A. Taffard ${ }^{171}$, R. Tafirout ${ }^{168 a}$, H. Takai ${ }^{29}$, R. Takashima ${ }^{86}$, K. Takeda ${ }^{82}$, T. Takeshita ${ }^{150}$, E. P. Takeva ${ }^{50}$, Y. Takubo ${ }^{81}$, M. Talby ${ }^{101}$, A. A. Talyshev ${ }^{122 a, 122 b}$, N. M. Tamir ${ }^{161}$, J. Tanaka ${ }^{163}$, M. Tanaka ${ }^{165}$, R. Tanaka ${ }^{132}$, S. Tapia Araya ${ }^{173}$, S. Tapprogge ${ }^{99}$, A. Tarek Abouelfadl Mohamed ${ }^{136}$, S. Tarem ${ }^{160}$, K. Tariq ${ }^{60 \mathrm{~b}}$, G. Tarna ${ }^{27 b, c}$, G. F. Tartarelli ${ }^{68 \mathrm{a}}$, P. Tas ${ }^{143}$, M. Tasevsky ${ }^{141}$, T. Tashiro ${ }^{85}$, E. Tassi ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$, A. Tavares Delgado ${ }^{140 \mathrm{a}, 140 \mathrm{~b}}$, Y. Tayalati ${ }^{35 \mathrm{e}}$, A. J. Taylor ${ }^{50}$, G. N. Taylor ${ }^{104}$, W. Taylor ${ }^{168 b}$, A. S. Tee ${ }^{89}$, R. Teixeira De Lima ${ }^{153}$, P. Teixeira-Dias ${ }^{93}$, H. Ten Kate ${ }^{36}$, J. J. Teoh ${ }^{120}$, S. Terada ${ }^{81}$, K. Terashi ${ }^{163}$, J. Terron ${ }^{98}$, S. Terzo ${ }^{14}$, M. Testa ${ }^{51}$, R. J. Teuscher ${ }^{167, \text { af }}$, S. J. Thais ${ }^{183}$, T. Theveneaux-Pelzer ${ }^{46}$, F. Thiele ${ }^{40}$, D. W. Thomas ${ }^{93}$, J. O. Thomas ${ }^{42}$, J. P. Thomas ${ }^{21}$, A. S. Thompson ${ }^{57}$, P. D. Thompson ${ }^{21}$, L. A. Thomsen ${ }^{183}$, E. Thomson ${ }^{137}$, E. J. Thorpe ${ }^{92}$, Y. Tian ${ }^{39}$, R. E. Ticse Torres ${ }^{53}$, V. O. Tikhomirov ${ }^{110, \text { ar }, ~ Y u . ~ A . ~ T i k h o n o v ~}{ }^{122 a, 122 b}$, S. Timoshenko ${ }^{112}$,
P. Tipton ${ }^{183}$, S. Tisserant ${ }^{101}$, K. Todome ${ }^{23 \mathrm{a}, 23 \mathrm{~b}}$, S. Todorova-Nova ${ }^{5}$, S. Todt ${ }^{48}$, J. Tojo ${ }^{87}$, S. Tokár ${ }^{28 \mathrm{a}}$, K. Tokushuku ${ }^{81}$, E. Tolley ${ }^{126}$, K. G. Tomiwa ${ }^{33 \mathrm{c}}, \quad$ M. Tomoto ${ }^{117}$, $\quad$ L. Tompkins ${ }^{153, q}$, $\quad$ B. Tong ${ }^{59}$, P. Tornambe ${ }^{102}$, E. Torrence ${ }^{131}$, H. Torres ${ }^{48}$, E. Torró Pastor ${ }^{148}$, C. Tosciri ${ }^{135}$, J. Toth ${ }^{101, a e}$, D. R. Tovey ${ }^{149}$, A. Traeet ${ }^{17}$, C. J. Treado ${ }^{124}$, T. Trefzger ${ }^{177}$, F. Tresoldi ${ }^{156}$, A. Tricoli ${ }^{29}$, I. M. Trigger ${ }^{168 \mathrm{a}}$, S. Trincaz-Duvoid ${ }^{136}$, W. Trischuk ${ }^{167}$, B. Trocmé ${ }^{58}$, A. Trofymov ${ }^{145}$, C. Troncon ${ }^{68 \mathrm{a}}$, M. Trovatelli ${ }^{176}$, F. Trovato ${ }^{156}$, L. Truong ${ }^{33 \mathrm{~b}}$, M. Trzebinski ${ }^{84}$, A. Trzupek ${ }^{84}$, F. Tsai ${ }^{46}$, J. C.-L. Tseng ${ }^{135}$, P. V. Tsiareshka ${ }^{107, a l}$, A. Tsirigotis ${ }^{162}$, N. Tsirintanis ${ }^{9}$, V. Tsiskaridze ${ }^{155}$, E. G. Tskhadadze ${ }^{159 a}$, M. Tsopoulou ${ }^{162}$, I. I. Tsukerman ${ }^{111}$, V. Tsulaia ${ }^{18}$, S. Tsuno ${ }^{81}$, D. Tsybychev ${ }^{155}, \mathrm{Y}^{2} \mathrm{Tu}^{63 \mathrm{~b}}$, A. Tudorache ${ }^{27 \mathrm{~b}}$, V. Tudorache ${ }^{27 \mathrm{~b}}$, T. T. Tulbure ${ }^{27 \mathrm{a}}$, A. N. Tuna ${ }^{59}$, $\quad$ S. Turchikhin ${ }^{79}$, $\quad$ D. Turgeman ${ }^{180}$, I. Turk Cakir ${ }^{4 b, x}$, R. J. Turner ${ }^{21}$, R. T. Turra ${ }^{68 \mathrm{a}}$, P. M. Tuts ${ }^{39}$, S. Tzamarias ${ }^{162}$, E. Tzovara ${ }^{99}$, G. Ucchielli ${ }^{47}$, K. Uchida ${ }^{163}$, I. Ueda ${ }^{81}$, M. Ughetto ${ }^{45 a, 45 \mathrm{~b}}$, F. Ukegawa ${ }^{169}$, G. Unal ${ }^{36}$, A. Undrus ${ }^{29}$, G. Unel ${ }^{171}$, F. C. Ungaro ${ }^{104}$, Y. Unno ${ }^{81}$, K. Uno ${ }^{163}$, J. Urban ${ }^{28 b}$, P. Urquijo ${ }^{104}$, G. Usai ${ }^{8}$, Z. Uysal ${ }^{12 d}$, L. Vacavant ${ }^{101}$, V. Vacek ${ }^{142}$, B. Vachon ${ }^{103}$, K. O. H. Vadla ${ }^{134}$, A. Vaidya ${ }^{94}$, C. Valderanis ${ }^{114}$, E. Valdes Santurio ${ }^{45 a}, 45 \mathrm{~b}$, M. Valente ${ }^{54}$, S. Valentinetti ${ }^{23 a, 23 b}$, A. Valero ${ }^{174}$, L. Valéry ${ }^{46}$, R. A. Vallance ${ }^{21}$, A. Vallier ${ }^{36}$, J. A. Valls Ferrer ${ }^{174}$, T. R. Van Daalen ${ }^{14}$, P. Van Gemmeren ${ }^{6}$, I. Van Vulpen ${ }^{120}$, M. Vanadia ${ }^{73 a, 73 b}$, W. Vandelli ${ }^{36}$, A. Vaniachine ${ }^{166}$, D. Vannicola ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, R. Vari ${ }^{72 \mathrm{a}}$, $\quad$ E. W. Varnes ${ }^{7}$, $\quad$ C. Varni $^{55 \mathrm{a}, 55 \mathrm{~b}}$, T. Varol ${ }^{158}$, $\quad$ D. Varouchas ${ }^{132}$, K. E. Varvell ${ }^{157}$, M. E. Vasile ${ }^{27 b}$, G. A. Vasquez ${ }^{176}$, J. G. Vasquez ${ }^{183}$, F. Vazeille ${ }^{38}$, D. Vazquez Furelos ${ }^{14}$, T. Vazquez Schroeder ${ }^{36}$, J. Veatch ${ }^{53}$, V. Vecchio ${ }^{74 a, 74 b}$, M. J. Veen ${ }^{120}$, L. M. Veloce ${ }^{167}$, F. Veloso ${ }^{140 a, 140 c}$, S. Veneziano ${ }^{72 a}$, A. Ventura ${ }^{67 a, 67 b}$, N. Venturi ${ }^{36}$, A. Verbytskyi ${ }^{115}$, V. Vercesi ${ }^{70 \mathrm{a}}$, M. Verducci ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, C. M. Vergel Infante ${ }^{78}$, C. Vergis ${ }^{24}$, W. Verkerke ${ }^{120}$, A. T. Vermeulen ${ }^{120}$, J. C. Vermeulen ${ }^{120}$, M. C. Vetterli ${ }^{152, \text { az }}$, N. Viaux Maira ${ }^{147 \mathrm{~b}}$, M. Vicente Barreto Pinto ${ }^{54}$, T. Vickey ${ }^{149}$, O. E. Vickey Boeriu ${ }^{149}$, G. H. A. Viehhauser ${ }^{135}$, L. Vigani ${ }^{61 b}$, M. Villa ${ }^{23 a, 23 b}$, M. Villaplana Perez ${ }^{68 a, 68 b}$, E. Vilucchi ${ }^{51}$, M. G. Vincter ${ }^{34}$, G. S. Virdee ${ }^{21}$, A. Vishwakarma ${ }^{46}$, C. Vittori ${ }^{23 a, 23 b}$, I. Vivarelli ${ }^{156}$, M. Vogel ${ }^{182}$, P. Vokac ${ }^{142}$, S. E. von Buddenbrock ${ }^{33 c}$, E. Von Toerne ${ }^{24}$, V. Vorobel ${ }^{143}$, K. Vorobev ${ }^{112}$, M. Vos ${ }^{174}$, J. H. Vossebeld ${ }^{90}$, M. Vozak ${ }^{100}$, N. Vranjes ${ }^{16}$, M. Vranjes Milosavljevic ${ }^{16}$, V. Vrba ${ }^{142}$, M. Vreeswijk ${ }^{120}$, R. Vuillermet ${ }^{36}$, I. Vukotic ${ }^{37}$, P. Wagner ${ }^{24}$, W. Wagner ${ }^{182}$, J. Wagner-Kuhr ${ }^{114}$, S. Wahdan ${ }^{182}$, H. Wahlberg ${ }^{88}$, V. M. Walbrecht ${ }^{115}$, J. Walder ${ }^{89}$, R. Walker ${ }^{114}$, S. D. Walker ${ }^{93}$, W. Walkowiak ${ }^{151}$, V. Wallangen ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, A. M. Wang ${ }^{59}$, C. Wang ${ }^{60 \mathrm{c}}$, C. Wang ${ }^{60 \mathrm{~b}}$, F. Wang ${ }^{181}$, H. Wang ${ }^{18}$, H. Wang ${ }^{3}$, J. Wang ${ }^{157}$, J. Wang ${ }^{61 b}$, P. Wang ${ }^{42}$, Q. Wang ${ }^{128}$, R.-J. Wang ${ }^{99}$, R. Wang ${ }^{60 a}$, R. Wang ${ }^{6}$, S. M. Wang ${ }^{158}$, W. T. Wang ${ }^{60 a}$, W. Wang ${ }^{15 \mathrm{c}, \mathrm{ag}}$, W. X. Wang ${ }^{60 \mathrm{a}, \mathrm{ag}}$, Y. Wang ${ }^{60 \mathrm{a}, \mathrm{ao}}$, Z. Wang ${ }^{60 \mathrm{c}}$, C. Wanotayaroj ${ }^{46}$, A. Warburton ${ }^{103}$, C. P. Ward ${ }^{32}$, D. R. Wardrope ${ }^{94}, \quad$ N. Warrack ${ }^{57}$, A. Washbrook ${ }^{50}$, A. T. Watson ${ }^{21}$, M. F. Watson ${ }^{21}$, G. Watts ${ }^{148}$, B. M. Waugh ${ }^{94}$, A. F. Webb ${ }^{11}$, S. Webb ${ }^{99}$, C. Weber ${ }^{183}$, M. S. Weber ${ }^{20}$, S. A. Weber ${ }^{34}$, S. M. Weber ${ }^{61 \mathrm{a}}$, A. R. Weidberg ${ }^{135}$, J. Weingarten ${ }^{47}$, M. Weirich ${ }^{99}$, C. Weiser ${ }^{52}$, P. S. Wells ${ }^{36}$, T. Wenaus ${ }^{29}$, T. Wengler ${ }^{36}$, S. Wenig ${ }^{36}$, N. Wermes ${ }^{24}$, M. D. Werner ${ }^{78}$, M. Wessels ${ }^{61 a}$, T. D. Weston ${ }^{20}$, K. Whalen ${ }^{131}$, N. L. Whallon ${ }^{148}$, A. M. Wharton ${ }^{89}$, A. S. White ${ }^{105}$, A. White ${ }^{8}$, M. J. White ${ }^{1}$, D. Whiteson ${ }^{171}$, B. W. Whitmore ${ }^{89}$, W. Wiedenmann ${ }^{181}$, M. Wielers ${ }^{144}$, N. Wieseotte ${ }^{99}$, C. Wiglesworth ${ }^{40}$, L. A. M. Wiik-Fuchs ${ }^{52}$, F. Wilk ${ }^{100}$, H. G. Wilkens ${ }^{36}$, L. J. Wilkins ${ }^{93}$, H. H. Williams ${ }^{137}$, S. Williams ${ }^{32}$, C. Willis ${ }^{106}$, S. Willocq ${ }^{102}$, J. A. Wilson ${ }^{21}$, I. Wingerter-Seez ${ }^{5}$, E. Winkels ${ }^{156}$, F. Winklmeier ${ }^{131}$, O. J. Winston ${ }^{156}$, B. T. Winter ${ }^{52}$, M. Wittgen ${ }^{153}$, M. Wobisch ${ }^{95}$, A. Wolf ${ }^{99}$, T. M. H. Wolf ${ }^{120}$, R. Wolff ${ }^{101}$, R. W. Wölker ${ }^{135}$, J. Wollrath ${ }^{52}$, M. W. Wolter ${ }^{84}$, H. Wolters ${ }^{140 a, 140 c}$, V. W. S. Wong ${ }^{175}$, N. L. Woods ${ }^{146}$, S. D. Worm ${ }^{21}$, B. K. Wosiek ${ }^{84}$, K. W. Woźniak ${ }^{84}$, K. Wraight ${ }^{57}$, S. L. Wu ${ }^{181}$, X. Wu ${ }^{54}$, Y. Wu ${ }^{60 \mathrm{a}}$, T. R. Wyatt ${ }^{100}$, B. M. Wynne ${ }^{50}$, S. Xella ${ }^{40}$, Z. Xi ${ }^{105}$, L. Xia ${ }^{178}$, X. Xiao ${ }^{105}$, I. Xiotidis ${ }^{156}$, D. $\mathrm{Xu}^{15 \mathrm{a}}$, H. Xu ${ }^{60 \mathrm{a}, \mathrm{c}}$, L. $\mathrm{Xu}^{29}$, T. Xu ${ }^{145}$, W. Xu ${ }^{105}$, Z. Xu ${ }^{60 b}$, Z. Xu ${ }^{153}$, B. Yabsley ${ }^{157}$, S. Yacoob ${ }^{33 \mathrm{a}}$, K. Yajima ${ }^{133}$, D. P. Yallup ${ }^{94}$, D. Yamaguchi ${ }^{165}$, Y. Yamaguchi ${ }^{165}$, A. Yamamoto ${ }^{81}$, M. Yamatani ${ }^{163}$, T. Yamazaki ${ }^{163}$, Y. Yamazaki ${ }^{82}$, Z. Yan ${ }^{25}$, H. J. Yang ${ }^{60 \mathrm{c}, 60 \mathrm{~d}}$, H. T. Yang ${ }^{18}$, S. Yang ${ }^{77}$, X. Yang ${ }^{58,60 \mathrm{~b}}$, Y. Yang ${ }^{163}$, W.-M. Yao ${ }^{18}$, Y. C. Yap ${ }^{46}$, Y. Yasu ${ }^{81}$, E. Yatsenko ${ }^{60 \mathrm{c}, 60 \mathrm{~d}}$, J. Ye ${ }^{42}$, S. Ye ${ }^{29}$, I. Yeletskikh ${ }^{79}$, M. R. Yexley ${ }^{89}$, E. Yigitbasi ${ }^{25}$, K. Yorita ${ }^{179}$, K. Yoshihara ${ }^{137}$, C. J. S. Young ${ }^{36}$, C. Young ${ }^{153}$, J. Yu ${ }^{78}$, R. Yuan ${ }^{60 b, i}$, X. Yue ${ }^{61 a}$, S. P. Y. Yuen ${ }^{24}$, M. Zaazoua ${ }^{35 e}$, B. Zabinski ${ }^{84}$, G. Zacharis ${ }^{10}$, E. Zaffaroni ${ }^{54}$, J. Zahreddine ${ }^{136}$, A. M. Zaitsev ${ }^{123, a q}$, T. Zakareishvili ${ }^{159 b}$, N. Zakharchuk ${ }^{34}$, S. Zambito ${ }^{59}$, D. Zanzi ${ }^{36}$, D. R. Zaripovas ${ }^{57}$, S. V. Zeißner ${ }^{47}$, C. Zeitnitz ${ }^{182}$, G. Zemaityte ${ }^{135}$, J. C. Zeng ${ }^{173}$, O. Zenin ${ }^{123}$, T. Ženiš ${ }^{28 a}$, D. Zerwas ${ }^{132}$, M. Zgubič ${ }^{135}$, D. F. Zhang ${ }^{15 b}$, G. Zhang ${ }^{15 b}$, H. Zhang ${ }^{15 c}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{15 c}$, L. Zhang ${ }^{60 a}$, M. Zhang ${ }^{173}$, R. Zhang ${ }^{24}$, X. Zhang ${ }^{60 b}$, Y. Zhang ${ }^{15 a, 15 d}$, Z. Zhang ${ }^{63 \mathrm{a}}$, Z. Zhang ${ }^{132}$, P. Zhao ${ }^{49}$, Y. Zhao ${ }^{60 \mathrm{~b}}$, Z. Zhao ${ }^{60 \mathrm{a}}$, A. Zhemchugov ${ }^{79}$, Z. Zheng ${ }^{105}$, D. Zhong ${ }^{173}$, B. Zhou ${ }^{105}$, C. Zhou ${ }^{181}$, M. S. Zhou ${ }^{15 a, 15 d}$, M. Zhou ${ }^{155}$, N. Zhou ${ }^{60 \mathrm{c}}$, Y. Zhou ${ }^{7}$, C. G. Zhu ${ }^{60 \mathrm{~b}}$, H. L. Zhu ${ }^{60 \mathrm{a}}$, H. Zhu ${ }^{15 a}$, J. Zhu ${ }^{105}$, Y. Zhu ${ }^{60 a}$, X. Zhuang ${ }^{15 a}$, K. Zhukov ${ }^{110}$, V. Zhulanov ${ }^{122 a, 122 b}$, D. Zieminska ${ }^{65}$, N. I. Zimine ${ }^{79}$, S. Zimmermann ${ }^{52}$, Z. Zinonos ${ }^{115}$, M. Ziolkowski ${ }^{151}$, L. Živković ${ }^{16}$, G. Zobernig ${ }^{181}$, A. Zoccoli ${ }^{23 a}, 23 b$, K. Zoch ${ }^{53}$, T. G. Zorbas ${ }^{149}$, R. Zou ${ }^{37}$, L. Zwalinski ${ }^{36}$
${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
${ }^{2}$ Physics Department, SUNY Albany, Albany, NY, USA
${ }^{3}$ Department of Physics, University of Alberta, Edmonton, AB, Canada

4 (a) Department of Physics, Ankara University, Ankara, Turkey; ${ }^{(b)}$ Istanbul Aydin University, Istanbul, Turkey; ${ }^{(c)}$ Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
${ }^{5}$ LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
${ }^{7}$ Department of Physics, University of Arizona, Tucson, AZ, USA
${ }^{8}$ Department of Physics, University of Texas at Arlington, Arlington, TX, USA
${ }^{9}$ Physics Department, National and Kapodistrian University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Department of Physics, University of Texas at Austin, Austin, TX, USA
12 (a) Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey; ${ }^{(b)}$ Faculty of Engineering and
Natural Sciences, Istanbul Bilgi University, Istanbul, Turkey; ${ }^{(c)}$ Department of Physics, Bogazici University, Istanbul,
Turkey; ${ }^{(d)}$ Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
${ }^{13}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{14}$ Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
15 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; ${ }^{(b)}$ Physics Department, Tsinghua University, Beijing, China; ${ }^{(c)}$ Department of Physics, Nanjing University, Nanjing, China; ${ }^{(d)}$ University of Chinese Academy of Science (UCAS), Beijing, China
${ }^{16}$ Institute of Physics, University of Belgrade, Belgrade, Serbia
${ }^{17}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{18}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
${ }^{19}$ Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
${ }^{20}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{21}$ School of Physics and Astronomy, University of Birmingham, Birmingham, UK
${ }^{22}$ Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño, Bogota, Colombia
23 (a) Dipartimento di Fisica, INFN Bologna and Universita' di Bologna, Bologna, Italy; ${ }^{\text {(b) }}$ INFN Sezione di Bologna, Bologna, Italy
${ }^{24}$ Physikalisches Institut, Universität Bonn, Bonn, Germany
${ }^{25}$ Department of Physics, Boston University, Boston, MA, USA
${ }^{26}$ Department of Physics, Brandeis University, Waltham, MA, USA
27 (a) Transilvania University of Brasov, Brasov, Romania; ${ }^{\text {(b) }}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania; ${ }^{(c)}$ Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania; ${ }^{(d)}$ Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania; ${ }^{(e)}$ University Politehnica Bucharest, Bucharest, Romania; ${ }^{(f)}$ West University in Timisoara, Timisoara, Romania
28 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
${ }^{29}$ Physics Department, Brookhaven National Laboratory, Upton, NY, USA
${ }^{30}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{31}$ California State University, Long Beach, CA, USA
${ }^{32}$ Cavendish Laboratory, University of Cambridge, Cambridge, UK
33 (a) Department of Physics, University of Cape Town, Cape Town, South Africa; ${ }^{(b)}$ Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa; ${ }^{(c)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
${ }^{34}$ Department of Physics, Carleton University, Ottawa, ON, Canada
$35{ }^{(a)}$ Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; ${ }^{(b)}$ Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco; ${ }^{\left({ }^{(c)} \text { Faculté des Sciences }\right.}$ Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; ${ }^{(e)}$ Faculté des sciences, Université Mohammed V, Rabat, Morocco
${ }^{36}$ CERN, Geneva, Switzerland
${ }^{37}$ Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
${ }^{38}$ LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
${ }^{39}$ Nevis Laboratory, Columbia University, Irvington, NY, USA
${ }^{40}$ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
41 (a) Dipartimento di Fisica, Università della Calabria, Rende, Italy; ${ }^{(b)}$ INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{42}$ Physics Department, Southern Methodist University, Dallas, TX, USA
${ }^{43}$ Physics Department, University of Texas at Dallas, Richardson, TX, USA
${ }^{44}$ National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
45 (a) Department of Physics, Stockholm University, Stockholm, Sweden; ${ }^{(b)}$ Oskar Klein Centre, Stockholm, Sweden
${ }^{46}$ Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
${ }^{47}$ Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{48}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{49}$ Department of Physics, Duke University, Durham, NC, USA
${ }^{50}$ SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
${ }^{51}$ INFN e Laboratori Nazionali di Frascati, Frascati, Italy
${ }_{52}$ Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
${ }^{53}$ II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
${ }^{54}$ Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
55 (a) Dipartimento di Fisica, Università di Genova, Genoa, Italy; ${ }^{(b)}$ INFN Sezione di Genova, Genoa, Italy
${ }^{56}$ II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
${ }^{57}$ SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
${ }^{58}$ LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
${ }^{59}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
$60{ }^{(a)}$ Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China; ${ }^{(b)}$ Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China; ${ }^{(c)}$ School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China; ${ }^{(d)}$ Tsung-Dao Lee Institute, Shanghai, China
61 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ${ }^{(b)}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
${ }^{62}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
63 (a) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; ${ }^{(b)}$ Department of Physics, University of Hong Kong, Pok Fu Lam, Hong Kong; ${ }^{(\mathfrak{c})}$ Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
${ }^{64}$ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
${ }^{65}$ Department of Physics, Indiana University, Bloomington, IN, USA
66 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; ${ }^{(b)}$ ICTP, Trieste, Italy; ${ }^{(c)}$ Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy
67 (a) INFN Sezione di Lecce, Lecce, Italy; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
68 (a) INFN Sezione di Milano, Milan, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milan, Italy
$69{ }^{(a)}$ INFN Sezione di Napoli, Naples, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Napoli, Naples, Italy
70 (a) INFN Sezione di Pavia, Pavia, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
71 (a) INFN Sezione di Pisa, Pisa, Italy; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
72 (a) INFN Sezione di Roma, Rome, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
73 (a) INFN Sezione di Roma Tor Vergata, Rome, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
74 (a) INFN Sezione di Roma Tre, Rome, Italy; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
75 (a) INFN-TIFPA, Povo, Italy; ${ }^{(b)}$ Università degli Studi di Trento, Trento, Italy
${ }^{76}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{77}$ University of Iowa, Iowa City, IA, USA
${ }^{78}$ Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
${ }^{79}$ Joint Institute for Nuclear Research, Dubna, Russia
$80{ }^{(a)}$ Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil; ${ }^{(b)}$ Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; ${ }^{(c)}$ Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil; ${ }^{(d)}$ Instituto de Física, Universidade de São Paulo, Sao Paulo, Brazil
${ }^{81}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{82}$ Graduate School of Science, Kobe University, Kobe, Japan
$83{ }^{(a)}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
${ }^{84}$ Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
${ }^{85}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{86}$ Kyoto University of Education, Kyoto, Japan
${ }^{87}$ Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{88}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{89}$ Physics Department, Lancaster University, Lancaster, UK
${ }^{90}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
${ }^{91}$ Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
${ }^{92}$ School of Physics and Astronomy, Queen Mary University of London, London, UK
${ }^{93}$ Department of Physics, Royal Holloway University of London, Egham, UK
${ }^{94}$ Department of Physics and Astronomy, University College London, London, UK
${ }^{95}$ Louisiana Tech University, Ruston, LA, USA
${ }^{96}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{97}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{98}$ Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
${ }^{99}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{100}$ School of Physics and Astronomy, University of Manchester, Manchester, UK
${ }^{101}$ CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
102 Department of Physics, University of Massachusetts, Amherst, MA, USA
${ }^{103}$ Department of Physics, McGill University, Montreal, QC, Canada
${ }^{104}$ School of Physics, University of Melbourne, Melbourne, VIC, Australia
${ }^{105}$ Department of Physics, University of Michigan, Ann Arbor, MI, USA
106 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
${ }^{107}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
${ }^{108}$ Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
${ }^{109}$ Group of Particle Physics, University of Montreal, Montreal, QC, Canada
${ }^{110}$ P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
${ }^{111}$ Institute for Theoretical and Experimental Physics of the National Research Centre Kurchatov Institute, Moscow, Russia
112 National Research Nuclear University MEPhI, Moscow, Russia
${ }^{113}$ D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
${ }^{114}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany
${ }^{115}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany
${ }^{116}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
${ }^{117}$ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
${ }^{118}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
${ }^{119}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
${ }^{120}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
${ }^{121}$ Department of Physics, Northern Illinois University, DeKalb, IL, USA
122 (a) Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Siberia, Russia; ${ }^{(b)}$ Novosibirsk State University, Novosibirsk, Russia
${ }^{123}$ Institute for High Energy Physics of the National Research Centre, Kurchatov Institute, Protvino, Russia
${ }^{124}$ Department of Physics, New York University, New York, NY, USA
${ }^{125}$ Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
${ }^{126}$ Ohio State University, Columbus, OH, USA
${ }^{127}$ Faculty of Science, Okayama University, Okayama, Japan
${ }^{128}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
${ }^{129}$ Department of Physics, Oklahoma State University, Stillwater, OK, USA
${ }^{130}$ Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic
${ }^{131}$ Center for High Energy Physics, University of Oregon, Eugene, OR, USA
${ }^{132}$ LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
${ }^{133}$ Graduate School of Science, Osaka University, Osaka, Japan
${ }^{134}$ Department of Physics, University of Oslo, Oslo, Norway
${ }^{135}$ Department of Physics, Oxford University, Oxford, UK
${ }^{136}$ LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France
${ }^{137}$ Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
${ }^{138}$ Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg, Russia
${ }^{139}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
140 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisbon, Portugal; ${ }^{(b)}$ Departamento de Física,
Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; ${ }^{(c)}$ Departamento de Física, Universidade de Coimbra,
Coimbra, Portugal; ${ }^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; ${ }^{(e)}$ Departamento de Física,
Universidade do Minho, Braga, Portugal; ${ }^{(f)}$ Universidad de Granada, Granada, Spain; ${ }^{(\mathrm{g})}$ Dep Física and CEFITEC of
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; ${ }^{(h)}$ Av. Rovisco Pais, 1, 1049-001
Lisbon, Portugal
${ }^{141}$ Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
${ }^{142}$ Czech Technical University in Prague, Prague, Czech Republic
${ }^{143}$ Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
${ }^{144}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
${ }^{145}$ IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
${ }^{146}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
147 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; ${ }^{(b)}$ Departamento de Física,
Universidad Técnica Federico Santa María, Valparaíso, Chile
148 Department of Physics, University of Washington, Seattle, WA, USA
${ }^{149}$ Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
${ }^{150}$ Department of Physics, Shinshu University, Nagano, Japan
${ }^{151}$ Department Physik, Universität Siegen, Siegen, Germany
${ }^{152}$ Department of Physics, Simon Fraser University, Burnaby, BC, Canada
${ }^{153}$ SLAC National Accelerator Laboratory, Stanford, CA, USA
${ }^{154}$ Physics Department, Royal Institute of Technology, Stockholm, Sweden
${ }^{155}$ Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
${ }^{156}$ Department of Physics and Astronomy, University of Sussex, Brighton, UK
${ }^{157}$ School of Physics, University of Sydney, Sydney, Australia
${ }^{158}$ Institute of Physics, Academia Sinica, Taipei, Taiwan
$159{ }^{(a)}$ E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
${ }^{160}$ Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
${ }^{161}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
${ }^{162}$ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
${ }^{163}$ International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
${ }^{164}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
${ }^{165}$ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
${ }^{166}$ Tomsk State University, Tomsk, Russia
${ }^{167}$ Department of Physics, University of Toronto, Toronto, ON, Canada
168 (a) TRIUMF, Vancouver, BC, Canada; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto, ON, Canada
${ }^{169}$ Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
${ }^{170}$ Department of Physics and Astronomy, Tufts University, Medford, MA, USA
${ }^{171}$ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
172 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
${ }^{173}$ Department of Physics, University of Illinois, Urbana, IL, USA
${ }^{174}$ Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
${ }^{175}$ Department of Physics, University of British Columbia, Vancouver, BC, Canada
${ }^{176}$ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
${ }^{177}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
${ }^{178}$ Department of Physics, University of Warwick, Coventry, UK
${ }^{179}$ Waseda University, Tokyo, Japan
${ }^{180}$ Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel
${ }^{181}$ Department of Physics, University of Wisconsin, Madison, WI, USA
${ }^{182}$ Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{183}$ Department of Physics, Yale University, New Haven, CT, USA
${ }^{184}$ Yerevan Physics Institute, Yerevan, Armenia
${ }^{\text {a }}$ Also at Borough of Manhattan Community College, City University of New York, New York, NY, USA
${ }^{\mathrm{b}}$ Also at CERN, Geneva, Switzerland
${ }^{\text {c }}$ Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
${ }^{d}$ Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
${ }^{\mathrm{e}}$ Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
${ }^{f}$ Also at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
g Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates
${ }^{h}$ Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
${ }^{i}$ Also at Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
${ }^{j}$ Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA
${ }^{k}$ Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel
${ }^{1}$ Also at Department of Physics, California State University, East Bay, USA
${ }^{m}$ Also at Department of Physics, California State University, Fresno, USA
${ }^{n}$ Also at Department of Physics, California State University, Sacramento, USA
${ }^{0}$ Also at Department of Physics, King's College London, London, UK
p Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
${ }^{q}$ Also at Department of Physics, Stanford University, Stanford, CA, USA
${ }^{r}$ Also at Department of Physics, University of Adelaide, Adelaide, Australia
${ }^{\mathrm{s}}$ Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
${ }^{t}$ Also at Department of Physics, University of Michigan, Ann Arbor, MI, USA
${ }^{u}$ Also at Department of Physics, University of Toronto, Toronto, ON, Canada
${ }^{\mathrm{v}}$ Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine, Italy
${ }^{w}$ Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
${ }^{x}$ Also at Giresun University, Faculty of Engineering, Giresun, Turkey
${ }^{\text {y }}$ Also at Graduate School of Science, Osaka University, Osaka, Japan
${ }^{\text {z }}$ Also at Hellenic Open University, Patras, Greece
${ }^{\text {aa }}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
${ }^{\text {ab }}$ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
${ }^{\text {ac }}$ Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
${ }^{\text {ad }}$ Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
${ }^{\text {ae }}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
${ }^{\text {af }}$ Also at Institute of Particle Physics (IPP), Vancouver, Canada
${ }^{\text {ag }}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{\text {ah }}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{\text {ai }}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
${ }^{\text {aj }}$ Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid, Spain
${ }^{\text {ak }}$ Also at Department of Physics, Istanbul University, Istanbul, Turkey
${ }^{\text {al }}$ Also at Joint Institute for Nuclear Research, Dubna, Russia
${ }^{\text {am }}$ Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
${ }^{\text {an }}$ Also at Louisiana Tech University, Ruston, LA, USA
${ }^{\text {ao }}$ Also at LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France
${ }^{\text {ap }}$ Also at Manhattan College, New York, NY, USA
${ }^{\text {aq }}$ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
${ }^{\text {ar }}$ Also at National Research Nuclear University MEPhI, Moscow, Russia
${ }^{\text {as }}$ Also at Physics Department, An-Najah National University, Nablus, Palestine
${ }^{\text {at }}$ Also at Physics Dept, University of South Africa, Pretoria, South Africa
${ }^{\text {au }}$ Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
${ }^{a v}$ Also at School of Physics, Sun Yat-sen University, Guangzhou, China
${ }^{\text {aw }}$ Also at The City College of New York, New York, NY, USA
${ }^{a x}$ Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China
${ }^{\text {ay }}$ Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
${ }^{\text {az }}$ Also at TRIUMF, Vancouver, BC, Canada
${ }^{\text {aaa }}$ Also at Universita di Napoli Parthenope, Naples, Italy
*Deceased


[^0]:    *e-mail: atlas.publications@cern.ch

[^1]:    ${ }^{1}$ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the $z$-axis along the beam pipe. The $x$-axis points from the IP to the centre of the LHC ring, and the $y$-axis points upward. Cylindrical coordinates $(r, \phi)$ are used in the transverse plane, $\phi$ being the azimuthal angle around the $z$-axis. The pseudorapidity is defined in terms of the polar angle $\theta$ as $\eta=-\ln \tan (\theta / 2)$.

