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Abstract

We show that two indistinguishable aspects of the divergences occurring in the Casimir effect, namely 
the divergence of the energy of the higher modes and the non-compactness of the momentum space, get 
disentangled in a given noncommutative setup. To this end, we consider a scalar field between two parallel 
plates in an anti-Snyder space. Additionally, the large mass decay in this noncommutative setup is not 
necessarily exponential.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Many questions in the realm of particle physics have been answered by the Quantum Theory 
of Fields (QFT). This theory has offered us many results, some of them of fundamental simplicity 
and beauty. Among these one can probably include the Casimir effect. First predicted by Casimir 
in 1948 [1] and experimentally confirmed a decade after by Sparnaay [2], it predicts that, being 
an (infinite) sum of harmonic oscillators, fields in QFT have a vacuum energy that depends on 
the geometry of the space. Like many other quantities in QFT this sum is divergent and should 
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be regularized in order to obtain physical results. It also encodes a deep connection between 
geometry and QFT, since the energy of every single oscillator depends on it. Since the literature 
is really vast, we refer the reader to some of the numerous reports and books on the subject [3–5]. 
Here we shall only mention some of the latest results.

The fields of application of the Casimir effect are innumerable. Among the most interesting 
possibilities are its applications in condensed matter physics, where one can mimic the behaviour 
of several materials through the inclusion of boundary conditions, considering special topologies 
or effects such as inhomogeneities [6–10]. Also some intriguing facts related to the observation 
of negative entropy for finite temperature vacuum energies have been discussed in the last years 
[11].

More important to us are its applications to theories Beyond the Standard Model (BSM), 
which run from the consideration of the effect in curved spaces [12,13] to the possible implica-
tions on neutrino oscillations [14] or more general scenarios like brane-worlds, extra dimensions, 
scale-invariant models and generalized uncertainty principle [15–17]. From the experimental 
side, many constraints related to possible modifications of Newtonian gravity have been obtained 
[18] in the last decades; the latest results fix for example stringent bounds to the axion mass and 
coupling [19].

Here we will focus on still another BSM scenario, viz. noncommutative QFT, one of the most 
prominent and studied candidates for an effective field theory of Quantum Gravity. The main 
idea behind this theory is that the quantum nature of geometry could first manifest through the 
existence of noncanonical commutation relations between position and momentum operators, 
which could contribute to regularize the usual divergences in QFT.

Of course the effect of vacuum energy has been widely studied in the context of noncommu-
tative field theories of scalar fields for various models, using different methods: for the Moyal 
torus and cylinder [20], for the Moyal (hyper)plane from a heuristic point of view [21,22], in the 
case of Snyder spaces with the use of heat-kernel techniques [23] and for κ-Minkowski space 
adopting the energy-momentum tensor approach [24].

In this paper, we consider the Casimir energy density for a scalar field theory confined to a 
slab between two parallel plates in anti-Snyder space. This choice is motivated by the fact that 
in Snyder space the Lorentz symmetry is undeformed, in contrast with other noncommutative 
setups. Moreover, a formulation of a QFT on both its flat [25,26] and curved space [27,28]
versions have been recently pursued, evidentiating several interesting results. However, to our 
knowledge this is the first study of QFT in a bounded region of Snyder space.

We will provide a short review of the Snyder geometry in Sec. 2. Then, in Sec. 3, we will 
derive the spectrum for the geometry determined by two parallel plates in anti-Snyder space, by 
means of a suitable confining potential. This result will be used in Sec. 4 in order to derive an 
expression for the Casimir energy of a slab in M =R × (anti-Snyder)D . We will show that there 
are two possible interpretations, depending on the nature of the involved cutoff 3. In the case 
where there exists a natural UV-cutoff 3 < β−1, we will consider the derivation of a regularized 
pressure in D = 1 and D = 3 dimensions in Sec. 5 and Sec. 6 respectively. In absence of such a 
natural UV-cutoff, 3 can be interpreted as a cutoff for distant modes in momentum space; this 
geometric point of view will be examined in Sec. 7. Finally, we will discuss our results in Sec. 8.

2. The Snyder model

Here we shall summarize the main properties of the Euclidean D-dimensional anti-Snyder 
model that will be used in the following. The model is based on the following commutation 
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relations between the operators of position (x̂i), momentum (p̂i ), and Lorentz generators (Ĵij =
x̂i p̂j − x̂j p̂i ) [29]:

[Ĵij , Ĵkl] = δikĴj l − δil Ĵjk − δjkĴil + δlj Ĵik,

[Ĵij , p̂k] = δikp̂j − δjkp̂i , [Ĵij , x̂k] = δikx̂j − δjkx̂i ,

[x̂i , p̂j ] = δij − β2p̂i p̂j , [x̂i , x̂j ] = −β2Ĵij , [p̂i , p̂j ] = 0, (1)

where β is a constant of order 1/MP , with MP the Planck mass, and i, j = 1, . . . , D. These 
commutation relations include those of the Lorentz algebra, with its standard action on phase 
space, and a deformation of the Heisenberg algebra. In this paper we shall consider the anti-
Snyder model, but a variant called Snyder model, with opposite sign of β2, is often considered. 
They differ in several respects. In particular, the spectrum of the square of momentum is contin-
uous but bounded in anti-Snyder space, p̂2 < 1/β2, while the opposite holds in the other case. 
Geometrically the anti-Snyder momentum space is an hyperbolic space.

Several representations of the commutation relations (1) on a Hilbert space are possible: the 
original one, which will be referred to as Snyder representation [30,31], is defined by the opera-
tors

p̂i = pi, x̂i = i
³
δij − β2pipj

´ ∂

∂pj

, (2)

acting on a Hilbert space of functions ψ(p) with measure dμ = dDp

(1−β2p2)(D+1)/2 [31].
A different realization was introduced in [29]:

p̂i = pip
1 + β2p2

, x̂i = i

q
1 + β2p2 ∂

∂pi

. (3)

The measure on the Hilbert space is in this case dμ = dDpp
1+β2p2

. In the following we shall use 

the latter realization, because it leads to simpler calculations. The two are of course related by a 
unitary transformation.

3. The spectrum of a confined particle in anti-Snyder space

In order to compute the Casimir energy of a scalar field in anti-Snyder space we will follow 
an approach similar to the one of the original derivation by Casimir, i.e. we will consider the 
spectrum of the one-loop quantum fluctuations of the confined field and sum over all the possible 
modes.

However, in a noncommutative space the derivation of the spectrum is not straightforward, 
since the imposition of boundary conditions is hindered by the granularity of the background 
spacetime. We will avoid this issue by introducing walls of finite potential V situated on the hy-
perplanes1 x⊥ = ±L and then taking the limit V → ∞, namely, we will consider the eigenstates 
of the operator

HV = p̂2 + V H(x̂⊥ − L) + V H(−x̂⊥ − L) (4)

for infinite V , with H(·) the Heaviside function.

1 We will denote the direction perpendicular to the plates with the subscript ⊥, while for the remaining parallel D − 1
dimensions we will use the symbol k.
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We shall work in the representation (3), in which the eigenstates of momenta operators take 
the form2

φq(p) =
q

1 + β2q2δ(p − q), (5)

with eigenvalues qip
1+β2q2

, which are normalized such that the completeness relation gives rise 

to the usual covariant delta function in curved space,Z
dDqp

1 + β2q2
φq(p)φ∗

q (p0) =
q

1 + β2p2δD(p − p0) (6)

Remarkably, the existence of eigenfunctions ψxi
(p) of the components of the position opera-

tors has passed unnoticed in the literature,

ψxi
(p) = e

−i
xi
β

arcth

Ã
βpiq

1+β2p2

!
, x̂iψxi

(p) = xiψxi
(p). (7)

Of course, since the components of the position operator do not commute among themselves, 
these states cannot form a basis of the Hilbert space. However, a complete basis of generalized 
states can be obtained, parametrized by the quantum numbers x⊥ and qk, i.e. with a given position 
x⊥ in a fixed direction, and momentum components qk in the orthogonal directions:

ψx⊥,qk(p) := 1√
2π

ψx⊥(p)δ(pk − qk). (8)

These states are orthonormal, in the sense that their scalar product in momentum space is given 
by ¡

ψx⊥,qk ,ψy⊥,kk
¢ = δ(kk − qk)δ(x⊥ − y⊥). (9)

With these ingredients, we are ready to compute the spectrum of H∞. Indeed, the eigenfunc-
tions of the momenta can be thought as eigenfunctions of HV in the regions of constant V . The 
key idea is that, in the different regions, one can combine the left- and right-travelling eigenfunc-
tions in the direction x⊥ and glue them together, since they have the same energy. One can think 
of this as considering the projectors of the proposed solution into position eigenstates and ask-
ing for continuity. For example, if we call the solution in the whole space 9q(p), in the middle 
region we would obtain

9q(p0) =
LZ

−L

dx⊥
Z

dp4p
1 + β2p2

ψ∗
x⊥,qk(p)

¡
Aqφq(p) + Bqφ−q⊥,qk(p)

¢
ψx⊥,qk(p

0). (10)

In the limit of infinite potential, continuity requires that the projection into eigenstates of x̂⊥ with 
eigenvalue ±L should vanish, viz.¡

ψ±L,qk , Aqφq + Bqφ−q⊥,qk
¢ = 0. (11)

Therefore, we obtain as usual a system of two equations whose compatibility entails the quanti-
zation of the energies. This condition can be written as

2 We shall often suppress the vector index in the notation.
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sin

Ã
2L

β
arcth

Ã
βq⊥p

1 + β2q2

!!
= 0, (12)

from which one can obtain the spectrum of the momenta q⊥,

β2q2⊥,n = sinh2 (knβ)
³

1 + β2q2k
´

, n ∈ N+. (13)

Notice that this result is well-behaved in the commutative limit of vanishing β , from which one 
can recover the known commutative quantization rule

q⊥,n
β→0−−−→ nπ

2L
=: kn. (14)

4. The Casimir energy

One can consider a scalar quantum field theory built on a D+1 dimensional manifold given by 
MD+1 = R ×(anti-Snyder)D , or even its restriction to the slab described by the imposition of the 
previous Dirichlet boundary conditions. The fact that we have chosen the time to be commutative 
avoids the well-known unitarity problems that arise in some noncommutative theories. In this 
manifold, the wave equation for a field of mass m will be

(∂2
t + p̂2 + m2)φ = 0, (15)

where p̂2 is the generalized Laplacian of D-dimensional Snyder space. If we consider states 
of definite energy ω, denoted by φ = eiωt φω which are eigenstates of the operator p̂2 with 
eigenvalue p2,

ω2 = p2 + m2, (16)

the dispersion relation can be readily obtained replacing (13) in (16): written in terms of the 
auxiliary variables q , it takes the form of a deformed dispersion relation,

ω2
qk,n = q2k + q2⊥,n

1 + β2
³
q2k + q2⊥,n

´ + m2

=
q2k + β−2 sinh2 (βkn)

³
1 + β2q2k

´
1 + β2q2k + sinh2 (βkn)

³
1 + β2q2k

´ + m2.

(17)

We can then obtain the formula for the Casimir energy by summing over all the available modes, 
i.e. taking a sum over the discrete index n corresponding to the direction perpendicular to the 
plates and integrating the continuous variables representing the parallel directions. Dropping the 
k symbol to simplify the expression and calling ÄD the hypersurface of the unit D-sphere, we 
obtain an expression for the energy density E per unit area in the parallel directions to the plate 
(xk)

E = ÄD−2

2

∞X
n=1

∞Z
0

dq

(2π)D−1 qD−2

s
q2

1 + β2q2 + tanh2 (βkn)

β2(1 + β2q2)
+ m2. (18)

It is important to notice that in this expression the contribution of the measure introduced 
short after eq. (3), does not appear explicitly. In fact, it is cancelled by other contributions coming 
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from the normalization of the modes. This will be of crucial importance in the discussion of the 
realization independence of the Casimir energy density.

The correctness of equation (18) can be checked by showing that in the L → ∞ limit one 
obtains the correct result: indeed, considering ñ := n/L, which will become continuous in the 
large-L limit, and then changing variables to

z = β−1 sinh (βLkñ)

q
1 + β2q2 (19)

we obtain

E = ÄD−2

2
L

∞Z
0

dñ

∞Z
0

dq qD−2

(2π)D−1

s
q2

1 + β2q2 + tanh2 (βLkñ)

β2(1 + β2q2)
+ m2 +O(L0)

= LÄD−2

π(2π)D−1

∞Z
0

∞Z
0

dzdq qD−2p
1 + βq2 + β2z2

s
q2 + z2

1 + β2q2 + β2z2 + m2 +O(L0),

(20)

in agreement with the expression given in [23] for the vacuum energy density in the Snyder space 
in the absence of plates.

Let us go back to the energy density (18). In the present form it is divergent. Even if this is not 
surprising, since the same behaviour occurs in the commutative case, one could have expected the 
noncommutativity to regularize the divergences. For example, for models confined to a compact 
manifold, the generalized uncertainty principle for noncommuting coordinates limits the number 
of modes to be finite; for instance, this is the case of the fuzzy disc and of the fuzzy sphere 
[32–35]. However, in the present case the field is defined on a noncompact space, and therefore 
the number of states is not constrained (in fact, it is infinite).

However, as discussed above, the momenta are bounded by p2 < β−2. On the one side, this 
means that the expected divergence should be somewhat milder than in the commutative case. 
On the other side, this fact prevents us from using some mathematical regularizations like the 
ζ -regularization [36] or dimensional regularization [37,38]. Nevertheless, if we first perform a 
transformation of variables p = qp

1+β2q2
, that brings us back to the physical value p of the 

momentum, we get

E = ÄD−2

2(2π)D−1

∞X
n=1

1/βZ
0

dp pD−2

(1 − β2p2)D/2+1/2

s
p2 − β−2

cosh2 (βkn)
+ β−2 + m2. (21)

Writing the energy density in this form, a dimensional regularization seems to be possible even 
if it is not clear how one could tackle the divergence in the discrete sector. Therefore, we will 
introduce a physical cutoff on the momentum space. The interested reader could see [39] for an 
interesting discussion on regularization vs. renormalization.

In the following sections we will focus on the D = 1 and D = 3 cases, since the former is the 
easiest one, while the other is the most relevant one for our physical world.

5. The Casimir force in D = 1

Let us first consider as a toy mode the case of two-dimensional spacetime. The formal expres-
sion for the vacuum energy density is given by
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ED=1 = 1

2

∞X
n=1

s
tanh2 (βkn)

β2 + m2. (22)

As customary, one can consider the vacuum pressure F , i.e. the force per unit parallel area 
applied to the plates, by taking the derivative of the energy density with respect to the distance 
between them,

FD=1 = −1

2
∂LED=1 =

∞X
n=1

kn

4L

tanh (βkn)

cosh2 (βkn)

q
tanh2 (βkn) + β2m2

. (23)

This expression is convergent as it stands. However, it should be noticed that it tends to a nonva-
nishing constant for large distances L. Indeed, this corresponds to the pressure felt by one plate 
in a single-plate configuration. A careful analysis shows thus that the correct expression for the 
Casimir pressure, which should involve only the interaction among the plates, is given by eq. 
(23) after the subtraction of its large L limit—after a rescaling in the integral we get

F (C)
D=1 :=

∞X
n=1

kn

4L

tanh (βkn)

cosh2 (βkn)

q
tanh2 (βkn) + β2m2

− 1

2πβ2

∞Z
0

dx
x tanh (x)

cosh2 x

q
tanh2 (x) + β2m2

.

(24)

Even if in the massive case we are not able to find a closed expression for eq. (24), it is easy 
to show that the result is attractive, i.e. F (C)

D=1 < 0 for every possible choice of the involved pa-
rameters. Moreover, in order to extract further information one can evaluate the Casimir pressure 
numerically.

Notice first of all that, with respect to the commutative case, the present one is richer since we 
have three dimensionful parameters. In order to simplify the notation, let us introduce the dimen-
sionless parameters m̃ = βm and L̃ = β−1L. One can then consider for example the behaviour 
of the pressure in units of mass, as a function of mL for a given L̃. In the commutative case one 
would then expect a divergent behaviour with power minus two for small mL and an exponential 
decay for large mL. In the present case, even if the small mL behaviour remains the same one, 
the large limit gets modified to a power-law decay, with power minus three. This can be shown 
analytically for any L̃ and seen from the plot in the left panel of Fig. 1 for the values L̃ = 0.5
(red continuous line) and L̃ = 3 (green dashed line). As a consequence of this fact we can say 
that, as it happens when one introduces interactions [40], the Casimir force for a massive field in 
a noncommutative setup is not necessarily exponentially suppressed.

Other regimes arise varying L̃ for fixed m̃. One of them is the large L̃ limit for fixed m̃, where 
the pressure tends to zero, as expected from the definition of Casimir pressure. Another case 
to discuss is the (presumably unphysical) one where the distance between the plates is smaller 
than β . As a way to analyze this situation, consider the pressure in the corresponding units of β , 
having fixed m̃. The fact that it tends to a constant for small L̃ is natural, since β acts then as a 
mass cutoff. One can readily see that this constant equals the second term in the RHS of eq. (24), 
since the first one vanishes. The same result is also obtained in the strict L → 0 limit, intended as 
the first term in the double expansion L̃ ¿ 1, Lm ¿ 1, keeping L̃−1Lm = mβ fixed. We have 
included in the right panel of Fig. 1 a plot of the pressure (in the corresponding units of β) as a 
function of L̃, for m̃ = 1 (red continuous line) and m̃ = 0 (green dashed line).
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Fig. 1. The log-log plot on the left panel corresponds to ̄̄̄ m−2FD=1

¯̄̄
as a function of mL, for L̃ = 0.5 (red continuous 

line) and L̃ = 3 (green dashed line). On the right panel, the plot of β2FD=1 as a function of L̃ is shown, for m̃ = 1 (red 
continuous line) and m̃ = 0 (green dashed line). (For interpretation of the colours in the figure(s), the reader is referred 
to the web version of this article.)

Now we pass to the massless case, where the calculation can be made explicitly. The vacuum 
pressure then reduces to

FD=1 =
∞X

n=1

π

8L2

n

cosh2 (βkn)
, (25)

and the sum can be easily evaluated by means of the Euler-McLaurin formula,

∞X
n=0

f (n) =
∞Z

0

dnf (n) +
·

1

2
f (n) + 1

12

df (n)

dn
− 1

720

d3f (n)

dn3 + . . .

¸∞

0
. (26)

The Casimir pressure (like the Casimir energy) is defined by subtracting from this value the 
contribution in the absence of the plates, which corresponds to the integral in (26).

Proceeding with the computation, the Euler-McLaurin formula gives rise to a natural expan-
sion in β2/L2, which is the only dimensionless parameter in the theory and is expected to be 
very small, since β is usually taken of the order of the Planck length. The explicit computation 
for the Casimir pressure gives

F (C)
D=1 = − π

96L2 − β2π3

3840L4 +O
µ

β

L

¶4

, (27)

whose first contribution is the usual Casimir pressure, while the second term gives the lowest 
order correction induced by the Snyder dynamics.

5.1. On the realization independence in the D = 1 case

The results so obtained should be independent from the realization chosen for the anti-Snyder 
algebra. We will show this using a different realization of the one-dimensional Snyder algebra. 
In higher dimensions, an explicit calculation using a different basis can become very involved, 
because it is difficult to impose the boundary conditions on the plates if one uses realizations of 
the algebra different from (3).

Let us consider the Snyder representation (2). We will use the symbol S to represent the 
quantities in this particular realization. In one dimension, the operators reduce to

p̂S = p, x̂S = i(1 − β2p2)∂p, (28)
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acting on functions in a Hilbert space with measure dμ = dp

1−β2p2 and with p < β−1. The mo-
mentum eigenstates are trivial,

φS
q (p) =

q
1 − β2q2δ(p − q), (29)

while the generalized position eigenstates are

ψS
x0

(p) = 1

2π
e
−i

x0
β

arcth(βp) (30)

Since they are generalized eigenstates, they can be normalized according to the formulaZ
p2<β2

dp

1 − β2p2 ψS
x0

(p)ψS
y0

(p) = δ(y0 − x0). (31)

One can now follow the same steps as in Section 3 in order to obtain the spectrum for the 
scalar field. One finds that the eigenvalues are quantized and given by

βqS = tanh (βkn) , n ∈ N+. (32)

Taking these as the oscillation modes of a scalar field, the Casimir energy is

ES
D=1 =1

2

∞X
n=1

s
tanh2 (βkn)

β2 + m2, (33)

which coincides with eq. (22).

6. The Casimir force in D = 3

Let us now turn our attention to the physically more relevant case in which the spacetime is 
given by M3+1. Since the integral (20) diverges for q → ∞, we will regularize it by adding 
a cutoff 3q for large momenta coordinates. This is also natural from a physical point of view, 
inasmuch as one expects the plates to become transparent in the ultraviolet, generating a nat-
ural cutoff. However, a correct UV-cutoff 3 of the theory should be defined according to the 
eigenvalues of the momentum operators, i.e.

3 := 3qq
1 + β232

q

. (34)

It is clear that 3 < β−1, which is not a sharp constraint since β is assumed to be of the order of 
the Planck length. In this section we will consider this UV-motivated vision of 3q . In Section 7
we will instead discuss the problem from another perspective, namely the interpretation of 3q as 
a geometric quantity, with a role equivalent to that of an IR-cutoff in configuration space.

6.1. Massless case

We start by evaluating the Casimir pressure for a massless field. This problem can be treated 
in the same way as in one dimension. Let us consider the expression (18), which can be cast in 
the form
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E = − 1

4πβ

∞X
n=0

3qZ
0

dq q 1(q), (35)

where

1(q) =
s

1 − 1

(1 + β2q2) cosh2 (βkn)
. (36)

The vacuum pressure can then be written as

F = 1

16L2

∞X
n=0

n sinh (βkn)

cosh3 (βkn)

3qZ
0

q dq

(1 + β2q2)1

= 1

16L2

∞X
n=0

n sinh (βkn)

cosh3 (βkn)

£
ln(2β3q) − ln (1 + tanh (βkn))

¤ +O(3−1
q ). (37)

Using the Euler-McLaurin expansion like in one dimension, and after subtracting the contribution 
in the absence of the plates, the cutoff 3q disappears, and one is left with Casimir pressure3

F = − π2

7680

1

L4 − π4

48384

β2

L6
+O(β4). (38)

Again, the first term reproduces the usual Casimir pressure, while the second gives the leading 
corrections due to the Snyder geometry. Note that the second term has the same sign as the 
commutative contribution. Remarkably, in contrast with the commutative case, a finite pressure 
is obtained by simply subtracting from (37) the vacuum energy in the absence of the plates, 
without need of further regularization.

6.2. Massive case

When the field is massive, it is more convenient to use the coordinates introduced in eq. (21). 
In these coordinates, p2 < 1/β2. We are not going to explicitly write the cutoff 3 to simplify the 
discussion.

As before, we shall consider the regularized Casimir energy density where the vacuum energy 
has been subtracted,

E = ÄD−2

2(2π)D−1

1/βZ
0

dp pD−2

(1 − β2p2)D/2+1/2

⎛
⎝ ∞X

n=1

ωn(p) −
∞Z

0

dnωn(p)

⎞
⎠ (39)

with frequencies given by

ωn(p) =
q

p2 + β−2 tanh2 (βkn) (1 − β2p2) + m2. (40)

We have kept track of the dimension D in these equations, in order to render the divergences 
more visible.

3 To avoid the proliferation of indices, from now on we will refer to both the vacuum and Casimir pressure with the 
same symbol, F .
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The formal expression for the Casimir pressure is also readily obtained,

F = ÄD−2

2(2π)D−1

1/βZ
0

dp pD−2

(1 − β2p2)D/2−1/2

⎛
⎝ ∞X

n=1

fn(p) −
∞Z

0

dnfn(p)

⎞
⎠ , (41)

where we have introduced the functions

fn(p) = kn

βL

tanh (βkn)

cosh2 (βkn)

q
p2 + β−2 tanh2 (βkn) (1 − β2p2) + m2

. (42)

The question is once more whether this quantity is regular in D = 3. Of course, the situation is 
more involved that in the one-dimensional case: although there is apparently only one divergence 
placed at p = β−1 (for D ≥ 3, the expression between parentheses in the RHS of (41) could 
regularize it. Performing an Euler-MacLaurin’s expansion, the sum in n is equal to the integral 
in n, up to exponentially vanishing contributions in L

β
, indicating that the expression (41) is not 

regular.
In any case, as we have seen in the previous sections, it is natural to perform an expansion for 

small β , obtaining

ED=3 = Ä2

8π2

∞Z
0

dp p

⎛
⎝ ∞X

n=1

en(p) −
∞Z

0

dn en(p)

⎞
⎠ , (43)

where we have defined the quantity

en(p) = ω−s
n,β=0

"
1 + 2β2p2 − β2

ω2
n,β=0

µ
p2 k2

n

2
+ k4

n

4

¶#
. (44)

Note that in these last formulas we have changed the upper limit of the integration in p to ∞. 
This is permitted since in our small β expansion we no longer have a divergence in p = 1/β . 
Moreover, we have employed a ζ -regularization, introducing the s parameter which will be set 
to −1 at the end of the computation. At this point the procedure follows the commutative one. 
The integral in the momentum can be explicitly performed and gives

∞Z
0

dp p en(p) = λ−s

·
λ2

(s − 2)
− β2k4

n

4s
− β2k2

n

(s − 2)s
λ2 + 4β2

s2 − 6s + 8
λ4

¸
, (45)

λn :=
q

k2
n + m2. (46)

Furthermore, in order to simplify the computations, we trade the sum for integral using the Abel-
Plana formula

∞X
n=0

f (n) =
∞Z

0

dnf (n) + 1

2
f (0) + i

∞Z
0

dt
f (it) − f (−it)

e2πt − 1
. (47)

After this step, the first term of the Abel-Plana formula cancels with the integral in the expression 
(43) for the Casimir energy density, in which we have regularized subtracting the vacuum contri-
bution. The second term is independent of L and hence irrelevant, since it does not contribute to 
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Fig. 2. Casimir pressure F (2)
D=3 as a function of the length L for several cases and in arbitrary units. In the left panel, 

we consider (m = 1, β = 0.2) (red continuous line), (m = 1, β = 0) (green dotted line) and (m = 0, β = 0.2) (orange 
dashed and dotted line), while in the right panel we consider a massless field for β = 0.2 (red dashed and dotted line) 
and β = 0 (green dotted line).

the pressure. The third is the only relevant one. After carefully considering the involved functions 
in the complex plane and setting s = −1, we obtain the finite expression

E (2)
D=3 = − m3

12π
+ β2m5

15π
− Lm4

15π2

×
∞Z

1

dt

√
t2 − 1

e4Lmt − 1

h
5
³
t2 − 1

´
+ β2m2

³
4t4 − 3t2 + 4

´i
.

(48)

It is interesting to notice that both noncommutative contributions have the same sign as the com-
mutative one. This will imply that, at least to this order in β2, the overall sign of the Casimir 
force will be attractive. In fact, from expression (48) one can readily compute the corresponding 
pressure by taking the derivative with respect to the distance between the plates:

F (2)
D=3 = − m4

30π2

∞Z
1

dt

√
t2 − 1¡

e4Lmt − 1
¢2

h
e4Lmt (4Lmt − 1) + 1

i

×
h
5
³
t2 − 1

´
+ β2m2

³
4t4 − 3t2 + 4

´i
.

(49)

Inasmuch as a closed expression for the integral is not available to us, we proceed to study 
the large mass and the massless limit. Unlike the commutative situation where just one dimen-
sionless parameter mL is available, the regimes of the expression (48) are governed also by two 
other dimensionless parameters, viz. βm and β/L. However, both of them are small, since β is 
assumed to be of the order of the Planck scale. Curiously, only one of them contributes in the 
large mass limit of the Casimir pressure (49),

F (2)
D=3 ∼ − 1

8(2π)3/2

m5/2

L3/2 e−4Lm

·
1 + β2m2

24
(32mL + 31) +O

³
(mL)−1

´¸
. (50)

An analog effect is observed also in the massless limit, for which one recovers eq. (38). Notice 
that both these results reproduce the commutative case in the limit of vanishing β . In addition, 
they show the first noncommutative corrections, which are quadratic in the noncommutativity 
parameter and of the same sign of the commutative one, thus strengthening the effective pressure.

One can also perform a numerical integration of expression (49). In Fig. 2, we show the 
behaviour of the Casimir pressure F (2) as a function of the distance L for several mass and 
D=3
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noncommutative parameters in arbitrary units. In the left panel, the exponential decay of the 
pressure for the massive field can be observed both for the cases of β = 0 (green dotted line) and 
of β = 0.2 (red continuous line). Moreover, it can be seen that the absolute value of the pressure 
is greater in the noncommutative case. Also the pressure for a massless field is shown in the left 
panel (orange dashed and dotted line), to provide a comparison of its power law decay with the 
previous exponential one.

In the right panel, we plot the pressure for a massless field in a commutative (green and dotted 
line) and a noncommutative (red dashed and dotted line) setup. Also for a massless field the 
pressure is larger in the noncommutative case.

7. On the goemetric interpretation of 3q

Suppose now that there exists no natural UV-cutoff for the plates. In this noncommutative 
regime where the maximum energy β−1 could in principle be attained, 3q in expression (35)
can be thought as a cutoff for long distances in momentum space and, therefore, it can be given 
a geometrical meaning. To elaborate on this, let us recall some aspects of the geometry of the 
momentum space under consideration.

Before the inclusion of a confining potential, the spatial momentum space is nothing but the 
D-dimensional hyperbolic space HD (or Euclidean AdSD) with radius β−1, as can be seen from 
the x̂ commutators. In the particular realization (3), the volume of HD is written as

Vol(HD) = ÄD−1

∞Z
0

dqp
1 + β2q2

qD−1. (51)

Moreover, we can also choose a new coordinate

βw = arcsh

⎛
⎜⎝ βq⊥q

1 + β2q2k

⎞
⎟⎠ , (52)

and consider the volume of the hyperplanes of fixed w:

Vol(HD−1,w=0) := ÄD−2

∞Z
0

dq qD−2. (53)

In order to make contact with our results for the Casimir energy density, recast expression 
(18) as

E = ÄD−2

2β

∞X
n=1

∞Z
0

dq

(2π)D−1 qD−2

s
1 + β2m2 − 1

(1 + β2q2) cosh2 (βkn)

= ÄD−2

2β

∞X
n=1

∞Z
0

dq

(2π)D−1 qD−2
q

1 + β2m2

·
1 − 1

2u
− 1

8u2 + · · ·
¸

,

(54)

where u = (1 + β2m2)(1 + β2q2) cosh2 (βkn). After the expansion, there exists only a finite 
number of divergent terms in expression (54) for a fixed dimension D. Using an adequate reg-
ularization one can make use of Abel-Plana formula to approximate the series with an integral 
plus a constant contribution, that in conjunction with the change of variables (52) gives
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ÄD−2

2β

∞X
n=1

∞Z
0

dq

(2π)D−1 qD−2 = 2L

(2π)Dβ
Vol(HD) + 1

4(2π)D−1β
Vol(HD,w=0). (55)

This means that in D < 3 the regularization of the infinities can be done by means of a finite 
renormalization of the geometry of momentum space, i.e. by the inclusion of a momentum-space 
“cosmological constant” and a momentum boundary term of fixed w.

In D ≥ 3 the number of divergent terms increases and we have not found a geometrical in-
terpretation of these additional contributions. Although they are apparently given by propagator 
insertions in the parallel directions with an effective mass given by β−1, we are not able to pursue 
further this interpretation.

8. Conclusions

We have derived the expression for the Casimir energy density of a slab between two parallel 
plates in an anti-Snyder noncommutative space, working to all orders in the noncommutative 
parameter β . This generalizes the computation in Snyder space without boundaries of ref. [23], 
and also the one in [21,22] where some heuristic arguments were used in order to give sense to 
the boundaries.

The divergences encountered during the calculation are milder than in the commutative case. 
In particular, in the massless case no regularization is needed except the subtraction of the vac-
uum energy between the plates. Moreover, the problem presents many interesting theoretical 
features. In fact, since the phase space is noncompact, the model possesses an infinite number of 
eigenstates, in contrast with other models with compact geometries [20]. However, the effect of 
the noncommutativity is to impose upper bounds on the physical momenta, i.e. the momenta of 
all modes lie inside the sphere p2 < β−2.

The net effect of such boundedness is to disentangle two divergences that usually appear 
in the commutative case, viz. one given by the existence of modes with momenta as large as 
desired, and one related to the non-compactness of the momentum space. As stated before, in 
our case the momenta of the states are bounded, although the geometry of the momentum space, 
the hyperbolic space HD , is non-compact. Therefore, the computation of the Casimir energy 
density, which involves a sum over all modes in momentum space, develops a divergence which 
should be ascribed to the infinite volume of its geometry.

We have seen that as a consequence, some methods usually employed to control divergences 
fail. For example, the use of a ζ -function regularization is precluded by the fact that changing the 
power to which the energy of the modes is raised in the sum does not help in the convergence. On 
the other hand, in one dimension the Casimir pressure already yields a well-defined expression.

In the higher-dimensional case, a substantial difference from the D = 1 instance arises, since 
a divergence is present even in the expression for the pressure. A regularization subtracting the 
vacuum contribution can work in the massless case, but leads to a divergent expression for a 
massive field. We have then to appeal to a physical cutoff, which prevents the access to energies 
of the order of β−2 and allows a small β expansion.

Using this expansion, we obtain the first noncommutative corrections to the Casimir pressure 
for a slab in anti-Snyder space. Their sign is the same as the commutative contribution, thus 
fostering the effect, as observed in [17,24] for massless particles. Notice that in the massless 

case our corrections are proportional to β2

L6 as in [17], whereas in [24] the authors derive for a 
κ-Minkowski model, using a different method which entails the introduction of some arbitrary 
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parameters, a contribution proportional to L−4. It would be interesting to see if the same method 
could be applied in (anti-)Snyder space and would give rise to analogous contributions.

Another relevant result is related to the large mass behaviour. In the usual commutative sit-
uation, one would expect an exponential decay and would therefore neglect the contributions 
from massive particles to the Casimir effect. However, it is known that this situation may change 
once interactions are turned on [40]. In our case, we have shown that at least in the D = 1 free 
case the noncommutativity leads to a power law decay, (mL)−3, hitherto avoiding the mentioned 
exponential decay.

In order to gain a deeper insight on the geometry of the Casimir effect, it would also be 
interesting to study whether there exist other noncommutative spaces in which the geometry of 
the momentum space and the physical momenta need different regularizations. As mentioned 
before, in our case the physical momenta (the eigenvalues of momentum operators) are finite, 
while the geometry of momentum space is noncompact. This means that in order to regularize 
geometrical expressions one does not need an UV regularization of the momenta (since physical 
momenta are already bounded) but rather some kind of regularization for the noncompactness 
of momentum space. A promising line of investigation could therefore be to further pursue the 
geometrical analysis initiated in Section 7. This goes in the direction of the momentum-space 
geometrization program, which has revealed many fundamental features [41,42].

Another interesting question is the role that a finite temperature could play in the model un-
der consideration, since several interesting phenomena occur in such regime. Research in these 
directions is currently carried out.
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