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Highlights 
 

 Halloysite nanotubes have many applications; a thermal pre-treatment is 
employed in many of them. 

 Thermal, structural and microstructural description was carried out up to 1400°C. 

 Al- Near edge absorption spectroscopy (XANES) was employed for local structure. 

 Loss of crystalinity, tube morphology retention were observed. 

 A multiple Al-Coordination for Metahalloysite was determined. 
 

 
 
 

Abstract 

Halloysite and its heating products demand attention due to its multiple technological 

applications, and in particular for its natural nanostructure. The purpose of this paper is to present 

a structural characterization of these materials and its firing products up to mullite. To achieve this 

objective, the techniques of conventional X-ray diffraction (XRD) and X-ray absorption near-edge 

structure (XANES) were used, in addition to scanning electron microscopy (SEM), and 

simultaneous thermogravimetric and differential thermal analysis (DTA-TG). SEM has allowed to 

prove that the nanotubular morphology (acicular) of halloysite was retained for all temperatures 

(500, 800, 1100 and 1250 °C). For the temperatures between 500 and 800 °C the metahalloysite 

phase was identified. The 1100 °C fired samples presented the spinel aluminosilicate phase. 

Finally, after high temperature treatments the mullite phase was detected as the only aluminum 

containing crystalline phase accompanied by cristobalite and glassy phase. The XANES spectra 

ACCEPTED M
ANUSCRIPT



2 
 

confirmed the octahedral aluminum coordination in native halloysite, this coordination was 

progressively lost with the thermal treatments giving place to the presence of the four folded 

coordination. In the intermediate treatments, the so called metahalloysite phase, presented some 

three and five coordination slight contributions. Particularly, the metahalloysite Al K XANES 

spectra were not reported before. 

 

Key Words: halloysite; thermal behavior; structure; XANES 

 

1. Introduction 

The halloysite has the same theoretical chemical composition as kaolinite except for its higher 

water content. The ideal unit formula for halloysite-(7 Å) and halloysite-(10 Å) is 

Al2Si2O5(OH)4.nH2O where n = 0 and 2, respectively [1,2]. However, the chemical composition is 

subject to little variation. The common presence of impurities in halloysitic samples makes it 

difficult to assess the chemical composition of the halloysite [3–6]. 

The particle morphology of halloysite appears to be related to crystallization conditions and 

geological occurrences [4,7–13]. 

Several halloysite morphologies have been described: tubular (long or short); pseudo spherical and 

spheroidal; platy or tabular; fiber like, prismatic; cylindrical, including mathematical models to 

explain the conformation geometry of this mineral [14]; disk shape; spherulitic, crumpled lamellar 

halloysite morphologies has been defined as well. Finally, lath, scroll, and glomerular 

morphologies have been also described. But because tubular halloysite present a marked 

technological and economic interest is that its attract special attention in the basic research field 

[15–21]. 

Based on transmission electron microscopy (TEM) observations, a model for halloysite tube 

development from plated kaolinite was proposed [22,23]. The process appears to have been 

initiated by a progressive alteration of kaolinite inducing a loss of structural rigidity at points along 

the crystal, interpreted as hydration to halloysite. As alteration of kaolinite progressed, the 

halloysite developed, on and attached to, a kaolinite plate curled smoothly, rolling up part of the 

plate [22]. 

Unlike the clay minerals that have a platy morphology, halloysite Al2(OH)4Si2O5.2H2O, which is a 

hydrated polymorph of kaolinite, has a unique tubular morphology with a mesoscopic (2–50 nm) 

or even macroscopic (>50 nm) lumen (the inner cavity of the tubular halloysite particle). The 

tubular morphology of halloysite results from the wrapping of halloysite layers that is driven by a 

mismatch between the oxygen-sharing tetrahedral SiO4 sheet and the adjacent octahedral AlO6 

sheet in the 1:1 layer under favorable crystallization conditions and geological occurrences. 

Generally, tubular halloysite is approximately 0.02–30 µm long and has an external diameter of 

30–190 nm and an internal diameter (lumen) of 10–100 nm. These sizes vary in different halloysite 

deposits [6,7,24–26]. The nano-sized tubular structure and the mesoporosity (or even 

macroporosity) of halloysite make it suitable for use as a nanoscale reactor for biomineralization, 

an adsorbent for pollutants, an additive for polymer nanocomposites, and a carrier for the 

controlled release of protective agents. In particular, the lumen size of halloysite is greater than 10 
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nm, which is sufficiently large to accommodate various guests [27,16,28,17,29,24,21,30]. Or even 

employed as a nano-reactor [15]. 

As has been reported [31], halloysite contains two types of hydroxyl groups, inner and outer 

hydroxyl groups, which are situated between layers and on the surface of the nanotubes, 

respectively. Due to the multi-layer structure, most of the hydroxyl groups are inner groups and 

only a few hydroxyl groups are located on the surface of halloysite nanotubes. This surface is 

mainly composed of O–Si–O groups, and the siloxane surface can be confirmed from Fourier 

Transform Infrared spectra (FTIR), in which the very strong absorption of O–Si–O (ca 1030 cm−1) is 

observed. Consequently, compared with other silicates such as kaolinite and montmorillonites, the 

density of surface hydroxyl groups of halloysite nanotubular is much smaller [31].  

As similar clay minerals, halloysites may be characterized by a number of techniques, including X-

ray diffraction (XRD), thermal analyses (TG and DTA), and infrared (IR) or Raman spectroscopy. The 

transmission and scanning electron microscopies (TEM and SEM) are also used to observe the 

crystalline morphological arrangement [17,19,22,32,33]. 

As mentioned before, and besides the morphological aspects, from the mineralogical point of view 

halloysite is similar to kaolinite. It might present one more water layer that is lost at low 

temperatures (this is known as the 10 Å – 7 Å  dehydration). The thermochemical processes are 

similar between kaolinite and halloysite. 

The classic papers of Brindley and Nakahira reported for the first time a systematic study of phase 

transformations for the kaolinite–mullite series [34,35], and measured the transformation 

temperature for a model material. The actual temperature transformations can be evaluated by 

several thermal analysis techniques, such as thermogravimetry, differential thermal analysis, 

calorimetry, etc. [36]. The particular properties, like chemical composition, particle size, 

transformation temperature, etc., of each raw natural material depend on its different 

geochemical constitutions including impurities [36].  

The kaolinite–mullite series was recently studied by means of powder neutron diffraction [37] and 

the metakaolinite (MK) formation was studied by NMR [38–40]. The mechanisms were proposed 

and corroborated by the use of combined structural and thermal techniques. 

The kaolinite (K) dehydroxylation occurs through a three dimensional diffusion process, with the 

formation of an amorphous product identified as metakaolinite (Al2Si2O5), this process is 

completed above ∼650 °C. An analogy can be carried out for the halloysite (H) dehydroxylation. 

The metahalloysite (MH) retains its short-range order to at least ∼980 °C. The formation of 

nanometer size and randomly oriented needle-like mullite (≈980–992 °C), primary mullite (Mi), 

side by side with a cubic phase, Si–Al  spinel (SAS), and amorphous silica-rich at around ≈983 °C (G) 

can be identified [39,41,42]. The Mi formation is incipient. From ≈ 1136 °C growth of mullite (Mi) 

crystals occurs and at T ≥ 1200 °C crystallization of high temperature cristobalite (SiO2) from a Si-

rich amorphous phase takes place. Between 983 °C and 1136 °C, it is correct to assume that the 

amount of SAS will be higher than Mi. Additionally, in the Si-rich amorphous phase formed at 

kaolinite–mullite interfaces secondary mullite (Mii) crystallization occurs (∼1300 °C). The 

impurities in the starting kaolin can induce a liquid phase during firing [37]. Since the mid-nineties  

in situ experiments using synchrotron radiation diffraction on kaolin specimens were made 
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[43,44]. They studied the kinetics of mullite formation in the 1300–1400 °C temperature range and 

the kinetics of dehydroxylation of two kaolin specimens in the 500–700 °C temperature range.  

The stoichiometry of the metahalloysite (MH) corresponds with the halloysite (H) one, secondly 

the SAS stoichiometry remains undefined, and finally mullite varies in a small range [45]. The 

vitreous phase (G) belongs to the alumina-silica system, with high silica concentration, 

accompanied by the different impurities, principally alkali (K and Na), earthen alkali (Ca and Mg), 

iron oxide, or titania. 

Several transformations occur in halloysite, which will be characterized in the present study. These 

transformations can be represented by the following scheme: 

 

H→MH (400-700 °C)    (1) 

MH→SAS (+G) (≈980 °C)   (2) 

MH→Mi (+G) (≈980 °C)   (3) 

SAS→Mii+G (1130-1300 °C)   (4) 

 

The local crystalline nature of MH and SAS is different, and it is one of the points that will be 

demonstrated in this work. MH presents a short range ordering, but no long range order and 

therefore no XRD Bragg reflections are present. On the other hand, SAS presents some short range 

order but the crystalline domains (crystallites) are nanosized and therefore it is difficult to 

evaluate this phase using XRD analysis [41,42,46–48]. Generally, it is identified by the presence of 

three wide bands at 2θ = 37, 46 and 67 ° [41]. In recent years, White et al. used the X-ray 

Absorption Near Edge Structure (XANES) to study the local environment in metakaolin, which 

became a subject of significant debate, particularly regarding to the aluminum coordination 

environment determination [49,50]. 

Finally, we have recently presented two studies that engaged the complement XANES (local) and 

XRD-Rietveld (extended) characterization of model kaolinite and bentonite clays and its relevant 

heating products. These include kaolinite, metakaolinite, the SAS phase and mullite for the first 

study [48], and the bentonite and its corresponding metabentonite [51] . In this, the characteristic 

Al K-edge XANES spectra were obtained and discussed in terms of the crystalline thermal phase 

transformations and reported crystalline structures. We will remark that XANES is a spectroscopy 

widely used since the mid-1980s, because it is a powerful and versatile technique for obtaining 

information about the local atomic environment in materials and can be used to investigate 

specific elements in solids, liquids, gases or plasma [52,53]. 

The principal objective of the present work consists of the characterization of a set of complex 

aluminosilicates of technological interest, in the halloysite-mullite series, by means of X-ray based 

techniques (XRD and Al K-edge XANES), particularly in the Aluminum K-edge. This halloysite-

mullite series is obtained by controlled calcination of high purity tubular halloysite clay. The study 

is complemented with a usual thermal analysis accompanied by microstructural observations 

made by scanning electron microscopy. As mentioned in many of the proposed applications a 

thermal treatment is proposed for the clay, within the explored temperature range.  

Thinking about the low crystalline nature of some intermediates and products of the mentioned 

reactions, particularly HK, SAS and G, XANES arises to be an adequate technique for characterizing 
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these particular phases from the local point of view complementing the XRD-Rietveld analysis that 

evaluates the long distance order of those phases. A pure acid washed kaolinite and a sintered 

crystalline mullite (pure) and other reference aluminum containing materials are also evaluated 

for comparison. We suggest that these results will enlighten the design strategies of materials and 

technologies based in this nano clay. 

 

2. Experimental procedures 

2.1. The studied material 

A commercial high purity halloysite (Al2Si2O5(OH)4.2H2O) (Sigma Aldhrich; CAS Number 1332-58-7) 

was studied. The main properties of the studied nano clay can be summarized according to 

standard characterizations, i.e. molecular weight, diameter, refractive index, density, etc. (Table 

1). 

 

Table 1: Properties of the studied halloysite. 

Molecular Weight  294.19 g/mol 

Diameter  range  30-70 nm 

Length ranges  1-3 (μm) 

Color   75-96, Hunter Brightness 

Refractive index   n20/D 1.54 

Pore size   1.26-1.34 mL/g 

Surface area  64  m2/g 

Capacity  (cation 

exchange capacity) 

8.0 meq/g  

 

Density   2.53 g/cm3  

pH 4.5 - 7.0 

  

 

2.2. Heating halloysite clay conditions  

The as received halloysite (Hallo-0) was heated in porcelain crucibles up to certain key 

temperatures with 10 °C/min heating rate and 30 minutes dwelling, in electric furnace, employing 

air atmosphere. Samples were labeled Hallo-i, where i was the respective maximum heating 

temperature. The key temperatures were chosen in order to ensure the mentioned phase 

transformations were completed (500, 800, 1100 and 1250 °C; labeled as Hallo-500, Hallo-800, 

Hallo-1100 and Hallo-1250, respectively). 

ACCEPTED M
ANUSCRIPT



6 
 

 

2.3. DTA-TG, SEM and XRD experiments conditions 

The effect of heat treatment was evaluated by simultaneous thermogravimetric and differential 

thermal analysis (DTA-TG) carried out on a Rigaku Evo Plus II equipment with 10°C/min heating 

rate using Pt crucibles in air atmosphere. Final batch firing conditions were obtained after this 

analysis (Table 2). 

The evolution of the particle size and morphology of the clay and its fired products were examined 

by scanning electron microscopy SEM (Fei Quanta 200). Gold coated powders over carbon tape 

were analyzed in ultra-high vacuum conditions and 20.0 kV. An ETD detector was employed in 

back-scattered electron mode.  

Identification of crystalline phases in the clay and fired materials were carried out by X-ray 

diffraction (XRD) (Philips 3020 with Cu-Kα radiation, Ni filter, at 40 kV-30 mA); with 0.04° and 2 

seconds steps in the 3-70° range. 

 

2.4. XANES experiments conditions 

XANES experiments were performed in the Soft X-rays Spectroscopy (SXS) beamline of the 

Brazilian Synchrotron Light Laboratory (LNLS, Campinas, SP, Brazil). The beam focalization was 

performed using a Ni mirror. For Al K-edge, the monochromator employed was YB66, with a 

resolution of about 2 eV with a slit aperture of 2 mm. The I0 incident photon flux intensity was 

measured using a mesh of Au located before the main chamber. The photon energies were 

calibrated using an Al metallic foil and setting the first inflection point to the energy of the K-edge 

of Al0 at 1559 eV. The spectra were acquired at room temperature and the pressure chamber was 

about 10-4 torr in Fluorescence Mode. The aluminosilicate minerals were ground into fine powder 

(standard mesh # 200), and the powder samples were pressed uniformly on electric carbon tape 

supported on a stainless-steel sample holder for XANES measurements. All spectra were 

processed by standard methods from If/I0 signal analysis, where If is the detected fluorescence 

intensity. The pre-edge region and the normalization background were realized by Athena [54]. 

The analyzed spectra were compared with an industrial high purity kaolinite (Fischer, Georgia, 

USA) and a sintered mullite (95% pure) and the fired corresponding intermediates presented 

elsewhere [48]. 

 

3. Results and discussions 

3.1. Thermal analysis (TG, dTG and DTA)  

The typical two mass losses can be observed in the 0-1300 °C range in the studied clay (TG). The 

first one (≈4%), observed below 150 °C, corresponds to the surface water loss. The second mass 

loss (≈12%) can be associated to the halloysite decomposition (dehydroxylation) into MH and also 

a water loss (equation 1). This analysis permits to identify the transformation temperature. No 

other mass loss (or gain) process occurs in this temperature range (Figure 1). In the third graph the 

DTA curve is plotted, and both endothermic and exothermic processes can be detected. The 

surface water loss presents two endothermic processes, centered at 72°C and 164 °C, in the DTG 

curve the first peak can be observed as two processes. A broad endothermic band centered at 505 

°C, due to clay dehydroxylation reaction (equation 1) that is overlapped with α-β quartz 
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transformation with less energy involved, is the most important peak of the DTA analysis. The 

observed temperatures correspond to the TG ones and the previously reported ones [36,55]. An 

exothermic peak can be observed centered at 986 °C, this peak corresponds to the metahalloysite 

(MH) transformation into a spinel type aluminosilicate (SAS) and the mentioned mullite formation 

(equations 2 and 3). At higher temperatures the mullite formation processes (equation 4) were not 

observed, perhaps the amount of heat is too small for the equipment precision [56] and so, the 

XRD identification becomes necessary. The detected temperatures correspond to the ones 

observed for similar materials [41,42,55,57]. 

Transformation(1-4) illustrate these successive processes detected by TG-DTA. The simultaneous 

thermal analysis perm itted the determination of the actual temperature transformations. Based 

on TG-DTA information four materials were obtained after four thermal treatments that illustrate, 

together with the dried sample, the steps of this process. 

The neighboring alumina and silica layers, and their water of hydration, create a packing disorder 

causing them to curve and roll up, forming multilayer tubes. The reason why flat kaolinite rolls into 

halloysite tubules, remains unclear. When the number of water molecules in the halloysite 

formula is two (n = 2), the clay is in the form of hydrated “halloysite-10 Å” with one layer of water 

molecules between multilayers. The “10 Å” designation indicates the spacing in the multilayer 

walls as the kaolinite plates roll up into a multiwalled cylinder. For n = 0, the structure is 

dehydrated “halloysite-7 Å” which may be obtained through an irreversible phase transition with 

loss of adsorbed water as the halloysite is heated to 90-150 °C. Afterwards “halloysite” has an 

endothermic peak at 500-600 °C due to structural dehydroxylation (metahalloysite formation) and 

then it remains stable until approximately 1000 °C. There are between 15-30 aluminosilicate layers 

rolled in the multilayer tubule walls with a layer spacing of 0.72 nm for the dehydrated halloysite.  
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Figure 1: Thermal behavior of the studied Halloysite (hallo-0) TG, dTG and DTA  

 

3.2. Mineralogical XRD analysis 

By XRD analysis the halloysite structure was confirmed (Figure 2), particularly the so called 

“halloysite-7 Å”. In the as received sample halloysite reflections are accompanied by quartz, traces 

of impurities. The impurities correspond to alunite and potash aluminate. 

The XRD patterns of the heated clay can be observed as well. The different phase transitions 

(equations 1-4) can be clearly observed. This might be explained by a mild thermal treatment of 

the commercial nano clay performed by the supplier. The present phases were identified for the 

different heating temperatures (Table 2). The observed reflections correspond to disordered 

kaolinite reflections [58], and to confirm the presence of halloysite, in this case, a visual SEM 

based identification was needed. An important difference to highlight is that the intensity of the 

amorphous (silica rich) band centered at 22,5° can be observed, and this band was not observed in 

the heated kaolinite [48], and could be understood as an important difference between these two 

clays. After 1100 °C treatment, three small bands corresponding to the spinel type silicoaluminate 
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were clearly observed [41,42,59]. The nanocrystalline nature of this phase makes it sometimes 

difficult to observe by common XRD characterizations, and a proper structural characterization of 

this particular phase is interesting, due to this XRD analysis difficulty. Quartz was observed in the 

as received clay and the heating products (up to 1100°). The Hallo-1250 sample presented an 

important amount of cristobalite. 

 

Table 2: Labels, identified phases. and PDF cards. 

Sample 

Heating 

temp. 

(°C) 

Quartz 

(SiO2) 

Halloysite 

- 7 Å 

SAS 

Spinel 

Mullite 

(3Al2O3.2SiO2) 

Cristobalite 

(SiO2) 

Glassy 

Phase 

PDF:  01-085-

0797 

00-029-

1487 

[60,61] 00-015-0776 01-082-

0512 

Band  

Hallo-0 
As 

received 
X x     

Hallo-500 500 X x    x 

Hallo-800 800 X     X 

Hallo-1100 1100 X  x x x X 

Hallo-1250 1250 X   x x X 
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Figure 2: XRD patterns of the studied Halloysite and the heated samples; principal reflections are 

labeled. Matched phases are shown in table 2. 

 

 

3.3. SEM analysis 

One halloysite predominant form is a hollow tubular structure in the sub-micrometer range. The 

size of halloysite tubules varies from 500-1000 nm in length and 15-100 nm in inner diameter 

depending on the deposit [32,33,62,17,19,63], which was confirmed for the studied sample 

(Figure 3). The analyzed agglomerate was 50 µm, the border of the agglomerate was focused in 

order to have high contrast between the clay and the carbon connecting tape employed as sample 

holder.  

The microscopy SEM show that both the halloysite and its calcining products have a needle-

tubular morphology, where sizes and length/diameter ratios previously reported were confirmed 

(Figure 4). The quartz presence was also observed as not acicular coarse grains. After high 

temperature treatments (1100 and 1250 °C) the needle shape is retained, especially in these not 
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pressed samples. However, the principal aim of this work was to assess the chemical changes at an 

atomic local scale by the X ray absorptions analysis shown in the next section. 

 

 
 

Figure 3: SEM images of the studied as received clay (x40000 and x125000). Tubular shape can 

be easily observed in the observed agglomerate. 
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Figure 4: SEM images (x20000) of the Halloysite and the heated Halloysite (Hallo-0; Hallo-800; 

Hallo-1100; Hallo-1250, (A, B C and D respectively). 

 

3.4. XANES analysis 

The XANES spectra of the halloysite and its corresponding thermal products (full black line) were 

compared to the kaolinite XANES spectra and its fired products (full dark gray line), and mullite 

(full light grey line) (Figure 5). 
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Figure 5: Al K-XANES spectra of the Halloysite and its corresponding thermal products (full black 

line) compared to the Kaolinite XANES spectra, its corresponding thermal products (gray line + 

empty spot) and Mullite (full gray line). 

 

Following the assignment made by Dien Li et al. [64] the shoulder (1) at 1565.8 eV is related to a 

pre-edge feature associated to 1s→a1g (3s-like) electronic transition, or dipole-forbidden transition 

of Al 1s electrons to anti-bonding a1g (3s-like) states. This forbidden peak appears because the 

distortion of the coordination octahedra permits a mixture of Al s and p states. Ph. Ildefonse et al. 

[38] attributes shoulder (1) to the overlap of the feature of Al(IV) and the Al(VI) in a highly ordered 

kaolinite. The assignments made by Li et al. (1995) are compatible with those made by Ph. 

Ildefonse et al. (1994) according to the interpretation in which the systems without center of 

symmetry give rise to transitions not allowed by rules of Laporte [65]. The peak labeled as (2) is 

associated with allowed transition of Al 1s electrons to the anti- bonding t1u states, 1s→t1u (3p-like) 

transition, and it is located at 1568.0 eV. The peak (3), at 1570.4 eV, is identified with a multiple 

scattering resonance. The peak labeled as (4) represents the forbidden 1s→t2g (3d-like) transition 

and it is at 1573.2 eV, while the resonances marked as (5) and (6) are identified with multiple 

scattering and forbidden 1s→eg (3d-like) transition, at 1579.0 eV and 1589.5 eV, respectively. 
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Two important characteristics are observed in the XANES spectra. The first is the much lower 

intensity of the shoulder (1) for the halloysite with respect to the intensity of such shoulder for the 

kaolinite (see inside graph in Figure 5). This is compatible with what was published by Ph. 

Ildefonse et al. (1994) for model compounds with Al(VI) coordinated to oxygen in a dioctahedral 

layer, particularly in the comparison between poorly ordered kaolinite and halloysite. According to 

the language of group theory, halloysite presents environments more centrosymmetric than 

kaolinite [65]. 

The second feature is the lower intensity for kaolinite compared to halloysite in the region 

between 1560 and 1580 eV. The shape of the XANES directly reflects the excited state electronic 

densities of states in a material [66], or, in other words, the near edge structure can be interpreted 

in terms of unoccupied levels with a majority contribution of p and d states [67]. The density of 

unoccupied states has a crucial preponderance in the form and intensity of the XANES spectra. 

Although kaolinite and halloysite have the same formal stoichiometric structure, Al2Si2O5(OH)4, the 

difference in intensities can be interpreted, not as a change in morphological structure, but as a 

greater number of unoccupied electronic states in halloysite. 

Therefore, these two facts, greater center symmetry in Al environments and higher density of 

unoccupied p-states for halloysite with respect to kaolinite, allow to observe differences that must 

be studied to determine their origin. These studies involve ab-initio calculations and DFT 

calculations that are outside the scope of this paper. 

For thermal treatment at 500 °C, the same XANES structure is observed in both cases. That is, the 

local environments of Al in thermally treated Hallo-500 have the same structure as MK. In a recent 

paper [48] the main characteristics of the Al K XANES spectra for MK were published. In addition, a 

systematic and detailed study of the local structure of aluminum in MK can be found in the works 

of White et al [68–70], and Al(III), Al(V) and Al(VI) coordination were identified for metahalloysite 

[49,50,72,73]. 

For heat treatment at 800 °C, it is observed a higher intensity for the resonances assigned to the 

sites Al(IV) and Al(VI) for Kaol-800 than for Hallo-800. These differences in intensities continue to 

manifest for the following thermal treatments. For example, for 1100 °C the characteristics of the 

spectrum are the same but the intensities are different, in the same way as in the case of mullite. 

XANES spectroscopy of solids involves complicated processes (transition probabilities, full multiple 

scattering, etc). The peak for Al(IV) is assigned to the allowed transition of Al 1s electrons to the 

antibonding t2 (3p-like) states, and the peak for Al(VI) is assigned to the allowed transition of Al 1s 

electrons to the antibonding t1u (3p-like) states [64]. 

According to the calculation method for Al(IV)/Al(VI) presented by Kato et al. [74], was obtained 

that Al(IV)/Al(VI) ≅ 0.6, which allows to conclude that the number of tetrahedral sites with respect 

to the octahedral sites for the three samples (Hallo-1100, Hallo-1250 and mullite) is the same. This 

means that although the relative amounts of Al sites are constant, electronic interactions of 

aluminum with its environment are different. In other words, for the mullite there are more 3p-

holes available than for the Kaol-1250 and Hallo-1250, according to the intensity of the transitions. 

This is the distinctive quality provided by the XANES technique: the relation Al(IV)/Al(VI) is 

approximately the same for the three samples but the electronic interaction is significantly 

different. The results obtained here for Hallo-1250 for the relationship Al(IV)/Al(VI) are in 
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accordance with what was reported by the pioneer work of Mackenzie et al. and Schneider et al. 

[45,57]. 

 

4. Conclusions 

Halloysite thermal processes present local and long distance order nature.  The extended and local 

range order structure characterization of commercial halloysite clay and its calcination products 

was carried out by means of two X-ray based techniques: XRD and XANES, respectively. In order to 

give context to these characterizations, thermal analyses (TG-DTA) and SEM were carried out. 

Both crystalline and low crystallinity phases were described after thermal transformations in the 

studied material: halloysite, metahalloysite, the spinel type aluminosilicate SAS and mullite.  

The tubular morphology was retained after thermal treatments. The not crystalline structure of 

the tubular metahalloysite fired at 800 °C presents potential applications. The 1100 °C fired 

samples presented the spinel aluminosilicate phase, this was identified by XRD and, acicular 

morphology was confirmed, showing a solid state transformation. Finally, after high temperature 

treatments the mullite phase was detected as the only aluminum containing crystalline phase 

accompanied by cristobalite and glassy phase. 

The studied clay mineral presented a clear behavior and allows us to identify the proper thermal 

treatments in order to achieve the complete transformation of the material. 

Al atoms in the different materials were locally described by Al K XANES, and compared with the 

kaolinite and its fired product or sintered mullite. Both coordination geometries and first 

neighbors were established in each phase and consistently compared with further studies on 

aluminum oxides and minerals. Al has octahedral coordination in halloysite as observed in 

kaolinite, and Al(III), Al(V) and Al(VI) coordination were identified for meta-halloysite. Finally, Al(VI) 

and Al(VI) were found in the spinel type aluminosilicate and mullite. In addition, it was established 

that the Al(IV)/Al(VI) ratio is the same for the three samples (Hallo-1100, Hallo-1250 and mullite). 
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