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In this Letter we will show that, in the presence of a properly modulated Dzyaloshinskii-Moriya
(DM) interaction, a U(1) vortex-antivortex lattice appears at low temperatures for a wide range of
the DM interaction. Even more, in the region dominated by the exchange interaction, a standard
BKT transition occurs. In the opposite regime, the one dominated by the DM interaction, a kind
of inverse BKT transition (iBKT) takes place. As temperature rises, the vortex-antivortex lattice
starts melting by annihilation of pairs of vortex-antivortex, in a sort of “inverse” BKT transition.

Motivation.–

Since the seminal works from Berezinskii, Kosterlitz
and Tholues1–3, the BKT-transition (a topological de-
fect mediated phase transition) and the existence of the
U(1)-vortices in the disordered phase of the two dimen-
sional Heisenberg XY-ferromagnets, have disruptively in-
fluenced the physics of condensed matter, giving topol-
ogy a central role in the physics beyond the Landau
paradigm. The existence of periodic arrangements of
these topologically singular excitations (U(1)-vortices),
on the other hand, is also very well established both
from theoretical and experimental points of view, and
have played a central role in condensed matter since they
were postulated by Abrikosov 19574, and observed in
type II superconductors, ten years later by Essmann and
Träuble5. These U(1)-vortices lattices appear in many
different materials, form HTC superconductors to 4He
superfluids, and BEC’s, or in the so called fully frus-
trated XY-model (FFXY) used to model periodic arrays
of Josephson junctions6–11. Nevertheless, the existence of
such lattices as stable states of 2-dimensional pure mag-
netic materials, is not so well known.

In the past years, a new kind of magnetic materi-
als, known as chiral magnets, has called the attention
of the community of condensed matter, due to their
capability for supporting periodic arrangements of an-
other type of topologically non-trivial magnetic excita-
tion. In this case, a smooth kind of topological excita-
tion named skyrmions, relevant for memory devices and
quantum computing technology. The key ingredient to
stabilize these lattices seems to be chirality. In these
magnets, it is widely assumed that this chirality is a
consequence of an antisymmetric exchange interaction,
the Dzyaloshinskii-Moriya (DM) interaction, originated
in the spin-orbit coupling of non-centrosymmetric mag-
netic materials. The technological implication of these
chiral magnets, and in particular of the skyrmion crys-
tal phases they support, has motivated a race for the
enhancement and modulation of the DM interaction by
different methods, leading to the emergence of a new re-
search field named “spin-orbitronics”12. Recent studies
show that in carefully designed heterostructures of chi-
ral magnets, and by proper application of electric fields,
among other techniques, it is possible to achieve DM in-

teractions of the same order of magnitude that the ex-
change one12–14. Also, it has been shown that the DM
magnitude could grow linearly with the applied electric
fields and can also be modulated12, opening new techno-
logical possibilities.

In this context, we will revisit the XY models for
ferromagnets, now in the presence of strong DM inter-
actions. We will show in this Letter that for values of
the DM interaction slightly stronger than the exchange
interaction, a vortex-antivortex lattice can be stabilised
at low temperatures. Even more surprisingly, in the
region dominated by the DM interaction, the system
undergoes a finite temperature phase transition in the
same universality class than the BKT transition. By
mapping the system to a 2D-Coulomb gas, we interpret
this transition as a sort of inverse BKT transition
(iBKT), in which the vortex lattice starts melting, as
temperature rises, by annihilation of vortex-antivortex
pairs. In what follows, we derive the results leading to
this conclusion.

Model.– We will start by considering a ferromagnetic
XY-Hamiltonian in the presence of the antisymmetric
DM interaction on a square two-dimensional lattice:

H = −
∑
ri,µ̂

Jiµ̂Si · Si+µ̂ + Diµ̂ · (Si × Si+µ̂) . (1)

Where µ̂ represents the unit vectors along positive axis
directions, the spin S is a two component unimodular
vector, J > 0 is the ferromagnetic exchange coupling and
the Diµ̂ vectors pointing outside the plane of the lattice
(let say the XY-plane) represent the DM interaction.

We define new variables ϕi,µ̂ and Ji,µ̂, in terms of
which the original variables read Ji,µ̂ = cos(ϕi,µ̂)Ji,µ̂ and
Di,µ̂ = sin(ϕi,µ̂)Ji,µ̂, and the Hamiltonian can be recast
in the following way:

H = −
∑
ri,µ̂

Ji,µ̂ cos(θi − θi+µ̂ − ϕi,µ̂), (2)

where θi represents the angle with respect to a given
fixed direction of the Si vector. This Hamiltonian has
been previously studied by Teitel and collaborators in
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FIG. 1. Figure a) shows the direction of the D vectors, rep-
resented by red and light blue out of plane arrows of a given
plaquette, when circulating the lattice in the positive direction
of the axes. The colours of the bonds indicate the correspond-
ing directions for the remaining D-vectors. Figure b) shows
a vortex lattice of 10× 10 spins obtained through a standard
Metropolis Monte Carlo method, the X and Y axes represent
the direction on the lattice in units of the lattice spacing.
Green plaquettes hold a counter-clockwise vortex while blue
plaquettes hold a clockwise vortex and spins in each sites are
represented with blue arrows.

the context of Josephson junction arrays (see for exam-
ple Ref. 11 and references therein), showing for the first
time that it supports a vortex lattice at low tempera-
tures. The ϕ configuration that will be studied here ex-
plicitly breaks the Z2-symmetry present in the models
studied by Teitel, and the phenomenology derived from
it, as far as we know, has not been previously reported.15

The stable configurations, of course, will depend on the
particular field configuration ϕi,µ̂ chosen. A simple non-
trivial choice for ϕi,µ̂ corresponds to a constant value,
|ϕi,µ̂| = ϕ, with alternating signs along the bonds, as de-
picted in Fig. 1a). This ϕ configuration, the only one
that we consider here16, leads to a lattice of minimal
vortices17. The energy condition imposed by Hamilto-
nian (2) for a given plaquette with D-vectors pointing
down along the lower and right bonds, and pointing up
in the other two bonds reads:

0 = sin(
2θ1 − θ2

2
) cos(

θ2 − 2ϕ

2
) (3)

0 = 2 sin(
2θ2 − θ1 − θ3

2
) cos(

θ3 − θ1 − 2ϕ

2
)

0 = 2 sin(
2θ3 − θ2

2
) cos(

θ2 + 2ϕ

2
),

where a possible global phase has been set to zero, be-
cause of U(1) global invariance. The angles θ1, ..., θ4 are
numerated counterclockwise starting at the lower left cor-
ner of the plaquette. Ferromagnetic and counterclock-
wise vortex configurations with ∆θi+1,i = π/2 satisfy
the condition (4) for any value of ϕ, with corresponding
energies:

Ef = −4 cos(ϕ), (4a)

Ev = −4 cos(π/2− ϕ). (4b)

It is straightforward to check that the four adjacent
plaquettes (two corners sharing) to the one considered,
have the same both trivial and non-trivial solutions
with the same energies, but with a clockwise vortex
instead of anticlockwise. That means that, for ϕ ∈ [0, π4 )
the ground state becomes ferromagnetic, while for
ϕ ∈ (π4 , π/2] a vortex-antivortex lattice is stabilised, as
in Fig 1b). The high symmetry in Fig 1b), can lead us
to mistakenly conclude that a plaquette surrounded by
four plaquettes with vortices of one type, only admits
a vortex of the opposite type. The illustrative Fig 2
can clarify this aspect. Finally, for ϕ = π

4 the possibil-

ity of a coexistence of both phases can not be discarded18.

Low temperature effective theory.– We will start the
analysis of the system by performing a low temperature
expansion following Savit19. We notice that Ji,µ̂ is inde-
pendent of bond and lattice site, and representing ϕi,µ̂
as a vector ϕi with components ϕx̂,i = (−1)xi+yiϕ and
ϕŷ,i = (−1)xi+yi+1ϕ on each site i, the partition function
associated with the Hamiltonian (2) can be written as:

Z =

∫ π

−π

∏
j

dθj
2π

exp

βJ∑
i,µ

cos(θi − θi+µ −ϕi · µ̂)


(5)

Expanding each exponential in series of Bessel
functions20, this partition function can be recast as:

Z =
∑
{n}

∏
i,µ

Ini,µ(βJ ) exp [−ini,µϕi · µ̂]


∫ π

−π

∏
j

dθj
2π

 exp

∑
i,µ

ini,µ(θi − θi+µ)

 ,
(6)

where {n} represents a sum over all possible integers con-
figurations, one ni,µ per bond, and In(βJ ) are the mod-
ified Bessel functions of first kind of order n. In this fac-
torised way, integration over each angular variable can
be done, and a theory on the discrete variable n, with
the condition:

∆ · ni = ni,x − ni−x̂,x + ni,y − ni−ŷ,y = 0, (7)

is obtained. Of course, this null discrete divergence con-
dition can be immediately fulfilled by a discrete rotor
nj,µ = εµν∆νφj , where {φ} is a set of integers defined on
the dual lattice, that it is the square lattice formed by
the centre of the original plaquettes. Introducing Dirac’s
deltas,

∑∞
k=−∞ δ(φ − k) =

∑∞
m=−∞ ei2πmjφj , the sum

over discrete variables can be turned into integrals of now
continuous φj and, at sufficient low temperature, the low
energy partition function can be written as:

Z =

∫
Dφ

∑
{m}

exp

∑
µ,j

− 1

2βJ
(∆µφj)

2 + i2πMjφj

 ,
(8)
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where Mj = mj − (−1)xj+yj 2ϕπ has been introduced.
Performing the Gaussian integrals by Fourier trans-

forming the fields, the partition function reads:

Z = Z0
∑
{m}

exp

−βJ
8

∑
i,j

MiVijMj

 . (9)

where:

Z0 = exp

[
−
∫ π

−π
d2q

1

2
ln

(
2K(q)

π

)]
(10)

Vij =

∫ π

−π
d2q

ei~q(
~i−~j)(

1− 1
2

∑
µ cos(~q · µ̂)

) ,
with K(q) approximated by

K(q) =
1

2βJ π2
(1− 1

2

∑
µ

cos(~q · µ̂)).

For small |q| the potential reduces to the Coulomb gas

potential, Vij '
∫ π
−π 2 e

iq(i−j)

|q|2 d2q, that after proper regu-

larisation by imposing charge neutrality
∑
iMi = 0 21,

leads to the low temperature partition function:

Z = Z0
∑
{m}

exp

βJ π∑
i,j

Mi ln(|Ri −Rj |)Mj

− βJ π
∑
l

(
1

2
ln(8) + γ

)
M2
l

]
, (11)

where γ is the Euler-Mascheroni constant.
This low temperature effective theory is, in fact, an

extension of the well known description of the XY-model,
(ϕ = 0), as a two-dimensional Coulomb gas19,22.

It is clear now that the system at low temperatures
can be understood as a neutral Coulomb gas of ex-
citations of charges M , whatever the value of ϕ is.
More precisely, at each value of ϕ the ground state
of the system corresponds to a configuration in which
the charges M take their minimal possible absolute
value. It is interesting to note that, both in pure
exchange regime and in pure DM regime, the charges
become integer and the minimal possible values for M
correspond to Mi = 0,∀i. In the pure exchange regime,
ϕ → 0, the charge Mi = mi, where mi represents
the i-th topological charge in the low temperature
theory19. The condition Mi = 0,∀i, implies that no
topological excitation is present at sufficient low tem-
perature, as expected for a ferromagnetic ground state,
Eq. (4). On the other hand, in the pure DM regime,
ϕ → π

2 , the charge becomes Mi = mi − (−1)xi+yi .
The condition Mi = 0,∀i, implies that mi = (−1)xi+yi

at each site, and a fully populated vortex-antivortex
lattice emerge at sufficient low temperature, again as
expected from the microscopical theory, Eq. (4). At any
intermediate value of ϕ, the condition that |M | must

FIG. 2. Illustrative: The figure shows a configura-
tion in which only one vortex, a positive one, has been
eliminated from the lattice, and the remaining vortex-
antivortex lattice has not been affected; D dominated
regime.

be the minimal possible shows that the ferromagnetic
background extends to all the region dominated by the
exchange interaction, and the vortex-antivortex lattice
background extends to all the region dominated by the
DM interaction, also as predicted by the microscopic
theory. The relevance of the effective theory relies on
the interpretation of the excitations at low temperature.
The study of the excitations in the microscopical theory
could be very cumbersome, and the effective theory can
shed some light on this matter. Excitations correspond
to values of the charges different from their minimal
values, and behave as a neutral Coulomb gas. On
the exchange dominated regime, the minimal energy
excitation corresponds to one pair of non minimal
charges M = ±µ, which implies that a pair of one vortex
and one antivortex has been created, i.e. m = ±1,
and the well known phenomenology of the XY model
follows. Very interesting features not present in the
standard XY model appear for ϕ < π/4, but they will be
discussed in a forthcoming paper. In this Letter we will
discuss the phenomenology in the DM dominated regime.

DM dominated regime and Helicity modulus.– As we
have already mentioned, in the DM dominated regime
the ground state corresponds to a regular arrangement
of vortices and antivortices, as depicted in Fig. 1b).
This can be seen from the minimal charge condition for
Mj = mj − (−1)xj+yj 2ϕπ , for 2ϕ

π > 1
2 . No matter the

value of ϕ > π/4, the minimal condition is achieved by
mj = (−1)xj+yj . Again, the minimal excitation is given
by one pair of non-minimal opposite charges M = ±µ,
but in this case it corresponds tom = 0 in both charges23.
That is to say, the minimal excitation corresponds to
a pair of opposite charges that now have trivial wind-
ing number, one where before there was a vortex, and
another one where before there was an anti-vortex. Or
rephrasing, the excitation corresponds to the annihilation
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of a pair of a vortex and an antivortex! This conclusion
is not easy to reach from the microscopical theory since,
although difficult, configurations with only one vortex
annihilated can be constructed (see illustrative Fig. 2).
On the effective theory, on the other hand, it is an imme-
diate conclusion from the neutrality charge. We notice
that, the “effective charge” oscillates with the position,
in such a way that it is not possible to move only one
charge without violating charge neutrality.

As temperature starts to rise, more pairs of opposite
charges are created (more pairs of vortex antivortex are
annihilated) and eventually, at some temperature, they
could decouple and decorrelate the systems much in the
same way as the vortex do in the XY-model. We remark
here that, although the transition shares many aspects
with the BKT transition, the melting of the lattice goes
in a direction inverse to the one in the BKT transition. In
the present case, the system goes from topologically non-
trivial entities in the stable state, to a decorrelated state
dominated by topologically trivial excitations, so that we
call this transition inverse BKT transition (iBKT). In or-
der to support this picture, we compute the helicity mod-
ulus, as it is standard in the BKT transition, and show
that the iBKT transition has the same universal jump
that the standard BKT transition, and numerically show
that vortex are annihilated by pairs. Introduction of a
λ0 long-wavelength “twist” on the local order parameter,
with k0 = 2π/λ0, should rise the free energy by O(k20)
over their ground state value, if the system is correlated,
and should have no appreciable effect if the system is
not24. That is to say that the helicity modulus Υ25

Υ ≡ ∂2F (T, k0)

∂k20

∣∣∣∣
k0=0

, (12)

where F (T, k0) = −T ln(Z(Φ, T ))/N is the free energy
per unit volume, must be finite if the system is in the
correlated phase and zero if it is not. In fact, BKT
transition is characterised by a finite jump in Υ/Tc of
2/π. In what follows we will show the numerical results
for the helicity (12) for all values of the couplings and
theoretical computations of the helicity modulus, follow-
ing Ohta and Jasnow24 (see supplementary information),
for extreme values of the parameters.

Helicity and phase transition.– The Kosterlitz-
Thouless renormalization group equations show that the
helicity modulus Υ of a system of infinite size has a uni-
versal jump from the value (2/π)Tc to zero at the critical
temperature Tc. In Fig. 3, the behavior of Υ as function
of the temperature is shown for different values of D/J ,
where an abrupt jump in the helicity modulus at suffi-
cient high temperature is observed. These results were
obtained by a standard Metropolis Monte Carlo method
with periodic boundary conditions on a square lattice of
32× 32 sites. For extreme values, the theoretical predic-
tion of the helicity in the correlated phase is also shown.
We also compute numerically, positive and negative vor-

FIG. 3. The BKT behavior of Υ(T ) for chiral XY model in the
D dominated regime is shown. A jump in Υ is appreciated at
each value of J , the theoretical prediction for J → 0 is shown
in purple. In the inset, the characteristic XY Υ(T ) behavior
for J dominated regime is also shown, the curves with lower
intercept correspond to lower values of D/J .

FIG. 4. The picture shows vortices and antivortices densities
as temperature rises, for D � J . In the inset, the same
densities show that standard phenomenology for D = 0

tex density for different values of D/J and we observe
that, as temperature rises, both densities decrease at the
same time, which implies that the vortex are annhilated
by pairs. In Fig. 4, both densities as a function of the
temperature are shown for J = 0. At each calculated
temperature the densities have the same value. This is
a non-trivial numerical result, that coincides with the
neutrality charge condition of the effective theory and
rules out the possibility depicted in Fig. 2. The be-
havior of Υ is the one qualitatively expected for a BKT
transition. The softening observed in the figure is due
to finite size effect of the sample. Using the solution to
the Kosterlitz-Thouless renormalization group equations
and the 2D-Coulomb gas duality, it has been shown that
BKT transitions obey a particular scaling law with the
sample size, that allows us to determine the transition
temperature Tc

26:

Υ(N,T )

TJ
=

Υ∞(T )

TJ

(
1 +

1

2

1

ln(N) + C

)
, (13)
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FIG. 5. The figure shows a qualitative phase diagram of the
model studied. The vertical axis represents the variable ϕ
that goes from ϕ = 0 (J dominated regime) up to ϕ = π/4
(D dominated regime). The value ϕ = π/4 (where D = J)
is depicted with a dashed horizontal line. We identify three
regions: the region VL where the system stays at a vortex
lattice configuration; the FM where the system stays at a fer-
romagnetic configuration with quasi-long range order as in the
standard XY model; and the decorrelated high temperature
phase. As mentioned in previous sections, the possibility of
a coexistence of both VL and FM phases at the dashed line
can not be discarded.

where Υ(N,T ) is the helicity modulus of the square lat-
tice of N sites, C is an undetermined constant, and
Υ∞(T ) is the helicity modulus in the limit of N → ∞.
If the system undergoes a Kosterlitz-Thouless transition
at a temperature Tc, we should obtain Υ∞(Tc)/(J Tc) =
2/π.

For the determination of Tc in the D � J case, we fol-
low the strategy developed by Weber and Minnhagen26.
We calculate Υ(N,T ) for lattice sizes ranging from 32×32
to 128×128 and temperatures ranging from T = 0.885D
to T = 0.91D. For a given T , we make a least squares
fit of Υ(N,T )/T to (13). We find that the quantity
Υ∞/T lies in the interval 0.61 < Υ∞/T < 0.65 for
0.885 < T/D < 0.9. By this method Υ∞/Tc is deter-
mined to be Υ∞/Tc = 2/π ± 0.03 and we can estimate
Tc to be Tc = 0.892(8)D.

We conclude that when D � J , the system undergoes
a finite temperature phase transition with the same uni-
versal jump that the BKT transition, but now mediated
by topologically trivial excitations. In the extreme DM
dominated regime, it is not difficult to show that the
charge-charge correlation function decays exponentially
with temperature27 and became less sensitive to charge
positions, exactly in the same way that vortex-antivortex
does, and therefore a decoupling of the neutral pair of
topologically trivial excitations is expected at sufficiently
high temperature, a phase diagram is shown in figure
5. The existence of a vortex-antivortex lattice and the

iBKT transition it suffers, are the main results of this
work.
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for useful discussions and suggestions. This work was
partially supported by CONICET (PIP 2015-813) and
ANPCyT (PICT2012-1724).



6

.

1 V. Berezinsky, Zh. Eksp. Teor. Fiz. 32, 493 (1970).
2 V. Berezinsky, Zh. Eksp. Teor. Fiz. 61, 610 (1972).
3 J. M. Kosterlitz and D. J. Thouless, Journal of Physics C:

Solid State Physics 6, 1181 (1973).
4 A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).
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