Short Papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics

Early Experiences Migrating CUDA codes to
oneAPI

12, Enzo Rucci' @*, Carlos Garcia-Sanchez?(2, and Marcelo

Naiouf!

Manuel Costanzo

! III-LIDI, Facultad de Informética, UNLP — CIC.
La Plata (1900), Bs As, Argentina
{mcostanzo,erucci,mnaiouf }@lidi.info.unlp.edu.ar
2 Dpto. Arquitectura de Computadores y Automética, Universidad Complutense de
Madrid. Madrid (28040), Espana
garsanca@dacya.ucm.es

Abstract. The heterogeneous computing paradigm represents a real
programming challenge due to the proliferation of devices with differ-
ent hardware characteristics. Recently Intel introduced oneAPI, a new
programming environment that allows code developed in DPC++ to be
run on different devices such as CPUs, GPUs, FPGAs, among others.
This paper presents our first experiences in porting two CUDA appli-
cations to DPC++ using the oneAPI dpct tool. From the experimental
work, it was possible to verify that dpct does not achieve 100% of the
migration task; however, it performs most of the work, reporting the pro-
grammer of possible pending adaptations. Additionally, it was possible
to verify the functional portability of the DPC++ code obtained, having
successfully executed it on different CPU and GPU architectures.

Keywords: oneAPI - SYCL - GPU - CUDA- Code portability

1 Introduction

In the last decade, the quest to improve the energy efficiency of computing
systems has fueled the trend toward heterogeneous computing and massively
parallel architectures [1]. One effort to face some of the programming issues re-
lated to heterogeneous computing is SYCL 3, a new open standard from Khronos
Group. SYCL is a domain-specific embedded language that allows the program-
mer to write single-source C++ host code including accelerated code expressed
as functors. In addition, SYCL features asynchronous task graphs, buffers defin-
ing location-independent storage, automatic overlapping kernels and communi-
cations, interoperability with OpenCL, among other characteristics [2].

Recently, Intel announced the oneAPI programming ecosystem that provides a
unified programming model for a wide range of hardware architectures. At the
core of the oneAPI environment is the Data Parallel C++ (DPC++) program-
ming language, which can be summarized as C++ with SYCL. Additionally,

* Corresponding author.
3 https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020. pdf

https://orcid.org/0000-0002-6937-3943
https://orcid.org/0000-0001-6736-7358
https://orcid.org/0000-0002-3470-1097
https://orcid.org/0000-0001-9127-3212
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

Short Papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics

DPC++ also features some vendor-provided extensions that might be integrated
into these standards in the future [3].

Today, GPUs can be considered the dominant accelerator and CUDA is the
most popular programming language for them [4]. To tackle CUDA-based legacy
codes, oneAPI provides a compatibility tool (dpct) that facilitates the migration
to the SYCL-based DPC++ programming language. In this paper, we present
our experiences from porting two original CUDA apps to DPC++ using dpct.
Our contributions are: (1) the analysis of the dpct effectiveness for CUDA code
migration, and (2) the analysis of the DPC++ code’s portability, considering
different target platforms (CPU and GPUs).

2 The oneAPI Programming Ecosystem

oneAPI # is an industry proposal based on standard and open specifications, that
includes the DPC++ language and a set of domain libraries. Each hardware ven-
dor provides its own compatible implementations targeting different hardware
platforms, like CPUs and accelerators. The Intel oneAPI implementation consists
of the Intel DPC++ compiler, the Intel dpct tool, multiple optimized libraries,
and advanced analysis and debugging tools [5].

3 Experimental Work and Results

3.1 Migrating CUDA Codes to oneAPI

dpct assists developers in porting CUDA code to DPC++, generating human
readable code wherever possible. Typically, dpct migrates 80-90% of code in
automatic manner. In addition, inline comments are provided to help develop-
ers finish migrating the application. In this work, we have selected two CUDA
applications from the CUDA Demo Suite (CDS) ®. Both codes were translated
from CUDA to DPC++ using the dpct tool.

Matrix Multiplication (MM) This app computes a MM using shared mem-
ory through tiled approach. Fig. 1 shows an example of the memory transference
translations. Because checkCudaFErrors is a utility function (it is not part of the
CUDA core), dpct inserts a comment to report this situation. Then, the pro-
grammer must decide whether to remove the function or redefine it.

Fig. 2 shows the kernel invocations. At the top, the original CUDA kernel’s
call and, al the bottom, the migrated DPC++ code (only a portion is included
due to the lack of space). On the one hand, dpct adds comments informing
the programmer that it is possible that the size of the work-group exceeds the
maximum of the device, being his responsibility to prevent this from happening.
On the other hand, the resulting code is longer and more complex than the

4 https://www.oneapi.com/
® https://docs.nvidia.com/cuda/demo-suite/index.html

https://www.oneapi.com/
https://docs.nvidia.com/cuda/demo-suite/index.html

Short Papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics

Device)) ;

Fig.1: MM memory transference. Up: Original CUDA code. Down: Resultant
DPC++ code.

d B, dimsA.x, di

B, dimsA.x, di

Fig. 2: MM kernel call. Up: Original CUDA code. Down: Resultant DPC++ code
(portion).

CUDA original code. However, it is important to remark that this code is the
result of an automatic translation. By following the DPC++ conventions, it
could be significantly simplified.

Finally, Fig. 3 shows part of the kernel bodies, resulting in very similar codes.
dpct manages to correctly translate the local memory usage, although it de-
fines the arrays outside the loop as opposed to the CUDA case. In addition,
it can be noted that dpct effectively translates the unroll directive and the
synchronization barriers.

Reduction (RED) This app computes a parallel sum reduction of large arrays
of values. The CUDA code includes several important optimization strategies
like reduction using shared memory, __shfl_down_sync, -_reduce_add_sync and
cooperative_groups reduce.

In this case, dpct is not able to translate advanced functionalities such as CUDA
Cooperative Groups. Fig. 4 presents the comment inserted by dpct to inform the
programmer about this issue. Even so, the tool manages to translate most of the
original CUDA code, leaving little work to the programmer.

Short Papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics

Fig. 4: RED kernel. Up: Original CUDA code. Down: Resultant DPC++ code.

3.2 Experimental Results

Two hardware platforms were used for the experimental work. The first com-
prises an Intel Core i3-4160 3.60GHz processor, 16GB main memory and a
NVIDIA GeForce RTX 2070 GPU. The second has an Intel Core i9-10920X
3.50GHz processor, 32GB main memory, and an Intel Iris Xe MAX Graph-
ics GPU, from the Intel DevCloud 6. oneAPI and CUDA versions are 2021.2
and 10.1, respectively. In addition, different workloads were configured for MM
(nlter = 10; wA,wB,hA,hB = {4096,8192,16384}). Finally, to run DPC++
code on NVIDIA GPUs, several modifications had to be made to the build, as
it is not supported by default 7.

Table 1 shows the execution times of MM (CUDA and DPC++ versions) on
the different experimental platforms. Before analyzing the execution times, it is
important to remark that the DPC++ code was successfully executed on all the
selected platforms and that the results were correct in all cases.

On the RTX 2070, the DPC++ code presents some overhead compared to the
original code. However, it should be noted that these results are not final since
the oneAPI support for NVIDIA GPUs is still experimental 8. In fact, currently
the code generation does not consider any particular optimization passes.

The DPC++ code was compiled and successfully executed on two different Intel
devices: a CPU and a GPU. In this way, we verified its functional portability

5 https://software.intel.com/content /www /us/en/develop/tools/devcloud.html

" https://intel.github.io/llvm-docs/GetStartedGuide.html

& https://www.codeplay.com/portal /news,/2020/02/03/codeplay-contribution-to-
dpcpp-brings-sycl-support-for-nvidia-gpus.html

Short Papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics

Table 1: MM execution times on the target platforms
NVIDIA RTX 2070 NVIDIA RTX 2070

Size (CUDA) (oneAPT) Intel Core i9-10920X Intel Iris Xe MAX
4096 1.3 1.4 9.2 6.3
8192 11.1 15.3 102.8 50.4
16384 89.3 122.9 919.5 401.1

on different architectures. Little can be said about its performance due to the
absence of an optimized version for both Intel devices. However, there is probably
significant room for improvement considering that the ported code was compiled
and executed with minimal programmer intervention.

4 Conclusions and Future Work

In this paper, we present our first experience migrating CUDA code to DPC++
using the Intel oneAPI enviroment. First, we were able to test the effectiveness
of dpct for the selected test cases. Despite not translating 100% of the code,
the tool does most of the work, reporting the programmer of possible pending
adaptations. Second, it was possible to verify the functional portability of the
obtained DPC++ code, by successfully executing it on different CPU and GPU
architectures.

As future work, we are interested in deepening the experimental work. In par-
ticular, we want to include other test cases, hardware architectures, and metrics
(like performance portability).

References

[1] H. Giefers et al. “Analyzing the energy-efficiency of sparse matrix multipli-
cation on heterogeneous systems: A comparative study of GPU, Xeon Phi
and FPGA”. In: 2016 IEEE ISPASS. 2016, pp. 46-56.

[2] Ronan Keryell and Lin-Ya Yu. “Early Experiments Using SYCL Single-
Source Modern C++ on Xilinx FPGA”. In: Proceedings of the IWOCL ’18.
Oxford, UK: ACM, 2018. pOI: 10.1145/3204919.3204937.

[3] S. Christgau and T. Steinke. “Porting a Legacy CUDA Stencil Code to
oneAPI”. In: 2020 IEEE IPDPSW. May 2020, pp. 359-367. DOI: 10.1109/
IPDPSW50202.2020.00070.

[4] Manuel Costanzo et al. “Comparison of HPC Architectures for Comput-
ing All-Pairs Shortest Paths. Intel Xeon Phi KNL vs NVIDIA Pascal”.
In: Computer Science — CACIC 2020. Vol. 1409. 2021, pp. 37-48. DOL:
10.1007/978-3-030-75836-3_3.

[6] Nikita Hariharan et al. “Heterogeneous Programming using OneAPT”. In:
Parallel Universe 39 (2020), pp. 5-18.

https://doi.org/10.1145/3204919.3204937
https://doi.org/10.1109/IPDPSW50202.2020.00070
https://doi.org/10.1109/IPDPSW50202.2020.00070
https://doi.org/10.1007/978-3-030-75836-3_3

