
Service-Knocking Communication

Santiago Alessandri1, Matias Fontanini2, and Nicolás Macia3

1 CERT, CeSPI, Universidad Nacional de La Plata, Argentina
2 CERT, CeSPI, Universidad Nacional de La Plata, Argentina

3 Linti, Facultad de Informática, Universidad Nacional de La Plata, Argentina

Abstract. Las herramientas de acceso remoto son un elemento funda-
mental para la actividad de los administradores de servidores. Debido
a esto, es necesario que dichos servidores ejecuten servicios de adminis-
tración remota, los cuales en general admiten conexiones desde cualquier
IP. Esta configuración puede traer problemas de seguridad, como ser
ataques de fuerza bruta[1] o ataques a vulnerabilidades espećıficas de los
servicios de administración[2].
En este paper, se presenta una técnica que permite la comunicación re-
mota con aplicaciones corriendo en un servidor sin que las mismas dispon-
gan de un puerto abierto de comunicación. Se camufla la comunicación a
través del puerto de un servicio de acceso público en el servidor. Se im-
plementó una herramiena simple como prueba de concepto de la técnica
presentada.
Esta técnica permite la comunicación con un servicio sin puertos dificul-
tando la detección del mismo, por lo que llevar a cabo ataques contra el
servicio se torna más dif́ıcil aún.

Abstract. Administrators need to have a remote access to a server in
order to perform administrative tasks. Having an administrative service
publicly available arises several security issues, ranging from brute-force
attacks[1] to exploiting service’s vulnerabilities[2].
In this paper we present a technique along with a simple tool which
enables the administrators to communicate with an application with no
open ports through other running service’s open port in order to disguise
its traffic.
A direct consequence of the application of this technique is that one
could run an almost completely hidden service making it highly difficult
to detect, thus to attack.

1 Introduction

Administration services have always been a target chosen by attackers to gain
access to a host. Such services should be safe enough to be publicly accessi-
ble without compromising the host’s integrity. However, this cannot be always
ensured.

A public service, just for the fact of being public, reveals an amount of infor-
mation that can be useful for an attacker. She/he can use this to perform specific

4to Workshop de Seguridad Informática, WSegI 2012

41JAIIO - WSegI 2012 - ISSN: 2313-9110 - Página 1



6

attacks to this service, such as man-in-the-middle, brute-force, exploitation of
known vulnerabilities or even using 0-days attacks.

A way of avoiding the aforementioned problem is to hide the service and
make it accessible only when it is needed. To achieve this, the port-knocking [3]
technique has been developed.

Port-Knocking is ”A method for delivery of information via closed ports on
a networked computer”[4]. This technique serves its purpose but it has some
limitations.

As this method is based on sending a sequence of packets to different closed
ports to trigger an action, it may have the following issues:

– Host behind a firewall: Usually the only traffic allowed to pass through
the firewall is the one whose destination is the host’s public open services.
However, the host’s administrator does not always have root privileges in
the firewall, making it impossible to reach the closed ports, thus, not being
able to apply port-knocking.

– Host behind a NATed network: The problem is the same as the one
above. Ports are not reachable unless they are forwarded, and even if it was
possible, forwarding closed ports is not a reasonable thing to do.

We developed a technique called service-knocking which allows communicat-
ing with an application with no open ports, avoiding the aforementioned prob-
lems. To achieve this, service-knocking uses a monitor on other application’s
open port looking for a sequence of specially crafted packets while port-knocking
expects a sequence of packets sent to closed ports. Both, port-knocking and
service-knocking trigger an action when the sequence is detected.

As a proof-of-concept we develop and present a simple tool using service-
knocking to establish a reverse SSH connection that allowing the administrator
to login on the server without exposing a public administration service.

2 Service-Knocking

Service-Knocking is a technique which involves expecting a sequence of specially
crafted packets on the same port where a public service is running, without
interfering with its normal behaviour.

In order to implement it, it is necessary to have a public service running on
the server. This is going to serve as the inbound channel from which the packets
are going to be received.

After having identified the inbound channel, it is needed to set up a packet
monitor, analysing the traffic which is directed to it. Traffic analysis consists
of searching for a packet whose structure matches the format of the sequence’s
expected packet.

The structure of the packet is one of the implementation’s key points and
has to be predefined regarding certain properties. This is going to be developed
in detail in the Packet Structure subsection.

After a valid sequence of packets is found, a predefined action will be exe-
cuted. This action may even be determined by the content of the packets received.

4to Workshop de Seguridad Informática, WSegI 2012

41JAIIO - WSegI 2012 - ISSN: 2313-9110 - Página 2

Isabel
Sticky Note
Rejected set by Isabel

Isabel
Sticky Note
None set by Isabel



7

Fig. 1. TCP Segment’s customizable fields

2.1 Packet Monitoring

This is the first and one of the most important parts of this technique.
We require a tool or library to capture, monitor, and process the incoming

traffic. libpcap[5] is an example of this kind of libraries.
There is no need to set up the network device in promiscuous mode because

it is not necessary, it will increase the amount of packets to be processed and
this can deteriorate the server’s performance.

With the purpose of minimizing the amount of packets to analyse, a filter
should be applied so that only the packets whose destination port is the chosen
service’s port are the only ones left.

Since this process is passive, it does not interfere with the normal workflow
of the service running on that port.

2.2 Packet Structure

The data that is going to be sent to the hidden service ought to be included
inside the transport-layer’s PDU’s compulsory fields and not in the data field.
This should be done to minimize the packet’s size, thus reducing the traffic load.

Since the service-knocking daemon is going to be monitoring a port where
a service is running, there might be high traffic, it is really important not to
interpret a normal application packet as one being sent to the monitor service.
Achieving this is easier using a TCP segment[6] than using an UDP datagram[6],
as the first one contains more customizable fields.

In figure 1, the highlighted fields can contain arbitrary values. These fields
cannot be analysed for filtering because of their nature:

– Source Port: 2 bytes that unless you are expecting a response from the
server, can be modified to contain any value.

– Sequence Number: 4 bytes that are generated randomly, so there is no
way of determining if this value is correct or not.

– Acknowledge Number: 4 bytes that have no special meaning while there
is no established connection.

– Window Size: 2 bytes that, as there is no connection established, can be
given any value.

– Urgent Pointer 2 bytes which are not used because the URG flag is not
set.

4to Workshop de Seguridad Informática, WSegI 2012

41JAIIO - WSegI 2012 - ISSN: 2313-9110 - Página 3



8

2.3 Packet Sequence

The sequence of packets that trigger the action should be carefully chosen, since
it makes a great impact on the service-knocking daemon’s reliability.

When choosing this sequence, one must take into account the following prop-
erties:

Sequence Length The sequence length is the number of packets required to
set off the monitor’s action. It depends on the data to be sent and how much of
it will be sent in each packet.

On one hand, using a short sequence raises the chances of accepting a se-
ries that was not addressed to the service-knocking daemon. On the other, al-
though a longer one reduces these chances, it should be kept in mind that since
a connection-less communication (the packet is sent without previously estab-
lishing the connection) is being used, the risk of packet loss and of disordered
arrival of packets increases.

Sequence Order The implementation of the sequence must contemplate the
fact that for each packet of the series, one should be able to determine which
position it belongs to.

Achieving this is of great importance due to the fact that the communication
is unreliable and making a mistake in the order of the packets could trigger an
unwanted action with unknown results.

A magic-number mechanism can be used to identify the packet in the se-
quence.

Packet Uniqueness Identifying that a packet belongs to the sequence and
is not part of the service’s normal traffic is a key feature to ensure that the
service-knocking daemon’s functionality is reliable.

In order to guarantee the uniqueness of each packet, several measures can be
taken:

– Usage of magic numbers
– Inter-field dependencies: Making a field’s value depend on the content of

another.
– Inter-packet dependencies: The values of a packet field depends on a

previous one.
– Leave the least bits to randomness: Apply these techniques to the most

number of bytes.

Sequence Reset Since unreliable communication is being used and there is no
certainty that a normal packet will not be interpreted as part of the sequence,
a mechanism to reset it should be implemented. It is not desirable that the
service-knocking daemon locks itself waiting for a certain packet that will never
arrive.

4to Workshop de Seguridad Informática, WSegI 2012

41JAIIO - WSegI 2012 - ISSN: 2313-9110 - Página 4



9

Fig. 2. Daemon’s view of TCP segment header

A method that can be easily implemented is setting a time limit for the
arrival of packets from the same sequence. If a packet takes longer to arrive than
the time limit, the sequence is reset and a new sequence of packets is expected.

3 Proof Of Concept: Reverse SSH

As a proof of concept, we have developed a service-knocking daemon which, after
a sequence of packets, creates a reverse SSH connection on the IP and port given
in the sequence. To be able to perform this proof-of-concept, an RSA key pair
should be generated on the server[7], and the public one should be in the client
computer. Using this service, an administrator could perform administrative
actions on a host without running any kind of public service to allow this. In
addition, it is an extremely safe mechanism, since the RSA key is needed to
establish the connection, and afterwards, normal authentication is required.

It is important to notice that our application of service-knocking is succepti-
ble to replay attacks, but this is not an inherent property of service-knocking.

The sources developed to back up this proof of concept are located in http:

//www.cert.unlp.edu.ar/uploads/skdaemon/skdaemon.tar.gz

3.1 Packet Sequence

We have chosen a sequence of 6 packets to trigger the action. In each packet only
one byte of data is sent. The first 4 bytes correspond to the IP where the reverse
ssh connection will be directed and the last two identify the port to connect to.

A 10 second-threshold between each packet was established. If the threshold
is reached, the sequence is reset. This means that the packets that have arrived
are discarded and a new sequence is expected.

3.2 Packet Structure

The daemon will be expecting the crafted packets in TCP headers. Figure 2
displays the chosen structure.

4to Workshop de Seguridad Informática, WSegI 2012

41JAIIO - WSegI 2012 - ISSN: 2313-9110 - Página 5



10

– Magic Port: In the source port of the TCP header, a 2 byte magic number
is expected. This is constant and unique for each of the six packets of the
sequence, and is used to identify the packet’s position in the series.

– Data Byte: The first byte of the Sequence Number of the TCP segment
contains the actual data being sent to the service-knocking daemon.

– Magic Sequence: The last 3 bytes of the Sequence Number are used in
the same way as the magic port. A constant is expected depending on the
relative position of the packet in the sequence.

– Acknowledgement Number: The Acknowledgement number contains the
first 4 bytes of the data’s MD5 hash. This is done to gain uniqueness and
data integrity.

– Window field: This 2-byte field contains the 5th and 6th bytes of the data’s
MD5 hash. It is used for the same purpose as the Acknowledgement number.

3.3 Packet Uniqueness

Taking into account the accepted values for each field of the packet, we can
calculate the probability of receiving a random packet and interpreting it as a
valid one.

The following equations measure the probability for the magic port(1), the
magic sequence(2), the 6 bytes of the MD5 hash(3) and the whole packet to be
valid using random data(4).

mp =
1 valid value

216 possible values
=

1

216
(1)

ms =
1 valid value

224 possible values
=

1

224
(2)

h =
1 valid value

248 possible values
=

1

248
(3)

whole packet = mp ∗ms ∗ h =
1

216
∗ 1

224
∗ 1

248
=

1

288
(4)

The probability of a random packet to be taken into account by the daemon
is negligible.

3.4 Sequence Uniqueness

To calculate the probability of getting an accepted sequence by generating ran-
dom packets we have to take into account the following items:

– Probability of each random packet being valid: This is the value cal-
culated in the previous section. As each packet has the same structure and
is different from each other, then the probability is equal for every packet in
the sequence.

4to Workshop de Seguridad Informática, WSegI 2012

41JAIIO - WSegI 2012 - ISSN: 2313-9110 - Página 6



11

– The number of packets that can arrive in the 10-second time lapse:
Since the daemon has a threshold of 10 seconds; it is necessary to know
the number of packets that can arrive in that lapse in order to accurately
calculate the probabilities of receiving a valid packet.
The number of packets depends on the network bandwidth. In this case
we will analyse it under a gigabit network. The minimal size of a TCP
packet is 58 bytes(18 from the Ethernet frame[6], 20 from the IP packet[6]
and 20 more from the TCP segment[6]), a gigabit network can transmit
10243

8 = 134217728 bytes per second[8]. Therefore, the maximum number of
packets that can arrive in 10 seconds is 134217728

58 ∗ 10 = 23140980.

The probability of receiving a valid first packet is 1
288 and for each of the

following is 23140980
288 . As a consequence the chances of receiving a valid sequence

in a gigabit network is:

1

288
∗ (

23140980

288
)5 =

231409805

2528
≈ 7.55215 ∗ 10−123 (5)

3.5 Service-knocking daemon

The application is written in C and uses libpcap[5] to do the packet monitoring.
When a valid sequence is received, the Service-Knocking daemon logs into

the ssh service located at <ip received>:<port received> authenticating with
the server’s RSA key.

A reverse ssh tunnel is set up in the client’s 8080 tcp port. This is done execut-
ing the following command: ssh -R 8080:localhost:22 <ip received> -p<port received>.
In this case it logs in as root, but this can be changed by modifying the command
used, so that a less-privileged user is used.

Using the previously mentioned tunnel, the administrator is able to reach
the server’s hidden ssh service to log in with its username and password.

3.6 Client program

The client was written in Python[9] using the Scapy [10] library to forge the
packets.

In order to perform the packet crafting, the client program needs to be run
with administrator privileges.

The information needed to send the sequence is taken from 4 arguments:

1. Destination IP: The IP where the sequence has to be sent to.
2. Destination port: Port number where the daemon is monitoring the traffic.
3. Reverse SSH destination IP: IP where the SSH connection has to be

sent.
4. Reverse SSH destination port: Port where the SSH connection will be

established.

4to Workshop de Seguridad Informática, WSegI 2012

41JAIIO - WSegI 2012 - ISSN: 2313-9110 - Página 7



12

4 Conclusion

The presented technique gives administrators a way to communicate with an
application with no open ports.

It takes the advantages of port-knocking technique while solving its issues
like NATs and firewalls preventing reaching the server’s ports.

As Service Knocking is a flexible technique, it can be adapted to fulfil any
requirements needed by the administrator as the action to be performed can be
configured.

A direct consequence of the application of this technique is that one could
run an almost completely hidden service making it highly difficult to detect, thus
to attack.

As pointed out in the appendix, it is possible to develop a Service-Knocking
daemon with a really low false-positive rate (≈ 7.55215 ∗ 10−123 in a gigabit
network). In addition, even if a random sequence triggers the action this does
not expose the server in a significant manner.

References

1. THC-Hydra, network logon cracker http://thc.org/thc-hydra/.
2. Richard I Friedber, OpenSSH Challenge-Response Vulnerability, SANS GCIH Prac-

tical Version 2.1: August 2002.
3. Port knocking, http://www.portknocking.org.
4. Ben Maddock, Port Knocking: An Overview of Concepts, Issues and Implementa-

tions, SANS GIAC GSEC Practical: September, 2004.
5. Pcap Library for C/C++, http://www.tcpdump.org/.
6. W. Richard Stevens, TCP/IP Illustrated: The protocols, Addison-Wesley Publishing

Company, copyright c©1994 Addison Wesley, 0-201-63346-9.
7. Daniel J. Barrett, Richard E. Silverman, Robert G. Byrnes, SSH, the secure shell:

the definitive guide, O’Reilly Media Inc., copytright c©2005,2001 O’Reilly Media
Inc, 0-596-00895-3.

8. Douglas Comer, Computer networks and internets, Prentice Hall, 2009,
9780136061274.

9. Python Programming Language, http://www.python.org.
10. Scapy Python Library, http://www.secdev.org/projects/scapy/.

4to Workshop de Seguridad Informática, WSegI 2012

41JAIIO - WSegI 2012 - ISSN: 2313-9110 - Página 8




