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Abstract We present a numerical study of the application of the Shannon entropy
technique to the planar restricted three-body problem in the vicinity of first-order inte-
rior mean-motion resonances with the perturber. We estimate the diffusion coefficient
for a series of initial conditions and compare the results with calculations obtained from
the time evolution of the variance in the semimajor-axis and eccentricity plane. Adopt-
ing adequate normalization factors, both methods yield comparable results, although
much shorter integration times are required for entropy calculations.

A second advantage of the use of entropy is that it is possible to obtain reliable
results even without the use of ensembles or analysis restricted to surfaces of section
or representative planes. This allows for a much more numerically efficient tool that
may be incorporated into a working N-body code and applied to numerous dynamical
problems in planetary dynamics.

Finally, we estimate instability times for a series of initial conditions in the 2/1 and
3/2 mean-motion resonances and compare them with times of escape obtained from
directed N-body simulations. We find very good agreement in all cases, not only with
respect to average values but also in their dispersion for near-by trajectories.

Keywords Three-Body Problem · Resonances · Stability

1 Introduction

One of the most difficult questions to ask about the evolution of a planetary sys-
tem is that of orbital stability. Simply stated, given a system of N bodies of masses
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mi, i = 1, . . . , N orbiting a central mass m0 > mi under the effects of their mutual
gravitational interactions, what are the initial conditions that guarantee orbital stabil-
ity for a certain time interval? While it is possible to define Hill stability criteria in
the case of the three-body problem, the so-called Lagrange stability has proved much
more difficult to tackle (see for instance Hénon & Petit 1986, Gladman 1993, Simó &
Stuchi 2000 and references therein).

The KAM theory (Broer 2004 for a general description of Kolmogorov paper,
Celetti & Chierchia 2006 for the application of this theory in the context of the three
body resonance in the Solar System) and the Neckhoroshev formulation (Neckhoroshev
1977) have lead to a number of important discoveries during the last century, including
Chirkikov’s resonance overlap criterion (Chirikov 1979) introduced in celestial mechan-
ics by Wisdom (1980) and recently revisited by Ramos et al. (2015). It is customary to
difference between the strong unstable chaotic dynamics, called Chirikov’s regime, that
applies when a major overlap of resonances takes place and the so-called Neckhoroshev
regime, when unstable chaotic motion is almost restricted to the very narrow chaotic
layers surronding the resonances.

Several outstanding works in planetary dynamics deal with these issues, for instance
Levison et al. (1997), Tsiganis et al. (2005), Robutel & Gabern (2006) for the Jupiter’s
Trojans asteroids; Laskar (1989,1990, 1996,2013), Duncan & Queen (1993), Lecar et al.
(2001), Batygin & Laughlin (2008) concerning the stability of the Solar System; Guzzo
(2005) for revealing the role of the resonance web in the outer Solar System among
hundred of relevant papers in the field.

An even more challenging question is how long an unstable planetary system will
last. In other words, even if it is not possible to establish that a given initial condition
is stable, may we estimate how long the system will remain close to its initial configu-
ration? Calculations of instability or escape times τesc are possible assuming a certain
chaotic diffusion process (normal in general) and estimating diffusion-like coefficient.
Analytical methods (e.g. Lichtemberg & Lieberman 1983), based on a Fokker-Planck
description of the dynamics in the vicinity of separatrix of a given resonance, have
been recently been employed successfully for the GJ876 planetary systems (Batygin et
al. 2015). However, they require an analytical model for the dynamical evolution and
are usually restricted to the behavior of a single resonance. However, while chaos is
often associated with large instabilities, it is important to keep in mind that this is not
necessarily true, the so-called ”stable chaos” was firstly observed in the Solar System
by Milani & Nobili (1992). Thus a local exponential divergence of nearby orbits (i.e. a
positive Lyapunov characteristic number) does not necessarily imply chaotic diffusion.

More general studies inevitably require a numerical approach. For instance, early
works in planetary dynamics about relations between the Lyapunov time and an ”or-
bital evolution time” is discussed in Lecar et al. (1992). However, in more recent studies
the standard procedure is to analyze the evolution of a fast action-type variable, say
I, and to model the growth of its variance as function of time. Depending on the com-
plexity of the system, the solution I(t) may be obtained either by a discrete mapping
or from the integration of the equations of motion in N-body simulation. Since even
strongly chaotic motion is far from being ergodic in phase space, different approaches
have been considered, for instant in Cachucho et al. (2010), when studying three body
resonances the time average over a single trajectory was considered following Chirikov’s
diffusion approach. On the other hand an ensemble of initial conditions were considered
in Martí et al. (2016), to compute space averages of action-like variables for the motion
the vicinity of the Laplace resonance in GJ876.
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Although the description of the chaotic diffusion may be obtained by any of these
procedures, the calculations become time consuming and usually require very long-
term integrations as for instance Froeschlé et al. (2005), Lega et al. (2008) show in case
of the slow diffusion along resonances in relatively simple dynamical systems or, as it
was recently discussed in Cincotta et al. (2018) when reviewing the diffusion process
in multidimensional Hamiltonian systems and applications to planetary dynamics.

A series of recent papers (see Giordano & Cincotta 2018, Cincotta & Giordano
2018, Cincotta & Shevchenko 2019) have analyzed a new numerical method for studying
diffusion in both, weakly and strong chaotic systems, based on the time evolution of the
Shannon entropy. Applied to both discrete mappings and continuous dynamical systems
it appears to constitute a valuable tool with which to obtain a general description of
the chaotic dynamics. Moreover, it has been shown to yield values of the diffusion
coefficients comparable to those obtained by other means, and in shorter integration
times.

In this work we present an application of this technique to planetary systems, an-
alyzing the case of the planar restricted three-body problem (R3BP) in the vicinity
of the 2/1 and 3/2 interior mean-motion resonances. We discuss how Shannon en-
tropy calculations may be adopted to systems of unbounded phase space with multiple
timescales and analyze both resonant and non-resonant trajectories. Based on a series
of N-body integrations with different perturbing masses and initial conditions, we de-
duce diffusion coefficients and compare the results with similar estimations from the
time evolution of the variance of the actions. We analyze how this method may be
employed without the use of ensembles and, finally, compare the escapes times with
very long-term numerical simulations.

2 The 2/1 Mean-Motion Resonance

Our dynamical system is comprised of a mass-less particle orbiting a central star of
mass m0 = 1 and perturbed by an exterior planet of mass m1 � m0. Let a denote
the semimajor axis of the mass-less body, e its eccentricity, λ the mean longitude and
$ the longitude of the pericenter. The same notation, with subscript one, is reserved
for the perturber. Orbital elements are measured in a m0-centric reference frame and
all motion is restricted to the same orbital plane.

For the current set of numerical tests we will assume the following parameters for
the planet:

m1 = 2.5× 10−4 ; a1 = 1 ; e1 = 0.05 (1)

All initial angles are taken equal to zero. The adopted value for m1 is slightly smaller
than Saturn mass.

We will consider initial conditions in the vicinity of the 2/1 mean-motion resonance
(MMR), characterized by mean motions n such that n/n1 ' (p + q)/p with n1 the
mean motion of the perturber and p = q = 1. Integer q is usually referred to as the
order of the resonance, while p is the degree of the commensurability.

Figure 1 shows two dynamical maps resulting from the numerical integration of
a set of mass-less bodies defining a 300 × 300 grid of initial conditions in the (a, e)
plane, where a is taken adimensional, i.e. a/a1. The equations of motion are those
corresponding to the classical Newtonian 3-body problem, and initial values of the
angles were set to zero. Integration time was 103 years (i.e. orbits of the perturber).
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Fig. 1: Dynamical maps for a grid of initial conditions in the vicinity of the interior 2/1
MMR with a Saturn-type planet in eccentric orbit. The semimajor axis is displayed in
units of a1. The color bars accompanying each plot indicate the values of log (∆a) and
log (∆e), respectively, associated to each color. See text for details.

The color-code (form dark blue to orange) of the left-hand plot shows the maximum
spread in semimajor axis suffered by each initial condition during its orbital evolution.
We refer to this value as max(∆a). Similarly, the right-hand graph shows the changes
experienced by the eccentricity: i.e. max(∆e).

Both plots show evidence of a forest of high-order MMR on both sides of the 2/1
commensurability whose overlap at high eccentricities generate a broad chaotic region.
Such a stochastic region is particularly evident for semimajor axes larger than the
nominal value for the 2/1 MMR. Within the main resonance both maps show slightly
different features. While they display a net of secondary resonances for e ' 0.05,
the libration region in the left-hand plot (i.e. max(∆a)) shows a smooth decrease
in amplitude tending towards zero at the pericentric branch. Conversely, the plot on
the right shows additional structures related to secular resonances inside the libration
domain. An additional moderate max(∆e) central region is also noted for e ' 0.3.

3 Individual Runs

From these maps we chose four initial conditions, indicated in Figure 1 by white circles
and numbered in the right-hand plot. The semimajor axes and eccentricities are:

(C1) : a = 0.6305 ; e = 0.4

(C2) : a = 0.6611 ; e = 0.4

(C3) : a = 0.6370 ; e = 0.27

(C4) : a = 0.6590 ; e = 0.356

(2)

Initial conditions (C1) and (C3) lie within the libration region of the 2/1 MMR, the first
close to the pericentric branch and the second in the vicinity of the secular resonance
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Fig. 2: Numerical integration of four mass-less particles with initial conditions given
by (2). Resonant orbits are shown on the top frames, with (C1) in blue and (C3) in
brown. Trajectories initially outside the 2/1 MMR are presented in the lower plots,
with (C2) in green and (C4) in light orange.

generated inside the resonant domain. The other two initial conditions were chosen out-
side the commensurability in a region dominated by long-term chaotic motion. While
(C2) exhibits short-term chaoticity and is eventually ejected from the system, (C4)
initially lies in a high-order MMR and displays a seemingly regular orbit during a few
103 yrs, and the chaotic nature of its motion is only noticeable for longer integrations
(see below).

3.1 Orbital Evolution

All four initial conditions were numerically integrated with a Bulrisch-Stoer code for
2 × 104 orbits of the perturber. Figure 2 shows the evolution of the semimajor axis
(left-hand frames) and the eccentricity (right-hand plots). The two upper graphs show
results for (C1) in blue and for (C3) in brown, both initial conditions within the 2/1
resonance domain. In any case, the orbital elements display seemingly quasi-periodic
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sented in Figure 2. The
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2.

motion, which is confirmed by the calculation of MEGNO (Cincotta & Simó 2000,
Cincotta et. al 2003, Cincotta & Giordano 2016), as presented in Figure 3. Notice that
the value of MEGNO for (C3) appears to converge to a value close to 2, indicative of
quasi-periodic regular motion, while that of (C1) remains below this limit throughout
the integration time-span, indicative of a motion in a lower-dimensional torus.

Returning to Figure 1, the evolution of the semimajor axis is dominated by short-
period terms with very low amplitude in the case of (C1) and a much larger periodic
variation in the case of (C3). The changes in the eccentricities, however, are primarily
defined by the resonant and secular perturbing terms and have much larger periods,
of the order of 103 yrs. The large-amplitude oscillation perceived for (C1) is mainly
driven by the forced eccentricity term and should decrease to zero as e1 → 0.

The two lower plots in Figure 1 correspond to those initial conditions outside the 2/1
MMR domain; (C2) is drawn in green while (C4) in light orange. Both are extremely
chaotic (indicated in Figure 3 by large MEGNO values), and the chaotic diffusion
is exhibited primarily in the semimajor axis and not in the eccentricity. While the
eccentricities show irregular variations, these appear bounded and with a limited long-
term trend. The semimajor axes, on the other hand, experience erratic alternations
between different high-order resonances that lead to a chaotic diffusion in the action
space.

Although (C2) and (C4) are both highly irregular, their orbital evolution show
significant differences, especially for short time spans. Orbit (C2) lies in a global chaotic
sea and is rapidly ejected from the system; its MEGNO indicator grows monotonically
with time almost from the beginning of the simulation. Initial condition (C4), on the
other hand, was placed in what appeared to be a regular island inside a high-order
MMR. Its short-term evolution is thus regular and with a very low value of MEGNO.
However, after a few 103 years it is removed from the commensurability, enters in
the chaotic domain and begins to diffuse in the semimajor axis space. The value of
MEGNO grows quickly, although the particle is never ejected from the system, at least
during the integrated time-span.

3.2 Shannon Entropy

The application of Shannon entropy as an indicator of chaos and diffusion in phase
space of dynamical systems stems from several years back (see Giordano & Cincotta
2018, Cincotta & Giordano 2018 and references therein). This tool was proposed to
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provide a measure of the extent of the instability region in action space as well as
a good estimate of the diffusion rate. Moreover, in Cincotta & Giordano (2018) and
Cincotta & Shevchenko (2019) it was shown the efficiency of the Shannon entropy
to detect correlations among the state variables, even when they are extremely weak.
However, all these applications are restricted to relatively simple symplectic maps or
to the Arnold Hamiltonian (Arnold 1964, Chirikov 1979).

The numerical calculation of Shannon entropy, action variances and diffusion rates
(e.g. Martí et al. 2016, Cincotta et al. 2018, Giordano & Cincotta 2018) usually employ
two different techniques to reduce the numerical noise and increase the precision. In
this direction each initial condition is represented by an ensemble of particles with a
very small initial dispersion in orbital elements. Additionally, the relevant quantities
are evaluated in a given representative plane, i.e. when the angles acquire values very
close to those corresponding to t = 0. In particular, the computation of the entropy
requires a partition the action space, in the present application, it implies a grid of
bi-dimensional cells defined on a given region of the (a, e) plane that cover this domain
of the action space (see below).

Although these practices are relatively simple to adopt in the case of mappings or
simple continuous dynamical systems, they prove much more difficult in more complex
systems such as the one discussed here. A secular timescale of the order of 2π/g ' 103

years implies that the integration time of each initial condition must extend to values
close to the age of the Solar System if we desire a total number of orbital points
significantly larger than the number of cells in each partition. This makes any large-
scale analysis of the system prohibitively expensive in terms of CPU usage. Moreover,
if the orbit is extremely chaotic, intersections with the representative plane may be
very difficult to obtain, as was shown by Martí et al. (2016) in the case of Gliese-876
or by Maffione et al. (2016) for halo stars in a neighborhood of the Sun.

In principle, however, it is not necessary to restrict the points of the trajectory
to any reference plane as for instance the one defined by Fig. 1, where all the angles
take the very same value. For example, let us assume a generic 2 dof near-integrable
dynamical system, written in terms of action-angles variables (J1, J2, θ1, θ2) of the
unperturbed Hamiltonian. A regular trajectory will be characterized by a single point
or a small curve in (J1, J2) when restricting the motion to the representative plane
defined by (θ1, θ2) = (θ10 , θ20), and thus easily identifiable as a strongly localized
distribution in any partition of the action plane that contain at least more than one
element. Chaotic motion, on the other hand, will appear in general as a two-dimensional
region of the action space. If the chaos is not local (i.e. bounded) but global, then the
area of this region of the action space may increase with time according to the associated
diffusion rate.

If we now analyze the projection of the full phase space trajectory onto the action
space, not restricted to any representative plane, all quasiperiodic orbits will define
a bounded two-dimensional surface and thus the area of the action space covered by
regular motion would be always confined to a small subspace. Chaotic orbits would
also cover some surface of phase space but of increasing area. That is chaotic diffusion
will induce a change in the area covered by the orbit and for timescales larger than that
corresponding to the lowest frequency of the system, the diffusion could be detected.

Therefore in the following discussion we will generalize the formulation given in
Cincotta & Shevchenko (2019), Giordano & Cincotta (2018) for the Shannon entropy
as a tool to characterize the nature of the motion without restricting the motion to
any reference plane, however in Subsection 3.5 a more detailed analysis is provided.
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The restricted 3-body problem has 3 distinct degrees of freedom, each with its own
particular timescale. The highest frequency is associated to the synodic angle Q and
has a period of the order of the orbital periods (' 1 year in our simulations). On the
opposite end, the lowest frequency is defined by the secular evolution of the longitude
of pericenter $ and, in our studies, is of the order of several 103 years. The remain-
ing degree of freedom is dictated by the critical angle of whichever MMR dominates
the resonant dynamics, if any. Its frequency depends on the commensurability, mean
eccentricity and the proximity of the initial condition to the center of the libration
domain.

Since we expect chaotic diffusion to be particularly noticeable in the actions, we
determined the entropy in the semimajor axis and eccentricity (a/a1, e) plane. This
is not the only option; we performed additional tests using canonical variables (e.g.
modified Delaunay actions). No significant differences were found, indicating that the
particular choice of action-like variables should be fairly robust. For simplicity, hereafter
we will refer to (a/a1, e) as the action plane even though both orbital elements are
not truly action variables of the system.

Our first step is to define boundaries for the trajectories in the (a/a1, e) plane.
Although angles are naturally bounded in the range [0, 2π), the actions prove a greater
challenge. We finally opted, after different trials, for defining the limits as [amin, amax]×
[emin, emax] with

amin = a0 − δa ; amax = a0 + δa

emin = e0 − δe ; emax = e0 + δe,
(3)

where a0 and e0 are the initial values of the semimajor axis and eccentricity, while
δa and δe are the sizes of the box in orbital elements where the partition will be
introduced. We chose δa = 0.1a1 and δe = 0.3 since these were typical amplitudes
found in initial runs for stable and bounded chaotic trajectories; however the results
were not very sensitive to changes in the limits. We used periodic boundary conditions
when one or both of the actions exceeded the limits of the box. This allowed us to follow
the evolution of the initial condition regardless the size of its excursion in semimajor
axis and/or eccentricity, while at the same time preserving an adequate resolution in
the case of very regular small-amplitude oscillations.

The plane of the actions was divided into a rectangular grid of r = ra × re cells.
In most of our runs we adopted ra = re = 400, leading to a total of 1.6×105 cells per
plane. Although we also did several tests with larger and smaller values, no large-scale
differences were found in the results. In the next section we will discuss the sensitivity
of the entropy and diffusion coefficient with r.

At any given time t of the integration, let us denote by N = t/h the number of
orbital points of a given trajectory γ, with h the output step. In our case, we chose
h = 10−2 years, corresponding to one-hundredth of the orbital period of the perturber.
We denote with nk the number of times γ fell in the k-th cell of the partition. We can
then calculate the Shannon entropy as (see for example Cincotta & Shevchenko 2019
for details):

S(γ,N) = lnN − 1

N

r∑
k=1

nk ln (nk), (4)

which in fact depends on the partition. It is simple to show that S presents to extreme
values; its minimum, S = 0, when nk = δik, that is all the action values lie in a single



Shannon Entropy Applied to the Restricted 3-Body Problem 9

cell, the i cell. On the other hand, when nk = N/r (ergodic motion) the entropy takes
its maximum, S = ln r.

In the case of a nearly ergodic orbit γe that cover r0 ≤ r cells, the distribution of
orbital points in the grid would present small deviations from the mean value N/r0
and it is possible to relate the entropy with occupied cells r0, by

S(γe, N) ' ln (r0)− r0
2N

R (5)

where R is a constant parameter that depends on the dynamics that defines the dis-
tribution of points. If the latter is Poissonian (completely random motion), R = 1. As
the number of points becomes much larger than the number of occupied cells, for any
chaotic trajectory γ, we may take S(γ,N) ≈ ln (r0) as an approximate value for the
entropy.

Figure 4 shows the normalized entropy, S/ ln r (left-hand plot) and the natural
logarithm of the number of occupied cells (right-hand frame). The color code employed
for each initial condition is the same defined in previous figure, where now the total
integration time was extended to T = 105 years. Each initial condition was represented
by an ensemble of Npart = 100 ghost particles distributed randomly in semimajor
axis and eccentricity around the nominal values a0 and e0 with a maximum range
∆a/a0 = ∆e = 10−7. The use of ensembles, as mentioned, smooths oscillations in the
orbital evolution due to microscopic changes in the starting values, as well as increasing
the number of orbital points per unit time. In fact, when working with ensembles the
value of N in expressions (4) and (5) should be replaced by N̄ = Npart ×N .

Since part of the original ensembles corresponding to chaotic orbits were ejected
from the system during the run, we re-introduced each eliminated body back into the
simulation with a new initial condition chosen within the spatial limits of the ensemble
as a reflection. Although this technique eliminates the possibility of following the orbital
evolution of individual particles, we found that it does not introduce any significant
noise in the estimations of the entropy while allowing for integrations well beyond the
typical escape time of any region of the phase space.

The behavior of both S and ln (r0) show similar general trends. After t ∼ 104

yrs, regular orbits associated to initial conditions (C1) and (C3) level off at maximum
values much smaller than ln (r) indicating that both the number of occupied cells and
the distribution of nk within them stabilized, the orbital points are confined to a small
region of the action space. The final values of ln (r0) is proportional to the libration
amplitude of each trajectory within the 2/1 MMR; a lower number corresponding to
(C1) initially near the pericentric branch, and a higher value in the case of the initial
condition (C3) close to the separatrix. In other words, the plateau observed for both
(C1) and (C3) are due to a motion in a distorted torus and indicative of regular
motion. In contrast, r0 for both chaotic orbits (C2) and (C4) continues growing until
saturating the partition near the end of the run. Since the distribution of the orbital
points is not uniform, the entropy S continues to increase even after the available cells
are completed.

These plots show three distinct timescales, one related to the synodic period ('
100−101 years), a second defined by the secular dynamics and with period of the order
of τg ∼ 103 years, plus a third timescale associated to chaotic diffusion and unrelated to
periodic motion. Regardless of the initial condition, for t� τg the amplitude of both a
and e are dictated by short-period perturbations and the trajectory remains relatively
confined to a small number of cells. However, as t→ τg, the large amplitude increase in
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Fig. 4: Left: Time evolution of the Shannon entropy calculated from ensembles of
Npart = 100 ghost particles around each initial condition (C1)-(C4). Right: Natural
logarithm of the number of occupied cells. Total integration time was extended to 105

years. All values are given in units of ln (r).

the eccentricity from secular perturbations becomes significant, and the entropy grows
accordingly reaching more or less constant slopes for t > τg. This behavior indicates
that the minimum time-span of the numerical integration must cover at least a few
secular periods of the system.

3.3 Estimation of the Diffusion Rates from the Variance

Numerical estimations of the rates of chaotic diffusion in the action plane may be
obtained studying the time evolution of the variance

Var(I) =
1

N̄

N̄∑
k=1

I2
k − µ2, (6)

where Ik ≡ I(tk) = [(a(tk)/a1)2 + e(tk)2]1/2 is the Euclidean metric covered by the
trajectory in the action plane, tk is its value at time t = tk, N̄ = Npart ×N and µ is
the average value at the same instant and, i.e.

µ =
1

N̄

N̄∑
k=1

Ik. (7)

Thus defined the variance includes both time and space average. Alternatively, it is
customary to compute the ensemble variance averaging over Npart instead of N̄ . As-
suming nearly normal diffusion, we can then estimate the diffusion coefficient Dvar as
the mean time derivative of the variance. Indeed, as it was discussed for instance in
Cincotta et al. (2018), in near-integrable Hamiltonians the variance of any fast action-
like variable for comparatively short motion times does not scale linearly with time
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and thus, the derivation of a diffusion coefficient in the standard way by means of a
linear fit in general does not work.

Figure 5 presents the results for the same numerical simulations described before.
The color code follows the same pattern as in previous figures. The left-hand frame
shows the time evolution of Var(I) for each initial condition. While the ensembles
associated to regular orbits yield variances that rapidly stabilize around values close to
zero, those corresponding to the highly chaotic ensembles exhibit monotonic growths.
The slopes, however, do not approach constant values for large integration times, but
seem to exhibit different speeds of diffusion at different time intervals. This behavior
could be related to temporary capture (stickiness) in high-order commensurabilities,
and thus representative of a diffusion that occurs in a phase space that is not free of
remnant structures. Even so, during the last few 104 years the curves of both (C2) and
(C4) show similar trends.

The middle plot shows the estimation of the diffusion coefficient 〈Dvar〉 where the
derivative of the variance was averaged over time. While the values for the regular orbits
tend to zero, those calculated for (C2) and (C4) appear to approach asymptotic values
of the order of 10−5 − 10−4, in units of 1/yr. In theory, the inverse of the diffusion
coefficient should be indicative of the time required by a certain initial condition to
change its actions by order of unity; in other words, the typical escape time from the
system. The histograms displayed in the right-hand graph shows the distribution of
the escape times of members of the chaotic ensembles obtained by a direct N-body
integration. Although both distributions are not equivalent, most of the ejection times
of particles from the system appears to take place between 104 − 105 years, thus
confirming, at least in the order-of-magnitude range, the values deduced from the
estimation of the diffusion coefficient.

3.4 Diffusion Rates from the Entropy

As discussed by Giordano & Cincotta (2018) and Cincotta & Shevchenko (2019), the
time evolution of the Shannon entropy S may be used to estimate the rate of chaotic
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diffusion along a given plane, for example the one defined by the orbital elements
(a, e). Given a number of orbital points N̄ such that r0/N̄ � 1, from (5) we can then
approximately relate the rate of change in S with r0 through

dS

dt
' 1

r0

dr0
dt
. (8)

This expression was derived in the above mentioned works assuming a nearly uniform
distribution of orbital points within the occupied cells of the partition. This condition
is expected to be a good approximation of the dynamics in the case of highly chaotic
trajectories, and provided the integration time is sufficiently long compared with the
timescales of the perturbations.

We next assume a direct relation between the variance Var(I) and the number of
occupied cells, such that

r0
r
' Var(I)

(Imax − Imin)2
, (9)

where (Imax− Imin) is the total interval of the action I observed for a given ensemble
during its dynamical evolution. Equation (9) simply states that the changes in the
orbital elements are proportional to the variation in the number of occupied cells,
where both quantities are proper normalized. The reader is referred to Giordano &
Cincotta (2018) and Cincotta & Shevchenko (2019) for a more detailed discussion.

Differentiating (9) with respect to time, we may write

d

dt
Var(I) =

(Imax − Imin)2

r

dr0
dt
' (Imax − Imin)2

r
r0
dS

dt
, (10)

where the last equality is obtained through approximation (8). In fact, after a series
of test runs, we have found that the time variation of the entropy is actually a better
indicator of diffusion than the derivative of r0. A probable explanation may lie in the
fact that an increase in the variance Var(I) is not only tied to the number of occupied
cells but also to the change in their population. The entropy S keeps track of both
these dynamical signatures, while r0 only detects the former.

Assuming nearly normal diffusion in action space we can relate the change of the
variance with time as δVar(I) ' Dδt, from which we can estimate the diffusion coef-
ficient as:

D ' Λr0
dS

dt
, (11)

where the scale-ratio Λ between action plane and partition is given by

Λ =
(Imax − Imin)2

r
. (12)

Note that Λ is not a constant parameter but a function of the dynamical evolution of
the system. Its magnitude is defined by the excursions of the given trajectory in the
action space during the numerical simulation as well as by the size of the partition.

Figure 6 shows the estimations of DS as a function of time for all four initial
conditions (C1) through (C4). The overall behavior displays a very good agreement
with Dvar presented in Figure 5, both for regular and for chaotic orbits. While the
values of DS for the chaotic initial conditions (C2) and (C4) remain more or less
constant, those corresponding to DS for (C1) and (C3) rapidly fall to values close to
zero, even for short integration times. Comparing these results with those of Dvar,
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Fig. 6 Estimation of
the diffusion coefficient
(dubbed DS) from the
averaged time derivative
of the Shannon entropy
as given by equation
(11).

they seem to indicate that diffusion estimates from Shannon entropy are possible even
from short-term integrations, a result that was already found in Giordano & Cincotta
(2018) for toy dynamical models.

The most noticeable difference between DS and Dvar may be the long-term trend
observed for the chaotic trajectories. While the diffusion coefficient estimated from
the variance seems to exhibit a secular growth in magnitude, the opposite occurs for
DS . Follow-up integrations extended to 106 years indicate that none of these indica-
tors reach constant or asymptotic values, but always display long-term fluctuations as
function of time. The amplitude of these fluctuations is more or less the same for both
indicators, limited between values of 10−5 and 10−4.

3.5 On the representative planes and ensembles

As we have already discussed, it seems not necessary to restrict the motion to any
representative plane to compute the entropy as it was done in Giordano & Cincotta
(2018). Indeed, the time-evolution of S given in Figure 4 allow us to understand the
global behavior of the entropy in this case. The growth of S up to the secular timescale
is primarily fueled by the long-period orbital variations, while the systematic increase
in the entropy observed for longer time-spans is caused by chaotic diffusion. In other
words, as long as the total integration time-spans least a few secular timescales, chaos
and diffusion should still be observable and possible to estimate in the plane of the
actions even without a reduction to any representative plane.

The other technical aspect we will analyze is the use of ensembles, where the dy-
namical evolution of a given initial condition is studied following the trajectory of
Npart ghost particles originally distributed in a very small region around the nominal
values. The adopted Npart depends on the system, but usually takes values between
102− 103 (e.g. Cincotta et al. 2014, Martí et al. 2016, Cincotta et al, 2018). The main
problem with ensembles is, once again, CPU time. The same computer time required
to integrate 100 ghost particles could be employed to extend the simulation of a single
initial condition by two orders of magnitude or, similarly, map a significant region of
the action space. We therefore wish to study how the calculation of the entropy depends
on Npart and whether working without ensembles leads to similar results.

Figure 7 compares estimations of the diffusion coefficient for (C1)-(C4) adopting
different number of particles Npart around each initial condition. Continuous curves
reproduce our previous results with 100 ghost particles while dashed lines present
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Fig. 7: Time evolution of the diffusion coefficient Dvar (left) and DS (right) for all four
initial conditions (C1)-(C4) and employing three different number of particles for the
ensembles. The case Npart = 1 corresponds to a single particle per initial condition.

results for Npart = 10. Finally, dotted lines show values obtained without the use of
ensembles.

The left-hand frame shows that the variance Var(I) appears to be extremely sensi-
tive to the number of ghost particles and no credible estimations are possible without
ensembles. This behavior is probably an indication that the phase space does not sat-
isfy the ergodicity condition: time averages are not equal to ensemble averages. In
particular for Npart = 1, only the time average is involved in the variance. Conse-
quently, estimations of the diffusion rate from the variance always seem to require
large ensembles.

A different story is observed in the right-hand plot, where the diffusion rate was
estimated from the Shannon entropy. While some dispersion is noted, particularly for
single particles in (C3) and (C4), the overall trends are preserved and the qualitative
nature of the dynamics appears to be correctly for all values of Npart. The case of (C4)
is particularly interesting. The rapid decrease in DS observed in the early stages of
evolution for Npart = 1 is related to the time spent by the particle inside the original
high-order MMR. The dynamics therefore appears regular and no significant diffusion
seems to take place. As the secular evolution drives the body beyond the limits of the
commensurability into the chaotic domain, the diffusion increases. The time-evolution
of DS after this point follows closely the behavior found using ensembles.

The results for (C4) raise the question whether the sensitivity observed in DS with
respect to Npart is due to an increasing inaccuracy of the diffusion coefficient with
smaller ensembles, or a reflection of local dynamical behaviors that are blurred when
following the evolution of finite (even very small) regions of the phase space. We will
address this issue in forthcoming sections by comparing the escape times predicted by
DS with long-term numerical simulations.

In any case, since the computed values of the entropy for a given trajectory only
depend on the calculation of the numerical measure of the elements of the partition,
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Fig. 8: Left: MEGNO chaos indicator (cutoff value equal to 100) for a set of 400
particles with initial conditions a/a1 ∈ [0.59, 0.67] and e = 0.4. Total integration time
was T = 105 years.Right: Light blue lines show the diffusion coefficientDS estimated
from Shannon entropy, while mean values (averaged over 5 neighboring points) are
depicted in dark green.

S as well as its time derivative should be almost insensitive to the use of ensembles
provided that N = t/h� r.

4 Initial Conditions in a Line Segment

Let us now consider a set of 400 initial conditions with semimajor axes a/a1 ∈
[0.59, 0.67] and eccentricity e = 0.4. All other orbital elements are the same as dis-
cussed previously. We numerically integrated this set for a total time-span of T = 105

years and calculated both the diffusion coefficient DS as determined from the entropy,
as well as the value of the MEGNO chaos indicator. Results are shown in Figure 8.

The left-hand frame shows the value of the MEGNO chaos indicator at the end of
the integration time. Values larger than 100 were set at that limit. Recall that regular
trajectories are associated with a MEGNO value about 2, indicated in the graph with a
horizontal dashed line. While initial conditions inside the 2/1 MMR libration domain,
located between a/a1 ' 0.62 and 0.64, appear regular, trajectories on either sides of
the commensurability are dominated by chaotic motion. As was observed in Figure 1,
the exterior region (a/a1 > 0.64) is characterized by the overlap of many high-order
resonances. All initial conditions with a/a1 & 0.65 seem to form a single region of
strong chaotic motion, with MEGNO reaching the maximum allowed value after only
a few 102 − 103 years. A different behavior is noted closer to the main separatrix,
as well as for initial conditions with a/a1 . 0.62. This region does not appear to be
dominated by a single connected chaotic sea, but by a series of smaller chaotic regions
separated by more regular trajectories.

These differences in MEGNO among nearby trajectories define whether the chaos
is local or global, and therefore affect the orbital instability. The right plot of Figure 8
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Fig. 9: Left: Estimation of the escape time τesc ' 1/DS as deduced from the values
of the unaveraged diffusion coefficients shown in the right-hand panel of Figure 8.
Right: Actual escape times, for the same initial conditions, obtained from an N-body
simulation of the exact equations of motion. Total integration time was set at T = 109

years (dashed horizontal orange line).

effectively shows that the region beyond a/a1 & 0.65 is associated to large and similar
values of DS , while much smaller values of the diffusion coefficient are obtained for
the rest of the line segment. This indicates that DS does not necessarily correlate with
the local value of the chaos indicator (e.g. MEGNO) even if the diffusion coefficient is
calculated without the use of ensembles. It thus promises a more reliable indicator of
global instability and not only of irregular motion.

Figure 9 now compares the predictions of the escapes times τesc ' 1/DS (left),
for the same 400 initial conditions with numerical integrations of the exact equations
of motion (right) for a significant fraction of the initial conditions (those for which
the black dots are depicted in the figure). In the N-body simulations the escape time
was defined as the moment in which the trajectory satisfied any one of the following
conditions: (i) eccentricity equal or larger than unity (e ≥ 1), (ii) semimajor axis
a larger than twice that of the perturber, (iii) semimajor axis smaller than 0.1a1,
(iv) minimum approach to the planet closer than one-tenth of its Hill radius, or (v) a
physical collision with either m0 or m1.

Total integration time for each initial condition was set to T = 109 years (orbital
periods of the primary). For comparison, if the system were to represent a perturber
placed in the orbit of Jupiter, the time-span covered by the simulation would be larger
than the age of the Solar system. Trajectories that remained bounded at the end of the
integration are identified with black circles set at t = 109 years. The orange horizontal
dashed line in both plots aids helps to visualize which initial conditions have instability
times detectable with the simulations.

In so far integrations have proceeded, we find a very good overall agreement be-
tween τesc and the N-body instability timescales, not only qualitatively but also quanti-
tatively. The dispersion observed between close-by initial conditions is also very similar
in both cases, lending credibility to our proposition that the differences in the valuesDS
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calculated with and without ensembles could be (at least partially) due to small-scale
structures in the phase space.

In the outer circulation domain of the 2/1 MMR (a & 0.65), the diffusion coeffi-
cients estimated with Shannon entropy yield instability timescales of the same order as
those found from N-body simulations, even though these correspond to three orders of
magnitudes the integrations times employed for the calculations of DS (i.e. 105 years).
Conversely, in the inner circulation domain (a . 0.62), the use of resurrected initial
conditions has allowed us to correctly identify very short instability times, even extend-
ing the calculation of the entropy to the full 105 years. Again, the N-body simulations
shows a very good agreement with the model.

5 Application to Other Configurations

So far we have concentrated solely on the behavior of initial conditions in the vicinity
of the 2/1 mean-motion resonance, considering a perturber with mass similar to that
of Saturn. In this section we will explore larger perturbers and other configurations.

5.1 The 2/1 MMR with a Jupiter-mass Perturber (m1 = mJup)

We begin increasing the perturbing body to a Jupiter mass (m1 = mJup) but preserv-
ing its orbit (i.e. a = 1 = 1 AU and e1 = 0.05). Since the extension of the 2/1 MMR is
broader, we will consider initial conditions for the particles in the range a ∈ [0.59, 0.67]
AU and eccentricities e = 0.3. The top left-hand frame of Figure 10 shows, in broad red
lines, the inner and outer separatrix of the 2/1 MMR. We will analyze the dynamical
evolution of 400 particles with initial conditions a ∈ [0.59, 0.67] AU, as shown with
the horizontal dashed black line.

The MEGNO chaos indicator over the total time-span is presented in the top right-
hand graph. The broad light red vertical lines mark the location of the outer (left) and
inner (right) branches of the separatrix. Comparing these results with those obtained
for less massive perturbers (see Figure 8), we again obtain an extended chaotic sea
beyond in the inner separatrix, but also a broader stochastic region inside branch of
the separatrix itself. Conversely, the non-resonant domain inside of the outer separatrix
now appears, in general, less chaotic and more interlaced with regular trajectories. It
thus seems that, at least inward of the libration domain, the lower eccentricity of the
initial conditions leads to more regular behavior, even with a larger perturbing mass.

The distribution of the inverse of the diffusion coefficients (i.e. 1/DS), shown in the
lower left-hand frame, tell a similar story. Shannon entropy predicts very fast instability
times, of the order of ∼ 103−104 years, for initial conditions with a & 0.66, and much
longer ejection times on the other side of the main resonance. Inside the libration
domain, most of the trajectories appear long-lived except for those in the vicinity of
both branches of the separatrix.

The N-body simulations for some of the 400 initial conditions (bottom right-hand
plot) appear very close to the predictions of our model.
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Fig. 10: Top Left: Broad red curves show the outer and inner separatrix of the 2/1
MMR in the semimajor axis and eccentricity plane, considering all angles equal to zero.
The horizontal dashed black line marks the location of the initial conditions analyzed
in the other plots. Top Left: MEGNO chaos indicator (cutoff value equal to 100)
for a set of 400 particles with initial conditions with e = 0.3. Total integration time
was T = 105 years. Bottom Left: As with the left-hand plot in Figure 9, light blue
circles show the estimated escape times 1/DS calculated from the Shannon entropy.
Bottom Right: Actual instability times τesc obtained from N-body simulations with
integration time T = 109 years.

5.2 The 3/2 MMR with a Saturn-mass Perturber

For the final application of Shannon entropy, we return to the smaller perturbing
mass (m1 = 2.5 × 10−4m0 but shift the set of particles closer to the perturber up
to the vicinity of the 3/2 MMR. We thus again analyzed the dynamical evolution of
400 initial conditions, this time with eccentricities e = 0.2 and semimajor axis in the
interval a ∈ [0.7, 0.83]. The top left-hand plot of Figure 11 depicts this set as a black



Shannon Entropy Applied to the Restricted 3-Body Problem 19

0.70 0.72 0.74 0.76 0.78 0.80 0.82

semimajor axis [a1]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

esep 3/2 MMR
4/3 MMR

0.70 0.72 0.74 0.76 0.78 0.80 0.82

semimajor axis [a1]

0

20

40

60

80

100
MEGNO

0.70 0.72 0.74 0.76 0.78 0.80 0.82

semimajor axis [a1]

102

103

104

105

106

107

108

109

1010

1011

1012

1/DS

0.70 0.72 0.74 0.76 0.78 0.80 0.82

semimajor axis [a1]

102

103

104

105

106

107

108

109

1010

1011

1012

τesc

Fig. 11: Same as previous figures, but for initial conditions around the 3/2 MMR and
adopting a perturber with mass m1 = 2.5× 10−4m0.

horizontal dashed line in the (a, e) plane, while both branches of the separatrix of the
3/2 MMR are shown in dark red. These curves were calculated using a semi-analytical
model (e.g. Ramos et al. 2015) and results were truncated before reaching the collision
curve.

The outer edge of the interval of semimajor axis for the particles was chosen to reach
the 4/3 mean-motion resonance, whose separatrix is also included in the plot (light
brown curve). It will prove interesting how this near-overlap will affect the instability
of the trajectories in their neighborhood. The distribution of MEGNO, shown in the top
right-hand frame, indicates that the this region is completely immersed in a chaotic sea,
with the exception of initial condition beyond a & 0.82 that seem located in a regular
island deep within the 4/3 MMR. The same is observed inside the libration domain
of the 3/2 resonance, while, again, below a . 0.73 trajectories exhibit a complex
alternation between chaotic and more regular motion.



20 C. Beaugé and P.M. Cincotta

The inverse of the diffusion coefficients, shown in the lower left-hand panel, translate
chaoticity to estimations of the instability times. The region associated to the partial
overlap between the 3/2 and 4/3 MMRs shows very fast escapes times, of the order
of 104 years, while much more stable trajectories are obtained inside both libration
lobes. Finally, the non-resonant region inside of the 3/2 resonance shows intermediate
values, with large instabilities close to the outer separatrix, while leading to longer
escape times farther from the commensurability.

The N-body simulations for some initial conditions are shown in the lower right-
hand plot, and again the estimations of τesc given by 1/DS appear consistent with the
predictions.

6 Conclusions

We have presented a series of applications of Shannon entropy as a numerical tool with
which to estimate the diffusion coefficient and instability times of chaotic trajectories
in the restricted three-body problem. We analyzed both resonant and non-resonant
initial conditions in the vicinities of the 2/1 and 3/2 interior mean-motion resonances,
and compared the results with direct N-body simulations.

In general, we have found very good agreements between our estimations and direct
numerical results, even in cases where the actual instability times are several orders
of magnitude longer than the integrations necessary for the entropy-based diffusion
coefficients.

More interesting is the fact that the computational effort to calculate the Shannon
entropy is much smaller than the one required for estimating the diffusion rate by
means of the variance of the action-like variables, since we have shown that ensembles
of initial conditions are not necessary required.

The results here obtained together with those presented in Giordano & Cincotta
(2018) suggest that the entropy would become an effective alternative to estimate a
diffusion coefficient. In fact, a combination of different tools would provide a natural
way to investigate the dynamics of dynamical systems. Indeed, the phase space struc-
ture could be displayed by some fast chaos indicator as the MEGNO or similar, that
tells us about the location of resonances and their associated stable and unstable man-
ifolds, chaotic regions and small stability domains embedded in the chaotic sea. But
since chaos indicators are in principle unable to distinguish between stable or unsta-
ble chaos, the entropy could be computed in the chaotic domains in order to get an
estimate of the time-scale of the unstable motion.

Acknowledgements Most of the calculations necessary for this work were carried out with
the computing facilities of IATE/UNC as well as in the High Performance Computing Center of
the Universidad Nacional de Córdoba (CCAD-UNC). This research was funded by CONICET,
Secyt/UNC and FONCYT.

The authors have no conflict of interest to declare.



Shannon Entropy Applied to the Restricted 3-Body Problem 21

References

1. Arnold, V. I. 1964. On the nonstability of dynamical systems with many degrees of freedom.
Soviet Mathematical Doklady 5, 581.

2. Batygin, K., Laughlin, G. 2008. On the dynamical stability of the Solar System. Astro-
physical Journal, 683, 1207.

3. Batygin, K., Deck, K.M., Holman M.J. 2015. Dynamical evolution of multi-resonant sys-
tems: The case of GJ876. AJ, 149, 167.

4. Broer, H. 2004. KAM theory: The legacy of Kolmogorov’s 1954 paper. Bulletin of the
American Mathematical Society, 41, 507.

5. Celetti, A., Chierchia, L. 2006. KAM stability for the three body problem of the Solar
System. Journal of Applied Mathematics and Physics, 57, 33.

6. Chirikov, B. V. 1979. A Universal instability of many-dimensional oscillator systems.
Physics Reports, 52, 263.

7. Cincotta P.M., Simó, C. 2000. Simple tools to study global dynamics in non-axisymmetric
galactic potentials - I. Astronomy & Astrophysics Supplement Series, 147, 205-228.

8. Cincotta, P. M., Giordano, C. M., Simó, C. 2003. Phase space structure of multi-
dimensional systems by means of the mean exponential growth factor of nearby orbits.
Physica D, 182, 11.

9. Cincotta, P. M., Giordano, C. M. 2016. Theory and Applications of the Mean Exponential
Growth Factor of Nearby Orbits (MEGNO) Method. Lecture Notes in Physics, 915, 93.

10. Cincotta P.M., Efthymiopoulos C., Giordano C.M., Mestre M.F. 2014. Chirikov and
Nekhoroshev diffusion estimates: Bridging the two sides of the river. Physica D: Nonlinear
Phenom., 266, 49-64.

11. Cincotta, P.M., Giordano, C.M. 2018. Phase correlations in chaotic dynamics: a Shannon
entropy measure. CeMDA, 130, 74.

12. Cincotta, P.M., Shevchenko, I.I. 2019. Correlations in area preserving maps: A Shannon
entropy approach. Physica D, in press.

13. Duncan, M. J. 1993. Long term dynamical evolution of the Solar System. Anual Review
of Astronomy and Astrophysics, 31, 265.

14. Froeschlé, C., Guzzo, M., Lega, E. 2005. Local And Global Diffusion Along Resonant Lines
in Discrete Quasi-integrable Dynamical Systems. CeMDA, 92, 243.

15. Giordano, C.M., Cincotta, P.M. 2018. The Shannon entropy as a measure of diffusion in
multidimensional dynamical systems. CeMDA, 130, 35.

16. Gladman, B. 1993. Dynamics of systems of two close planets. Icarus, 106, 247.
17. Guzzo, M. 2005. The web of three-planet resonances in the outer Solar System. Icarus,

174, 273.
18. Hénon, M., Petit, J-M. 1986. Series expansion for encounter type solution of Hills problem

CeMDA, 38, 67.
19. Lecar, M., Franklin, F., Murison, M. 1992. On predicting long term instability: A relation

between the Lyapunov time and sudden orbital transition. AJ, 104, 1230.
20. Lecar, M., Franklin, F., Holman, M.J., Murray N, J. 2001. Caos in the Solar System.

Annual Review of Astronomy and Astrophysics, 39, 581.
21. Lega, E., Froeschlé, C., Guzzo. 2008. Diffusion in Hamiltonian quasi-integrable systems.

Lecture Notes in Physics, 729 29.
22. Laskar, J. 1989. A Numerical experiment on the chaotic behavior of the Solar System.

Nature, 338, 237.
23. Laskar, J. 1990. The chaotic motion of the Solar System. A numerical estimate of the size

of the chaotic zones. Icarus, 88, 266.
24. Laskar, J. 1996. Large scale chaos and marginal stability in the Solar System. CeMDA,

64, 115.
25. Laskar, J. 2013. Is the Solar System stable?. Chaos, 66, 239.
26. Levison, H. F., Shoemaker, E.M., Shoemaker, C.S. 1997. Dynamical evolution of Jupiter’s

Trojan asteroids. Nature, 385, 44.
27. Lichtemberg, A.J., Liberman, M.A. 1983. Regular and Chaotic Dynamics. Springer, New

York.
28. Martí, J.G., Cincotta, P.M., Beaugé, C. 2016. Chaotic diffusion in the Gliese-876 planetary

system. MNRAS, 460, 1094-1105.
29. Maffione, N.P., Gómez, F.A., Cincotta, P.M., Giordano, C.M., Grand, R. J. J., Marinacci,

F., Pakmor, R., Simpson, C. M., Springel, V., Frenk, C. S. 2018. On the relevance of chaos
for halo stars in the solar neighbourhood II. MNRAS, 478, 4072.



22 C. Beaugé and P.M. Cincotta

30. Milani, A., Nobili, A. M., An example of stable chaos in the Solar System, Nature, 357,
569.

31. Ramos, X.S., Correa-Otto, J.A., Beaugé, C. 2015. The resonance overlap and Hill stability
criteria revisited. CeMDA, 123, 452-479.

32. Robutel, P., Gabern, F. 2006. Resonant structure of Jupiter’s Trojan asteriods -I. Long
term stability and diffusion. MNRAS, 372, 1463.

33. Simó, C., Stuchi, T. 2000. Central stable/unstable manifolds and the destruction of KAM
tori in the planar Hill problem. Physica D, 140, 1.

34. Tsiganis, K., Varvoglis, H., Dvorak, R. 2005. Chaotic diffusion and effective stability of
Jupiter’s Trojans. CeMDA, 92, 71.

35. Wisdom, J. 1980. The resonance overlap criterion and the onset of stochastic behavior in
the restricted three-body problem. AJ, 85, 1122-1133.


	1 Introduction
	2 The 2/1 Mean-Motion Resonance
	3 Individual Runs
	4 Initial Conditions in a Line Segment
	5 Application to Other Configurations
	6 Conclusions

