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3Abdus Salam International Centre for Theoretical Physics,
Associate Scheme, Strada Costiera 11, 34151, Trieste, Italy

We study the effects of an in-plane Dzyaloshinskii-Moriya interaction under an external magnetic
field in the highly frustrated kagome antiferromagnet. We focus on the low-temperature phase
diagram, which we obtain through extensive Monte-Carlo simulations. We show that, given the
geometric frustration of the lattice, highly non trivial phases emerge. At low fields, lowering the
temperature from a cooperative paramagnet phase, the kagome elementary plaquettes form non-
coplanar arrangements with non-zero chirality, retaining a partial degeneracy. As the field increases,
there is a transition from this “locally chiral phase” to an interpenetrated spiral phase with broken
Z3 symmetry. Furthermore, we identify a quasi-skyrmion phase in a large portion of the magnetic
phase diagram, which we characterize with a topological order parameter, the scalar chirality by
triangular sublattice. This pseudo-skyrmion phase (pSkX) consists of a crystal arrangement of three
interpenetrated non-Bravais lattices of skyrmion-like textures, but with a non-(fully)-polarized core.
The edges of these pseudo-skyrmions remain polarized with the field, as the cores are progres-
sively canted. Results show that this pseudo-skyrmion phase is stable up to the lowest simulated
temperatures, and for a broad range of magnetic fields.

PACS numbers:

I. INTRODUCTION

Magnetic skyrmions are topological vortex-like spin
structures where the spins point in all directions wrap-
ping a sphere1. In particular, in the last years, the
Skyrmion crystal (SkX) phases have triggered a huge in-
terest because of their important role in the electronic
transport in conection with technological application
devices2. The most simple situation where such SkXs
are stabilized correponds to the ferromagnetic systems in
a magnetic field including Dzyaloshinskii-Moriya (DM)
interactions3? –9. Also, it has been shown in numer-
ous works that the SkX’s can be induced by competing
interactions in ferromagnetic and mixed ferro/antiferro-
magnetic systems10,11. Finally, the presence of local
anisotropies can stabilize different skyrmion-like crystal
phases under a magnetic field, which lead to merons-like
structures in metastable states12.

In this direction, the search for new systems with
skyrmions phases in a wide range of magnetic field and
temperature is an central issue in the field of topological
magnetic materials. One ingredient that may play a cen-
tral role in this topic is the magnetic frustration, which in
many cases, is associated with exotic spin orders having
non-collinear or non-coplanar spin structures.

Recently, the emergence of skyrmion textures has been
actively explored in frustrated lattices13–18. In fact, in a
previous work (see Ref. [14]), some of the authors (see
also Ref. [18]) have shown that in the antiferromagnetic
triangular lattice the competition between nearest neigh-
bor exchange couplings and an in-plane DM interaction
gives rise to a low temperature stable topological phase

for a range of magnetic fields. This phase is character-
ized by three interpenetrated skyrmion crystals, one by
sublattice.

In this context, the highly frustrated kagome antiferro-
magnet provides an alternative arena for studying emer-
gent phenomena in magnets of strong frustration. A cru-
cial point of the antiferromagnetic kagome lattice is its
high degeneracy. This feature, combined with the chiral
anisotropy induced by the DM interaction could induce
different types of topologically non trivial phases. In the
last years, materials with in- and out-of-plane DM inter-
actions with an antiferromagnetic kagome structure have
been thoroughly studied, for example by P. Mendels et
al (Herbermisthite)19, B. Canals et al (Fe- and Cr-based
jarosites, etc.)20 (for a review see Ref.[21]). Last but
not least, the possibility to generate a DM interaction in
ultrathin films with perpendicular magnetic anisotropy
in multilayer structures leads to the emergence of inter-
facial non-collinear spin textures (skyrmions and chiral
domain walls) induced by DM interactions in such mag-
netic films22,23.

A key question that arises is what is the role of the
magnetic frustration and hugh degeneracy in the forma-
tion of skyrmion spin textures. Motivated by this, we
consider the inclusion of a specific DM interaction in the
pure antiferromagnetic Heisenberg model on the kagome
lattice and study the consequences of the combination
of high degeneracy, thermal fluctuations and anisotropic
interactions. In particular, we explore the possibility of
skyrmion-like textures in the proposed model.

We show that, under the action of an external mag-
netic field, there are a number of different exotic low-
temperature phases: at low non-zero magnetic field a
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phase without global order, reminiscent of the pure
Heisenberg model in the kagome lattice, but formed by
clusters with non-zero local chirality, is stabilized. Then
increasing the magnetic field, it leads to a tree-sublattice
order with broken sublattice symmetry. For a larger
magnetic field, a three sublattice pseudo-skyrmion crys-
tal (pSkX) structure is established with the particularity
that the hidden pSkX magnetic order appear in a non-
Bravais sublattice. The emergent pseudo-skyrmion unit
structures do not fully wrap the sphere, but can be distin-
guished with the help of another topological parameter,
the sublattice chirality. These pseudo-skyrmion struc-
tures have a remarkable feature: instead of being the
result of overlapping skyrmions, with a fully polarized
core and a radius smaller than the separation between
them, as in12, here the rims are completely polarized in
the direction of the external field while the cores are not.
In fact, these cores get canted as the field increases.

The rest of the manuscript is organized as follows: in
Section II we present and discuss the Heisenberg model
on the kagome lattice including the DM interaction and
the Zeeman coupling to an external magnetic field. In
Sec. III we study the proposed model through exten-
sive Monte Carlo simulations and examine the different
phases stabilized by the Zeeman coupling, focusing on
the topological pSkX. Conclusions are presented in Sec.
IV.

II. MODEL

We consider an antiferromagnetic Heisenberg model on
the kagome lattice, with in-plane DM interaction, im-
mersed in a magnetic field. The Hamiltonian is given
by

H = J
∑
〈i,j〉

Si · Sj + Dij · (Si × Sj)− h
∑
j

Szj (1)

where the magnetic moments Si are three-component
classical unit vectors at site ri, 〈i, j〉 indicates the sum
over nearest neighbor sites, and J > 0 is the antiferro-
magnetic exchange coupling. The DM interaction is de-
fined by Dij = D δr̂ij , where δr̂ij = (ri−rj)/|ri−rj | is a
unitary vector pointing along the nearest-neighbor bonds
as shown in Fig. 1. This implies that this interaction is
constrained to the kagome plane, perpendicular to the ex-
ternal magnetic field h = hẑ. This choice of DM interac-
tion proves to be adequate to develop Skyrmion phases in
both ferromagnetic and antiferromagnetic systems14. In
this work, without loss of generality, we fix D/J = 0.2, a
value of D/J that induces magnetic structures with sizes
compatible with the systems size of the simulations.

The case D = 0 has been widely studied in the last
decades24–32. It is well known that the antiferromagnetic
Heisenberg model for classical spins in the kagome lattice
presents a rich phenomenology due to its high degener-
acy. In zero field, magnetic moments form a infinitely

FIG. 1: (Color online) kagome lattice. The labels 1, 2, 3
indicate the three sublattices (dashed blue line indicates the
unit cell). Small (green) arrows are Dzyaloshinskii-Moriya
vectors Dij , Djk and Dik involved in the sites (labeled as)
i, j, k.

degenerate 120◦ spin-structure. Over the last few years,
much effort has been devoted to study the mechanisms or
interactions that can lift this degeneracy and the conse-
quent emergence of non-trivial phases. One of these well
known effects is that due to the inclusion of thermal fluc-
tuations, the system goes from a paramagnetic (at high
temperaure) to a cooperative paramagnetic phase24,29;
while at low temperature the order-by-disorder mecha-
nism selects a submanifold of coplanar states. A mag-
netic field partially relieves this degeneracy, and state
selection by thermal fluctuations is still at play. Thermal
fluctuations stabilize two coplanar states at finite fields
with different symmetries. At very low temperature, each
type of coplanar state can be studied through multipolar
order parameters29. The inclusion of further neighbor ex-
change couplings can select and induce different magnetic
orders33–35. Furthermore, the addition of an out-of-plane
DM interaction favors a q = 0 non-coplanar state36

Due to the competition between the antiferromagnetic
exchange J which favors the coplanar configurations,
and the in-plane DM interaction which favors the helical
phases, we expect that the combination of these to terms
results in a rich variety of chiral configurations which will
be presented in the next section.

III. MONTE CARLO SIMULATIONS AND
PHASE DIAGRAM

To explore the low temperature behavior of the model
presented in the previous section, we resort to Monte
Carlo simulations. We use a combination of the Metropo-
lis algorithm and the overrelaxation method, doing mi-
crocanonical updates, and lowering the temperature in
an annealing scheme. We performed our simulations in
3 × L2 site clusters, L = 36 − 60, with periodic bound-
ary conditions. 105−106 Monte Carlo steps (MCS) were
used for initial relaxation, and measurements were taken
in twice as much MCS.
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FIG. 2: (Color online) Magnetization curves vs external
field h/J for L = 60 lattice size, at T/J = 2× 10−2. Average
Magnetization 〈M〉 (blue open circles), Magnetization mod-
ulus |M | (green open triangles), susceptibility χM = dM/dh
(yellow open squares). The black arrows indicate four fea-
tures in these curves. The value of the fields where these
feature emerge, the critical fields, hc1, hc2, hc3, are indicated
by dashed lines. The critical field hc4 correspond to the sat-
uration field where all the spins are polarized.

As a first approach to identify and characterize the dif-
ferent low temperature phases, we first inspect the stan-

dard quantities: namely, specific heat Cv = 〈E2〉−〈E〉2
NT 2 ,

magnetization M = 1
N 〈
∑
i S

z
i 〉, absolute value of the

magnetization |M | = 1
N 〈
∑
i |Szi |〉 and magnetic suscep-

tibility χM =
〈
dM
dh

〉
.

In Fig. 2 we show typical curves of magnetization M ,
its absolute value |M | and the susceptibility χM as a
function of the magnetic field at T/J = 2 × 10−3. We
can identify four features in these curves, indicated by
vertical arrows in the figure: a bump in |M | at hc1/J ∼
1.5, a peak in the susceptibility which matches a change
in the behavior of |M | at hc2/J ∼ 2.1 and a second peak
in χM at hc3/J ∼ 4.4. The last feature at the critical field
hc4 ∼ 5.7, indicates the transition to the state completely
polarized with the magnetic field. To obtain valuable
information on the nature of each phase we compute the
static spin structure factor Sq in the reciprocal lattice to
identify the Bragg peaks that characterize the different
spin-textures.

The components S⊥q and S
‖
q, perpendicular and paral-

lel to the external field respectively, are defined as:

S⊥q =
1

N
〈|
∑
i

Sxi e
iq·ri |2 + |

∑
i

Syi e
iq·ri |2〉 (2)

S‖q =
1

N
〈|
∑
i

Szi e
iq·ri |2〉 (3)

In Fig. 3 we show representative snapshots (top) and
the corresponding structure factors S⊥q (bottom) of the
low temperature phases as a function of the external mag-
netic field. In the S⊥q plots, the first Brillouin zone (1BZ

drawn with solid lines) and the extended Brillouin zone
(EBZ drawn with dashed lines) are indicated. By inspec-
tion of Fig. 3 we find:

• For very low magnetic fields h < hc1, the magnetic
structure retains some of the degeneracy present for
the case D = 0 and h = 0. From a typical snap-
shot, it can be seen that elementary triangles form
out of plane structures. Six bright peaks emerge
around every high-symmetry point Me in the spin
structure factor as is shown in Fig. 3(D). Half of
these points (18 in total) are inside the extended
Brillouin zone (EBZ).

• For slightly higher fields hc1 < h < hc2, the Zee-
man coupling induces a striped/spiral-like struc-
ture, with single-q peaks in the Me region of the
EBZ, Fig. 3(E).

• In a broad region of intermediate magnetic fields
hc2 < h < hc3 a non trivial swirling structure
emerges (see Fig. 3(C)). Visually, it is reminis-
cent of the interpenetrated skyrmion phase AF-SkX
found in the triangular antiferromagnetic lattice14.
In the structure factor, 12 peaks emerge in the
EBZ, indicating a triple-q structure, which may be
a hint of a hidden skyrmion-like texture.

Now, we proceed to further explore and characterize in
detail these low temperature phases.

A. Lower h/J multi-q states

At low external field, h < hc1, there is an interesting
behavior of the system with temperature. At T/J >
0.03, the system seems to be in a copperative paramagnet
(CP) phase. This is illustrated in the structure factor,
presented in the bottom panel of figure Fig. 4 showing
similar behaviour to that obtained for the pure kagome
antiferromagnet in the CP phase28. It is characterized
by the presence of “pinch points” in the Me points of
the EBZ, which are the signature of a classical algebraic
spin liquid37,38. The CP and low temperature phases are
separated by a phase transition at T/J ≈ 0.03, where the
specific heat exhibits a peak (top panel of Fig. 4).

However, these low temperature phases at low mag-
netic field do not show a clear periodic magnetic struc-
ture. As we mentioned before, although no clear order
is seen, it is evident that there are numerous unit trian-
gles where the spins are arranged in a non-coplanar way,
with different orientations. This is most clearly shown
inspecting the nearest neighbor scalar chirality per pla-
quette χijk defined as:

χijk = Si · (Sj × Sk) (4)

where labels i, j, k indicate the positions ri, rj , rk of each
of the three spins of every elementary triangular plaque-
tte of the triangular lattice. In order to analyze the local
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FIG. 3: (Color online) Snapshots of the spin textures and the corresponding structure factors for L = 42, D/J = 0.2,
T/J = 2 × 10−3. As the external magnetic field increases different structures can be identified. For this plot we select one
h/J value in representation of each phase: the locally chiral phase at h/J = 0.8 (A and D panels); interpenetrated spirals at
h/J = 1.8 (B and E panels), and pseudo-skyrmion crystal at h/J = 2.8 (C and F panels).

distribution of the nearest neighbor scalar chirality in
the plaquettes, we plot a histogram of the local values
of χijk obtained from snapshots of a L = 60 lattice, at
T/J = 2 × 10−3, for h/J = 0.4, 0.8, in Fig. 5. For a
perfect translational invariant chiral state, a strong peak
at a given value of χijk is expected. However, in this
phase the values of χijk are widely spread, confirming
the non-coplanar nature of the low temperature phases
at low fields.

Due to the lack of periodicity of the magnetic struc-
ture, it is not possible to make a direct connection be-
tween the real space configuration and spin structure fac-
tor in the reciprocal space (Fig. 3A and Fig. 3D repre-
sent a typical spin texture and the structure factor S⊥q
respectively). To further study this phase, we introduce
what we call the “spherical snapshot”: it shows the val-
ues of the spins in the sphere where each point represents
the tip of the spin centered at the origin, and the three
axis correspond to the three components of the spins.
This representation is a very useful tool in order to iden-
tify features of the spin configuration since it allows to
differenciate the sublattices in a same plot and to com-
pare, qualitatively, the spin textures between similar or
different phases. In the top panel of Fig. 6 we show
the spherical snapshots for h/J = 0.8. Each color in-
dicates the spins of each of the three triangular sublat-

tices of the kagome lattice (see Fig.1). Clearly, there is
a symmetric distribution of the spin values in the three
sublattices. This is consistent with the symmetric peak
distribution in the structure factor. Interestingly, even
though the inclusion of a small in-plane DM interaction
induces the emergence of non-coplanar arrangements, it
is not enough to completely lift the degeneracy at low
magnetic fields, leading to this “locally chiral” phase.

B. Spiral phase - hc1 < h < hc2

As the magnetic field increases, an interesting behav-
ior is found at low temperatures. For magnetic fields
hc1 < h < hc2, coming from the “locally chiral” phase de-
scribed above, a spiral-like texture emerges, where there
is a clear real-space splitting in the three triangular sub-
lattices. This is shown in the spherical snapshot pre-
sented in the bottom panel of Fig. 6. The arrangement
is not symmetric: two of the sublattices are described
by the same modulation with different wave vector ori-
entation and the Sz component takes all values of the
unitary sphere. In the remaining sublattice (indicated by
blue points), the Sz components are restricted to positive
values, with an additional modulation. Clearly, which
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FIG. 4: (Color online) Top: Specific heat as a function of
temperature for: low magnetic field at h/J = 0.5 (yellow
open squares), spiral at h/J = 1.6 (green open triangles) and
pSkX at h/J = 2.7 (blue open circles). Bottom: structure
factor obtained from Monte Carlo simulations at temperature
T/J = 8× 10−2, h/J = 0.5, for D/J = 0.2.

FIG. 5: (Color online) Histogram of the nearest neighbor
chirality χijk per triangular plaquette, for two snapshots at
T/J = 2 × 10−3, L = 60, h/J = 0.8 (red) and h/J = 0.4
(blue).

FIG. 6: (Color online) Spherical snapshot at T/J = 2 ×
10−3, for “locally chiral” phase at h/J = 0.8 (top panel) and
the spiral phase at h/J = 1.8 (bottom panel). Each color
indicates a different triangular sublattice. The right column
is the top view of the spherical snapshot.

sublattice is arranged in which way depends on the MC
realization as can be observed from the structure factor
presented in Fig. 3(E), which corresponds to a partic-
ular MC realization. However, the symmetry would be
restored when averaging on several realizations, as we
have checked. This simple analysis based in the inspec-
tion of the spherical snapshot suggests that there is a
sublattice symmetry-breaking induced by the magnetic
field. To further explore this, and to detect the sponta-
neous sublattice symmetry breaking, we introduce a Z3

complex order parameter φtot defined as:

φ4 = Sz1 + wSz2 + w2Sz3

φtot =

∣∣∣∣∣∣ 1

L2

∑
4

φ4

∣∣∣∣∣∣ (5)

where w = exp(i 2π/3) and Szα is the z component of the
spins in each of the three triangular sublattices, indicated
with α = 1, 2, 3, shown in Fig. 1.

In Fig. 7 we show this parameter φtot as a function of
the external magnetic field at T/J = 2× 10−3 for lattice
size L = 60. It can be seen that this parameter is non-
zero only on this spiral-like phase, where the symmetry
between sublattices is broken. This feature is stable with
the system size as can be seen in the inset in Fig. 7
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FIG. 7: (Color online) Order parameter φtot as a function
of the external magnetic field at T/J = 2 × 10−3, L = 60.
Nonzero values of φ indicates the sublattice magnetization
is not the same for each sublattice. Inset: φtot vs T/J at
h/J = 1.8 for L = 48, L = 54 and L = 60.

(φtot as a function of temperature for h/J = 1.8 and
L = 48, 54, 60).

C. Antiferromagnetic pseudo-skyrmion crystal

For hc2 < h < hc3, at low temperatures a highly non
trivial chiral phase emerges, associated with a spin tex-
ture formed by a particularly intricate three-sublattice
splitting, that we call pseudo-skyrmion crystal (pSkX),
very similar to the one found in the antiferromagnetic
triangular lattice14. In the triangular lattice case, the
hidden skyrmion texture can be revealed by splitting the
system in three interpenetrated sublattices: in each sub-
lattice a topological skyrmion crystal SkX is stabilised.

In the kagome lattice case, the “pseudo-skyrmion”
name is due to the fact the these structures are simi-
lar to skyrmions, but their center is not fully polarized.
As an example a typical snapshot is shown in Fig. 3 (C).

However, in the model considered here, albeit its sim-
ilarities with the one proposed for the antiferromagnetic
triangular lattice, the picture is not that simple. For the
kagome lattice, there are also three interpenetrated sub-
lattices of pseudo-crystals, but these are not the three
triangular sublattices constructed from the three sites
in the unit cell of kagome lattice. In Fig. 8 (top) we
isolate one such pseudo-skyrmion from different sublat-
tices at h/J = 2.6. A pseudo-skyrmion is formed by an
hexagon of spins joined by second nearest neighbor bonds
at the center, and it radially increases along third near-
est neighbor bonds. The third-nearest neighbors form
the three triangular sublattices of the kagome lattice.
Spins belonging to each type of sublattice in the pseudo-
skyrmions are highlighted in the top panel of Fig. 8.
Then, one way to extract information about the hid-
den structure is through the total third-nearest neigh-
bors scalar chirality per site (i.e. the sublattice chirality)

defined as:

χn3 =
1

8πN

3∑
α=1

〈
N/3∑
m=1

χ(α)
mpq

〉
(6)

where χ
(α)
mpq is the local sublattice chirality, defined as Eq.

(4) but taking the three spins m, p, q in elementary tri-
angles in the triangular sublattices of the kagome lattice,
α = 1, 2, 3. In Fig. 8 (bottom) we plot this parameter as
a function of the magnetic field in for T/J = 2 × 10−3

and L = 60.

FIG. 8: (Color online) Top: Snapshot showing the pseudo-
skyrmion structure for D/J = 0.2, h/J = 2.6, T/J = 2 ×
10−3. A pseudo-skyrmions is shown, erasing the neighbouring
spins. Every coloured triangle indicates a diferent triangular
sublattice of the kagome lattice. Bottom: Sublattice chirality
density as function of h/J for L = 60 (green open triangles) at
T/J = 2× 10−3. Inset: sublatice chirality density as function
of T/J for L = 48, 54, 60 at h/J = 3.5.

In the low field boundary of the pSkX phase (h/J ∼
2.5) the local sublattice chirality χn3 takes a value close
to the number of pseudo-skyrmions that can be con-
structed. For example, in a system with N = 8748 sites,
we found 36 pseudo-skyrmions while the local (sublat-
tice) chirality χn3 ≈ 31. This implies that the topo-
logical charge of each skyrmion is not 1, but Q ≈ 0.86.
Hence dubbing this phase as a “pseudo-skyrmion” phase.
Another way to see this is that the texture associated
with each “pseudo-skyrmion”, when projected onto the
sphere, does not fully wrap the sphere. Specifically, we
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find that the border of the pseudo-skyrmions is com-
pletely polarized (parallel to the field), but the core is
not antipolarized, i.e.: the Sz component never reaches
the value Sz = −1. To illustrate this clearly, we show
a typical spherical snapshot obtained from simulations
in Fig. 9, for three values of the magnetic field h/J =
2.6, 3.8, 4.8, at T/J = 2 × 10−3 and L = 60. As before
the spins from each site of a given triangular sublattice
are represented with different colors. Two significant fea-
tures are present in this plot: the projections of the spins
are divided in three “slices”, one for each triangular sub-
lattice, and the lowest value of the projection along the
field (found for the lowest magnetic field) is Sz = −0.8.

Skyrmion-like structures that do not fully cover the
sphere, i.e. with Q < 1, have already been e.g. in the
anisotropic triangular lattice12 and in39, where there is
an emergent intermediate phase between skyrmions and
merons. In the model presented here, as the magnetic
field increases, the “pseudo-skyrmion” cores are further
canted, while the edges of the magnetic structures remain
parallel to the field. The evolution of the spin textures
as a function of the magnetic field in the pSkX phase is
shown in Fig.9.

The radius of this “pseudo-skyrmions” changes slightly
depending on the field and system size. However, this
phase is clearly present for all system sizes studied, as
shown in Fig. 8 (bottom), and it is delimited for a
certain range of magnetic fields, here hc2 < h < hc3.
The sharp “saw-tooth” behavior of this parameter in this
phase (see Fig. 8 bottom) is due to the fact that the ra-
dius of the pseudo-skyrmion changes with the field. A
sharp change implies that pseudo-skyrmions with a dif-
ferent radii are found at that field. These magnetic struc-
tures with different radii are very close in energy, which
explains the competition between pseudo-skyrmion crys-
tals of different (but similar) sizes at lower temperatures.
Despite this competition, this pseudo-skyrmion crystal
phase emerges and is stabilized at low temperature, and
can be distinguished through χn3, the scalar chirality cal-
culated in the elementary triangles of each sublattice of
the kagome lattice. No system size effects are noticed in
this phase, the inset of Fig. 8 (bottom) shows χn3 as a
function of temperature for h/J = 3.5 for three different
system sizes (L = 48, 54, 60) where cleary the behavior is
the same for all the cases.

In the high field region hc3 < h < hc4 the spin moments
are continuously further aligned with the magnetic field
and the pSkX is destroyed. Because of this, χn3 decreases
from its maximum value in hc3 to zero in hc4. We thus
dub this phase the “chiral polarized phase”.

With al this, combining the χn3 parameter and the
information from the previous subsections, we construct
the temperature vs. magnetic field phase diagram, pre-
sented in Fig. 10. There are four clear low temperature
phases: at low magnetic fields, there is a locally chiral
phase with no clear order. In this region, at higher tem-
peratures the system behaves like a cooperative paramag-
net. As the field increases, at low temperatures, coming
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FIG. 9: (Color online) Spherical snapshots in the pSkX phase
for L = 60 , h/J = 2.6 (top), h/J = 3.8 (middle) and h/J =
4.8 (bottom) with T/J = 2 × 10−3, D/J = 0.2. Each color
indicates a different triangular sublattice.

from the locally chiral phase, we find an intermediate spi-
ral phase. Here, the sublattice symmetry is broken: two
out of three sublattices form a complete spiral, and the
third one only has positive projections along the external
field. The most remarkable feature of the phase diagram
is an extended pSkX region which is stabilized in a broad
range of magnetic fields at low enough temperatures. In
this phase, pseudo-skyrmion structures are periodically
arranged in three non trivial sublattices, which are in
turn constructed with groups of third nearest neighbours.
Therefore, we identify this phase with a topological order
parameter, the third nearest neighbor chirality. As the
field increases, the spins are further canted, the pseudo
skyrmions are destroyed, and the chirality decreases with
the field, in a chiral polarized phase.
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FIG. 10: (Color online) Complete T/J vs h/J magnetic
phase diagram obtained from Monte Carlo simulations. The
solid black line was obtained analysing the peaks in the spe-
cific heat, the dashed white lines restrict the nonzero φtot area
hc1 < h < hc2, and the CP phase was obtained computing
the structure factor Sq.

IV. CONCLUSIONS

The frustration in the kagome antiferromagnet is
known to give rise to a plethora of exotic phenomena.
The competition of different types of interactions and
external fields has been shown to both relieve the frus-
tration and induce topological phases. In this work, we
present a study of the low temperature phases in the clas-
sical kagome antiferromagnet with competing in-plane
antisymmetric Dzyaloshinskii-Moriya interactions under
a magnetic field using extensive Monte Carlo simulations.
We find that, differently to what was found in previous
studies in other less frustrated geometries, the particular
geometry of the kagome lattice gives rise to highly non
trivial magnetic orders. Firstly, for lower fields, although
the system retains some degeneracy of the pure kagome
antiferromagnet, small clusters with local chirality can be
identified. Interestingly, at higher temperatures, inspec-
tion of the structure factor and the specific heat shows
that the system is in a cooperative paramagnet phase,
as the pure kagome antiferromagnet. As the field is in-
creased, at lower temperatures, a three-sublattice spiral
order is stabilized with broken sublattice symmetry: two

triangular (third nearest neighbours) sublattices form a
complete spiral and in the third one the spin projection
along the field only takes positive values. This allows
us to construct an Z3 order-parameter, φtot, to identify
the extension of this phase. Finally, we find that the ex-
ternal field stabilizes a pseudo-skyrmion crystal (pSkX)
structure in a large portion of the magnetic phase di-
agram, up to the lowest simulated temperatures. This
texture is characterized by a periodical arrangement of
three interpenetrated non-trivial sublattices formed by
skyrmion-like magnetic clusters. These clusters are not
skyrmions, since, when projected on a sphere, the spins
do not fully cover it. They have a clear polarized bor-
der and a non-fully polarized core. Moreover, due to the
fact that these pseudo-skyrmions are constructed with
groups of third nearest neighbors, this phase can be char-
acterized by a topological parameter, the scalar chirality
defined in each of the three triangular sublattices that
constitutes the kagome lattice. For large enough fields,
this parameter decreases rapidly to zero, as the pseudo-
skyrmions are destroyed and the spins are further canted
along the field. In conclusion, we have presented and
studied with extensive Monte Carlo simulations a model
that combines the high geometric frustration of the pure
exchange model in the kagome lattice with antisymmetric
Dzyaloshinskii-Moriya interactions, which are known to
induce topologically non trivial structures when an exter-
nal field is applied. We have found that these competing
terms give rise to a rich magnetic phase diagram, where
highly non trivial and topological phases are stabilized
at low temperatures. We hope our study further con-
tributes to the understanding of the connection between
topology and frustration, where the kagome lattice is one
of the most emblematic and relevant systems.
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