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Abstract

In this paper, we will study the large scale structure formation using
the gravitational partition function. We will assertively argue that the
system of gravitating galaxies can be analyzed using the Tsallis statistical
mechanics. The divergences in the Tsallis gravitational partition function
can be removed using the mathematical riches of the generalization of
the dimensional regularization (GDR). The finite gravitational partition
function thus obtained will be used to evaluate the thermodynamics of
the system of galaxies and thus, to understand the clustering of galaxies
in the universe. The correlation function which is believed to contain
the information of clustering of galaxies will also be discussed in this
formalism.
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1 Introduction

It is known that the large scale structure of our universe is formed due to clus-
tering of galaxies [1, 2]. As the size of individual galaxies is small as compared
to the distance between them, we can approximate individual galaxies as point
particles, and use the standard techniques of statistical mechanics to construct
a gravitational partition function [3, 4]. However, by approximating the galax-
ies as point particles (and neglecting their extended structure), we end up with
divergences. These divergences have been removed by adding a softening pa-
rameter by hand [5]. This softening parameter is expected to occur due to the
extended structure of galaxies. So, it has been suggested that if a cut-off is in-
troduced than the gravitational partition function would not diverge. However,
this has not been explicitly demonstrated. So, in this letter we will use the gen-
eralization of the dimensional regularization (GDR) [6, 7, 8, 9, 10, 11] to obtain a
finite or divergence free gravitational partition function. This method generalize
the dimensional regularization of Bollini and Giambiagi [14, 15, 16, 17, 12, 13]
It may be noted that the entropy obtained from the gravitation partition func-
tion has been used to analyze the clustering of galaxies. This has been done by
relating the entropy of the system of galaxies to the clustering parameter, and
this can in turn be related to the observations [18, 19, 20, 21, 22].

It may be considered that the accelerated expansion of the universe [23, 24]
can have important consequences for the formation of large scale structure in
the universe, and so the modification of gravitational partition function from
a cosmological constant has also been studied [25]. As it is possible to con-
sider models with time dependent cosmological constant, the modification of
the gravitational partition function from a time dependent cosmological con-
stant has also been studied [26]. Here again the modified gravitational partition
function is used to obtain the entropy of the system, which is then related to
the clustering parameter, and hence the effects of the cosmological constant on
the clustering are studied.

It is known that a large scale modification of gravitational potential occur
by adding higher powers of scalar curvature to general relativity [27].

Such a modification of the gravitational potential can cause a modification of
gravitation partition function [27]. This modified gravitational partition func-
tion has been used to obtain the entropy of a system of galaxies in such a
modified theory of gravity, and this corrected entropy has been used to analyze
the clustering of such a system of galaxies [28]. Such modification to gravi-
tational potential has been constrained from the observational data [29]. The
entropy of a system of galaxies interacting through a modified Newtonian dy-
namics (MOND) modified gravitational partition function has also been studied
[30]. It was demonstrated that the MOND corrections modified the entropy of
this system, and the corrected entropy changed the clustering parameter for
this system. The gravitational partition function in MOG has also been stud-
ied, and used to analyze the clustering of galaxies using the corrected entropy of
the system. The corrected entropy of a system of galaxies in brane world mod-
els has been obtained from gravitational partition function [31]. This has been

4



obtained using the modification to the gravitational potential from super-light
brane world perturbative modes.

A detailed review of f(R)-cosmological model presented in [32] is interesting
not only for being exactly integrable but for being able to explain the decel-
erated phase and accelerated phase under the same standard. The two phases
correspond to dust matter phase and dark energy phase respectively. The f(R)
model [32] is able to fulfill many observational tests without consideration of
any dark matter [34]. The physical non-equivalence of Jordan frame and Ein-
stein frame is explained considering f(R) model which permits one to compare
analytically the two frames showing the physical differences. However, the par-
tition function as obtained in this paper being non-relativistic is independent
of frame. The same may be the case with the thermodynamics obtained from
the corresponding partition function. The frame dependence may be seen in the
relativistic situations. The gravitational partition function has been used to an-
alyze the gravitational phase transition [35]. In fact, it has been demonstrated
that such a phase transition can be analyzed using complex fugacity for such a
system of galaxies (using the Yang-Lee theory) [36]. It has also been possible
to obtain cosmic energy equation from such a gravitational partition function
[37]. To remove the divergences in the cosmic energy equation from extended
structure of galaxies, it is possible to modify the cosmic energy equation using a
softening parameter, which acts as cut-off in the gravitational partition function
[38, 39].

Now almost all the work on clustering of galaxies has been done using
the entropy obtained from the gravitational partition function. However, this
Boltzmann-Gibbs entropy is based on the extensive property of the system, and
it is possible for extensive property to get violated for those complex system
which violate the probabilistic quasi-independence [40]. This violation occurs
due to the fact that there is breakdown of ergodicity for such complex system
[41]. Such a violation of extensive property occurs for a self gravitating systems
[42]. This is because for such a self gravitational system, the total energy in-
crease much faster than the particle number, and this can make the partition
function complex. So, for such system, it is possible to use Tsallis statistical
mechanics, it is a generalization of the Boltzmann-Gibbs statistical mechanics,
which does not require probabilistic quasi-independence of the system [43, 44].
As Tsallis statistical mechanics can be used to study system which violate the
extensive property of the system, it can be used to analyze a system of self
interacting gravitational particles [45]. Now the galaxies can be approximated
as self interacting point particles, so it is possible to use Tsallis statistical me-
chanics to analyze them. The divergences in the partition function are removed
using GDR. Thus we see Tsallis statistical mechanics supplemented by GDR is
the wonderful treatment to study the gravitational clustering of galaxies. So, in
this paper, we will analyze the formation of large scale structure of the universe
using Tsallis statistical mechanics.
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2 Tsallis Partition Function of Galaxies

In this section, we will apply Tsallis statistical mechanics to a system of galax-
ies. The partition function for a system of galaxies has been analyzed using
the Boltzmann-Gibbs statistics [3, 4]. However, such a self gravitational system
can violate probabilistic quasi-independence [45], so the usual Boltzmann-Gibbs
cannot be applied to it, and we need to analyze this system using the Tsallis
statistical mechanics [44]. It may be noted that we will observe that this Tsallis
partition function diverges, for a system of galaxies interacting through a grav-
itational interaction, and so we will use GDR to obtain a finite expression for
it. The Tsallis q-exponential,is defined as

eq(x) = [1 + (q − 1)x]
1

q−1

+ (2.1)

Or equivalently

eq(x) =

{

1 + (q − 1)x]
1

q−1 ; 1 + (q − 1)x > 0

0 ; 1 + (q − 1)x < 0
(2.2)

Let’s consider the distribution 1

r
≡ PV 1

r
. Then 1

r
|r=0= 0. We will express the

Tsallis gravitational partition function in ν dimensions as (with q > 1):

Zν =

∞
∫

−∞

dνx

∞
∫

−∞

dνp

[

1 + (q − 1)β

(

N(N − 1)Gm2

2r
− Np2

2m

)]
1

q−1

+

(2.3)

Here we have assumed that all the N galaxies have equal masses m. We have
also assumed that the potential energy between these galaxies can be denoted
by φ, their momenta by pi, and average temperature of the system by T . Now
we can express this Tsallis partition function as:

Zν =

[

2π
ν

2

Γ
(

ν
2

)

]2 ∞
∫

0

rν−1dr

∞
∫

0

pν−1dp

[

1 + (q − 1)β

(

N(N − 1)Gm2

2r
− Np2

2m

)]
1

q−1

+

(2.4)
It may be noted that

1 + (q − 1)β

(

N(N − 1)Gm2

2r
− Np2

2m

)

> 0, (2.5)

and as a consequence

p <

√

2m

(q − 1)βN
+

2m3(N − 1)G

2r
= P0 (2.6)
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Thus, we can express Tsallis gravitation partition function for a system of galax-
ies as

Zν =
1

2

[

2π
ν

2

Γ
(

ν
2

)

]2
[

m

2β(q − 1)N

]
ν

2

[(q − 1)βN(N − 1)Gm2]ν

× B

(

1 +
1

q − 1
,
ν

2

)

B

(

ν

2
− 1

q − 1
,−ν

)

(2.7)

It may be noted that as we set q = 4/3, and ν = 3, this partition function
diverges. This divergences has to be removed before this partition function can
be used to analyze clustering of galaxies. The choice of q = 4/3 is not whimsical.
q = 4/3 is the value of q for which, with the Tsallis statistics, it was possible to
prove the validity of the hypothesis of the emergent gravity of Verlinde [46], in
the non-relativistic case [47].

3 Generalization of the Dimensional Regular-

ization

It may be noted that as the Tsallis partition function diverges, we need to ob-
tain a finite expression for it. So, to write an explicit expression for the Tsallis
gravitational partition function for galaxies in three dimensions, we will use
GDR to have a finite result for it [6, 7, 8, 9, 10, 11]. It is a generalization of the
usual dimensional regularization, based on Ultradistributions theory of Sebas-
tiao e Silva, also known as Ultrahyperfunctions. [48, 49, 50].As the divergences
occur, due to the products of distributions with coincident point singularities,
it is possible to use Ultrahyperfunctions to eliminate them. These divergences
are manifested, for example, in the integrals that describe the systems consid-
ered. As a consequence we can apply this method to obtain finite results for
divergent integrals. We must clarify that this is not a regularization method.
It is an exact method based on the theory of Ultrahyperfunctions. So, now we
define a function f as

f(ν) = − 12πν

Γ
(

ν
2

)

Γ
(

ν
2
− 3

)

ν(ν − 1)(ν − 2)
sinπ

(ν

2
+ 4

)

(

mNβ

2

)
ν

2

[m2G(N −1)]ν , (3.1)

With this function we can write

Zν = f(ν)Γ(3− ν) (3.2)

So, we can express f(3) and f ′(3) as

f(3) = −16π2

√
3

(

mNβ

2

)
3

2

[m2G(N − 1)]3 (3.3)

f
′

(3) =
f(3)

2

{

ln{mNβ[m2G(N − 1)]2} − ln 6− 95

9

}

(3.4)
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We can write Laurent’s expansion for f around ν = 3 in the form

f(ν) = f(3) + f
′

(3)(ν − 3) +

∞
∑

k=2

bk(ν − 3)k (3.5)

Laurent’s development of the gamma function is [51]:

Γ(3− ν) =
1

3− ν
− C +

∞
∑

k=1

ck (ν − 3)
k

(3.6)

(where C is the Euler-Mascheroni constant). Multiplying the Laurent expan-
sions of f and the gamma function, we obtain the expansion of Z

Zν =
f(3)

3− ν
− f(3)C − f

′

(3) +

∞
∑

k=1

ak (ν − 3)
k
. (3.7)

The value of the integral is the independent term of the powers of ν − 3. Thus,
the Tsallis gravitational partition function for galaxies in three dimensions can
be expressed as

Z = −f(3)C − f
′

(3) (3.8)

So, we can obtain the finite Tsallis gravitational partition function for galaxies
as

Z =
8π2

3

(

mβN

2

)
3

2

m2G(N − 1)3
{

ln{m5Nβ[πG(N − 1)]2}+ 2C − ln 6− 95

9

}

(3.9)

Now we will write this Tsallis gravitational partition function for galaxies as

Z =
8π2

3
α1(N, β)α2(N, β) (3.10)

where we have defined α1(N, β) and α2(N, β) as

α1(N, β) =

(

mβN

2

)
3

2

m2G(N − 1)3 (3.11)

α2(N, β) =

{

ln{mNβ[πm2G(N − 1)]2}+ 2C − ln 6− 95

9

}

(3.12)

It may be noted that the divergences have been removed from this Tsallis grav-
itational partition function for galaxies. Now this can be used to study various
aspects of this system.

4 Thermodynamics

The thermodynamics of a system of galaxies can be studied using the Tsallis
gravitational partition function. This can be done by first using the partition
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function for obtaining the internal energy of this system, and then using the in-
ternal energy to obtain various other thermodynamic quantities for this system.
Thus, using this Tsallis partition function, the internal energy for a system of
galaxies can be written as

< U >ν=
1

Z

[

2π
ν

2

Γ
(

ν
2

)

]2 ∞
∫

0

rν−1dr

P0
∫

0

pν−1dp

(

N(N − 1)Gm2

2r
− Np2

2m

)

×
[

1 + (q − 1)β

(

N(N − 1)Gm2

2r
− Np2

2m

)]

1

q−1

(4.1)

So, we can express internal energy of a system of galaxies as

< U > = −6π2

βZ

(

mβN

2

)
3

2

m2G(N − 1)3

×
{

ln{mNβ[πm2G(N − 1)]2}+ 2C − ln 6− 29

15

}

(4.2)

After simplification, we can write this expression as following,

< U >= − 9

4β

(

1 +
388

45α2(N, β)

)

(4.3)

Thus, the internal energy depends on the value of α2(N, β). As the value of
α2(N, β) increases, the value of internal energy decreases. Now it is known that
the internal energy decreases as the galaxies cluster [3, 4], so here α2(N, β) is a
measure of clustering of the system. On the other hand the value of α2(N, β)
decreases by the temperature, hence value of internal energy is proportional to
the temperature as illustrated by Fig. 1.
We can see that the value of the internal energy is negative for the low temper-
ature (see Fig. 1 (a)), however at high temperature we can see a transition to
the positive value which is illustrated by Fig. 1 (b). It may be sign of a phase
transition which should be examined by the specific heat analysis later. At very
high temperature, the internal energy yields to a positive constant. In the Fig.
1 (c) we can see behavior of the low mass limit.

Now, it is possible to calculate the entropy of this system of galaxies from
the internal energy of this system. Thus, we can write the entropy as

S =

(

3

4
− 97

5α2(N, β)

)(

8π2

3
α1(N, β)α2(N, β)

)−
1

3

(4.4)

In order to have the positive entropy, the following condition is necessary,

α2(N, β) ≥ 388

15
. (4.5)

Hence we can fix α2(N, β) = 26 to obtain positive entropy and write,

S =
1

260

(

208π2

3
α1(N, β)

)−
1

3

(4.6)
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Figure 1: Typical behavior of the internal energy in terms of temperature for
G = 1. We set m = 1 in (a) and (b) plots, while vary m in (c) plot.

In the Fig. 2 we can see behavior of the entropy, which is increasing function
of the temperature, while it is decreased by mass.
Then, we can study specific heat by using the following relation,

CV = T

(

dS

dT

)

V

. (4.7)

We can see from the Fig. 3 that is increasing function of the temperature. We
find that there is no negative specific heat and asymptotic behavior hence there
is no phase transition and critical points. We show that the model is stable at
all temperature. Heavier situations yields to the constant specific heat at higher
temperatures.

Figure 2: Typical behavior of the entropy in terms of temperature for G = 1
and N = 50.
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Figure 3: Typical behavior of the specific heat in terms of temperature for G = 1
and N = 50.

Similarly, the free Helmholtz energy can be expressed as

F = < U > −TS (4.8)

= −T

[

21

4
+

97

5α2(N, β)
−
(

97

5α2(N, β)
− 3

4

)(

8π2

3
α1(N, β)α2(N, β)

)−
1

3

]

Finally, we can write the pressure P of this system as

P =
N

V

2 < U >

3N − 2

= − 9N

2V β(3N − 2)

(

1 +
388

45α2(N, β)

)

(4.9)

It is again known that the pressure of a system of galaxies reduces as the galaxy
cluster [3, 4]. Here we observe that as the value of α2(N, β) increases the
pressure reduces. This again demonstrates that α2(N, β) measure the clustering
in a system of galaxies, and can be used to analyze the large scale structure of
our universe.

5 Correlation Function

As the galaxies interact with each other, it is important to obtain the correla-
tion function between various galaxies. So, we can now obtain the correlation
function between various galaxies as

ζ =

∫

ξdV = −NT

V 2

(

∂V

∂P

)

T

− 1. (5.1)
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Now we can write this as

ζ =

∫

ξdV = −2(3N − 2)

k

(

1 +
388

45α2(N, β)

)

T

− 1 (5.2)

So, for (k = 1), we can express the correlation function for a system of galaxies
as

ζ =

∫

ξdV =

[

(3− 6N) + (4− 6N)
388

45α2(N, β)

]

. (5.3)

Due to this correlation between galaxies, individual galaxies can merge with
each other, changing the number of galaxies in the system. Furthermore, as
the universe expands, the number of galaxies in the observable universe, or
any specific volume V change. This can can be measured by using the grand
canonical partition function

ZGν =

∞
∫

−∞

dνx

∞
∫

−∞

dνp

[

1 + (q − 1)β

(

N(N − 1)Gm2

2r
− Np2

2m
+ µN

)]
1

q−1

+

,

(5.4)
where µ is the chemical potential for this system. This can in turn be expressed
as

ZGν =
1

2

[

2π
ν

2

Γ
(

ν
2

)

]2
[

m

2β(q − 1)N

]
ν

2

[(q − 1)βN(N − 1)Gm2]ν (5.5)

×(1 + βµN)
ν

2
+ 1

q−1 B

(

1 +
1

q − 1
,
ν

2

)

B

(

ν

2
− 1

q − 1
,−ν

)

=
21−

ν

2 πν

Γ
(

ν
2

)2
3−

ν

2 (mNβ)
ν

2 [(N − 1)Gm2]ν

×(1 + βµN)
ν

2
+3B

(

4,
ν

2

)

B
(ν

2
− 3,−ν

)

This partition function also diverges. However, as it is possible to write the
grand canonical partition function as

ZGν = Zν(1 + βµN)
ν

2
+3 (5.6)

So, we can again use GDR to evaluate the grand canonical partition function as

ZG = (1 + βµN)
9

2

[

−f(3)C − f ′(3)− f(3)

2
ln(1 + βµN)

]

(5.7)

= (1 + βµN)
9

2

[

Z +
8π2

√
3

(

mNβ

2

)
3

2

[m2G(N − 1)]3 ln(1 + βµN)

]

This is a finite value for the grand canonical partition function for a system of
galaxies. Here again the divergences in the grand canonical partition function
have been removed using GDR. It would be possible to use this grand canonical
partition function to obtain various thermodynamic quantities for a system of
galaxies, where the number of galaxies change due to high correlation between
them.
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6 Conclusion

In this paper, we have analyzed the clustering of galaxies using the techniques
of statistical mechanics. As the size of galaxies is small compared to the dis-
tance between them, individual galaxies can be approximated as point parti-
cles. These galaxies interact through a gravitational potential, and it is known
that for such a system a violation of the extensive property occurs, and use
of Boltzmann-Gibbs statistical mechanics to study such a system becomes a
constraint. However, as the Boltzmann-Gibbs statistical mechanics has been
generalized to Tsallis statistical mechanics, and this property is not required
in Tsallis statistical mechanics, thus paved the way to use Tsallis statistical
mechanics for analyzing such a system. The divergences in the Tsallis gravi-
tational partition function are eliminated by using the powerful techniques of
GDR which is the important part of this paper. In fact the important conclusion
to be drawn here is that the Tsallis statistics supplemented with the general-
ization of dimensional regularization makes the work mathematically rich and
a strong treatment to deal with clustering of galaxies or the analysis of gravi-
tating systems in the expanding universe. We especially used GDR to obtain
finite gravitational partition function devoid of any divergences for analyzing
thermodynamics of the gravitating system, and thus to study its relation to
clustering of galaxies. We also analyzed the correlation function between galax-
ies for this system. The correlation function is believed to contain the complete
information of clustering. The grand partition function obtained is also treated
with GDR for eliminating the divergences. Thus we conclude that the ther-
modynamics obtained in this paper comes from the divergence free partition
functions and the interesting results are depicted from the plots. The typical
behavior in different temperature ranges is worth mentioning.
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