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We apply unsupervised learning techniques to classify the different phases of the J1 − J2 antifer-
romagnetic Ising model on the honeycomb lattice. We construct the phase diagram of the system
using convolutional autoencoders. These neural networks can detect phase transitions in the system
via ‘anomaly detection’, without the need for any label or a priori knowledge of the phases. We
present different ways of training these autoencoders and we evaluate them to discriminate between
distinct magnetic phases. In this process, we highlight the case of high temperature or even random
training data. Finally, we analyze the capability of the autoencoder to detect the ground state
degeneracy through the reconstruction error.

I. INTRODUCTION

Machine learning techniques have been applied to
condensed matter systems in a wide variety of con-
texts and tasks, as detecting phase transitions from
synthetic1–8 and experimental data9,10, improving the ef-
ficiency of Monte Carlo sampling in classical and quan-
tum systems11–13, quantum state tomography14, deter-
mination of critical exponents15,16, modeling thermo-
dynamic observables for physical systems in thermal
equilibrium17, encoding many-body quantum states18,
etc. As a result, machine learning techniques have gained
a significant place in the subject of interacting many-
body condensed matter physics.

In several disciplines, the classification problem plays
a central role. The classification of the types of objects in
an image or text and the different phases in a condensed
matter system are tasks that share common challenges.
However, the tools in both cases are different in nature.

In condensed matter, the classification of phases histor-
ically relies on the use of order parameters, which allow
differentiating the different phases present in a model.
Nonetheless, this approach demands detailed knowledge
of the system, which may not be available, particularly
in many-body quantum systems of current interest, such
as spin liquids or materials with topological properties.

In the machine learning community, a whole battery
of techniques specifically oriented to classification based
on data has been developed in recent years. There are
several types of classifiers in machine and deep learn-
ing. Broadly speaking, they can be differentiated by
the degree of a priori knowledge required. At one ex-
treme, the supervised algorithms, require prior labeling
on a set. This is used to train a neural network (which
can be of different types, dense, convolutional, recurrent,
etc), that learns to classify a data set. An interesting
property here is the generalization scope of the neural
networks, which in certain circumstances can make cor-
rect predictions beyond the original sets of data with
which they were trained. Other methods, called semi-
supervised, require partial knowledge about the data,
without complete labeling19. Finally, at the other ex-
treme are the non-supervised methods, which require no

prior knowledge of the system and build knowledge di-
rectly from the data. Currently, there are a variety of
unsupervised methods. These can be classified according
to the type of architecture used, i.e. shallow or deep,
linear or non-linear, etc. On the one hand, Principal
Component Analysis (PCA)20 and Uniform Manifold Ap-
proximation and Projection (UMAP)21, are examples of
shallow, linear and non-linear dimensionality reduction
techniques, respectively. Furthermore, diffusion maps22

constitute a shallow non-linear algorithm well-suited to
study topological23 and quantum24 phase transitions in
many body systems. On the other hand, convolutional
and variational autoencoders25 provide powerful tools for
non-linear unsupervised learning, based on deep neural
networks architectures.

In this work we determine the phase diagram of a
paradigmatic case of frustrated magnetism in two di-
mensions, the Ising model on the honeycomb lattice em-
ploying unsupervised machine learning. The studies of
the two-dimensional Ising model has a long story on the
square lattice. In this geometry, the interplay between
frustration and temperature gives rise to phase transi-
tions whose nature has been the subject of debate26–29.
Comparatively, the phase diagram of the frustrated hon-
eycomb lattice has been less explored. This lattice is
interesting both from a theoretical and an experimental
point of view. From the theoretical point of view, the
honeycomb lattice has the smallest coordination number
for a two-dimensional lattice (z = 3). For this reason,
it is expected that the correlations are strong in this
system. The small coordination number together with
frustrated interactions has been shown to have interest-
ing effects in the Heisenberg model on this lattice, where
the phase diagram shows a magnetically disordered re-
gion and a spin-liquid phase30,31. From the experimen-
tal point of view, several materials regarded as realiza-
tions of spin systems on honeycomb lattices have being
synthesized32–36. Therefore, the complexity and interest
of this model make it a candidate for testing the ability
of unsupervised techniques to detect transitions in two-
dimensional frustrated systems.

The plan of the manuscript is as follows. For com-
pleteness, in Sec. I A we present a brief discussion of the
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FIG. 1. Upper row: Original snapshots from the system
mapped to an square array as detailed in appendix IV C.
White and black pixels correspond to up and down spins,
respectively. On the left, a Néel ordered snapshot correspond-
ing to J2 = 0 and T = 0.02. On the right, a paramagnetic
snapshot corresponding to J2 = 0 and T = 4.5. Lower row:
Respective reconstructions using the CAE from training I.

prominent aspects of the Ising model in the presence of
frustration, and in Sec. I B we introduce the main fea-
tures of autoencoders. In Secs. II A, and II C we train
autoencoders to discriminate the distinct phases of the
system. In Sec. II B we construct the entire phase di-
agram of the system in an unsupervised way. Further-
more, here we show how to use autoencoders to generate
labels that can be used to perform classifications with
supervised learning techniques. In Sec. III we present a
summary of results and conclusions.

A. Model

We study the J1 − J2 antiferromagnetic Ising model
on the honeycomb lattice, in the absence of an external
magnetic field. Each spin is represented with a discrete
variable σi = ±1, defined on the lattice. It interacts with
its first and second neighbors with antiferromagnetic cou-
plings J1 and J2, respectively. The system Hamiltonian
is then

H = J1
∑
〈i,j〉

σiσj + J2
∑
〈〈i,j〉〉

σiσj (1)

with J1, J2 > 0. In this work we take J1 = 1, fixing the
energy scale. Then J2 > 0 regulates the frustration in
the system. Furthermore, the Boltzmann constant is ab-
sorbed in T , and then T is also measured in units of J1.
Frustration in many-body magnetic systems corresponds

FIG. 2. Reconstruction Error (R.E.) vs temperature for 400
independent realizations of the unfrustrated system (J2 = 0),
computed with the CAE from training I. The dashed gray
vertical line corresponds to the analytical critical temperature
of the system in the thermodynamic limit and the yellow star
corresponds to the estimation of the inflection point in the
mean R.E. curve, denoted by the blue crosses.

to the impossibility to simultaneously minimize all inter-
actions, leading to high degeneracy. This can produce a
variety of behaviors, even in simple models as the Ising
one. As a first example, we can consider the antiferro-
magnetic Ising model on the square lattice. For J2 > 1/2
the ground state is four-fold degenerate and presents a
stripe-type long-range order. Furthermore, the nature of
the phase transition between the ordered and disordered
phases is a long-term debate29,37–39.

As a second example, we mention the antiferromag-
netic nearest neighbors Ising model on the triangular
lattice. The geometrical frustration in this lattice in-
troduces a macroscopic degeneracy which destroys long-
range order even at T = 0. The system presents zero-
point entropy and has no Curie point40. Nonetheless,
even being a paramagnet at all temperatures, some cor-
relations emerge at low temperatures. In this way, the
system can be seen as a classical spin liquid41.

The honeycomb lattice, dual to the triangular lat-
tice, is not geometrically frustrated. Here two differ-
ent sub-lattices can be defined, in which a conventional
antiferromagnetic or Néel order fits. For J2 = 0, both
the ferromagnetic and the antiferromagnetic Ising mod-
els have a critical temperature in the thermodynamic
limit that can be determined exactly42 and is given by
Tc = 2/ log (2 +

√
3) ≈ 1.519.

At J2 = 1/4 this system presents a low-temperature
phase transition from a Néel phase to a degenerate phase
without long-range order43.

In appendix IV B we present an introduction to princi-
pal component analysis and its aplication to our model,
where some of the central features of the system can be
detected by its linear low dimensional representations,
like i) the presence of a low-temperature phase with a sin-
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FIG. 3. Phase discovery: Mean reconstruction errors vs tem-
perature for several values of J2, computed with the CAE
corresponding to training I. Error bars show the standard de-
viation computed with the 400 realizations of the system.

gle linear order parameter, and a 2-degenerated ground
state, i.e., the Néel phase; ii) the absence of a phase with
previous characteristics for J2 > 1/4, iii) the presence of
a high-temperature uncorrelated phase, and iv) signals of
the value J2 = 1/4 as the maximally frustrated point of
the system. Nonetheless, to construct the phase diagram
of the system through unsupervised machine learning is
necessary to utilize more powerful non linear techniques,
as autoencoders.

B. Autoencoders

Autoencoders (AEs) are a particular type of neural
network that is trained to generate an approximate copy
of the given input, x. They are composed of two parts25:
the encoder, which codifies x into a code h = f(x) that
belongs to the so-called latent space, and the decoder,
which takes the code and tries to reproduce the original
input via a mapping g(h) = x̂ ≈ x. The AE trainable
parameters are adjusted minimizing a loss function that
measures the difference between x and its reconstruction
x̂, for each x in a given training set.

In this work we choose the standard loss function that
measures the distance between x and x̂, the mean square
error (mse). For the case of a set X of N two-dimensional
input images xn of size L × L, the reconstruction error
of this set is given by

mse(X) =
1

NL2

N∑
n=1

L∑
i=1

L∑
j=1

|xnij − x̂nij |2. (2)

In the case of systems with a simple order parameter,
as non-frustrated Ising models, it can be shown that
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FIG. 4. Standard deviation σ in the R.E. as a function of
temperature, for different values of J2 in the Néel phase, com-
puted with the CAE corresponding to training I. In dashed
lines, the estimation of the inflection points in each mean R.E.
curve.

PCA or autoencoders with a single neuron in the la-
tent space encode the spin configurations in a variable
Z that is highly correlated with the order parameter of
the system44. Nonetheless, at high temperatures or doing
finite-size scaling these two quantities differ45.

The layers in the AE can be dense (fully-connected
neurons) or convolutional. In this work, we focus on
AEs that are completely convolutional, i.e., convolutional
autoencoders (CAEs). The details of the architectures
used are presented in appendix IV D. They have the ad-
vantages of having exponentially fewer parameters than
dense or fully-connected AEs, and the ability to capture
spatial correlations thanks to the application of filters,
or local transformations, throughout the entire image.
CAEs have been successfully applied in a many-body
quantum system46 to construct the phase diagram of the
Bose-Hubbard model in an unsupervised way. It is im-
portant to remark that these CAEs do not have a latent
space of a few variables as in Refs. 44 and 45, and there-
fore our objective implementing them is not to generate
low dimensional representations of data, but to predict
phase transitions via the concept of anomaly detection.
This concept consists of training an AE to reproduce a
certain class of data until the reconstruction error (R.E.)
is small enough. Then, if a different class of data is given
to the AE as input, usually the reconstruction fails, be-
cause the AE was not trained to reproduce it, and the
R.E. augments abruptly, signaling the anomaly.
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FIG. 5. Upper column: three snapshots corresponding to
temperatures T = 0.02 for three realizations of the system
with J2 = 1/2. Lower column: reconstructions made by the
CAE corresponding to training II.

II. RESULTS

To test the predictive power of the CAEs, we make
different choices of training sets of data and analyze the
respective performances. The system size in this work is
fixed to N = 900 sites, and the Monte Carlo information
is presented in appendix IV A. The details of the autoen-
coder architecture and hyperparameters are presented in
appendix IV D. Below we detail the results obtained with
each training.

A. Learning at low temperatures

1. Training I: unfrustrated low-temperature training data

We trained a CAE to reconstruct Néel ordered spin
configurations corresponding to 0.02 < T < 0.2 and
J2 = 0. We denote this as training I. These configu-
rations, that constitute the CAE’s input, can be in a
variety of formats. In this work, we map the honeycomb
lattice to a square array as detailed in appendix IV C.
Fig. 1 upper left and right panels show snapshots of the
system with only nearest neighbors interactions (J2 = 0),
at T = 0.02 and T = 4.53, respectively. Note that the
Néel order in the honeycomb lattice is mapped to a stripe
order in the square array. Fig. 1 lower panels show the
corresponding reconstructions. The CAE can reproduce
the Néel ordered spin configuration (R.E. of order 10−4)
and tries to generate a Néel ordered spin configuration
even from the disordered snapshot. The maximum pos-
sible R.E. within our choices of normalization and metric
is unity, as explained in appendix IV D.
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FIG. 6. Phase discovery: Mean reconstruction errors vs tem-
perature for several values of J2, computed with the CAE
corresponding to training II. Error bars show the standard
deviation computed with the 400 realizations of the system.

Fig. 2 shows the R.E. as a function of temperature
for the 400 realizations of the system. As the system
converges to one of the two possible Néel ground states
at low temperatures, the CAE is able to reproduce the
corresponding spin configuration and the R.E. reaches
the minimum value (order 10−4). At high temperatures,
the CAE does not reproduce the disordered spin config-
urations, as shown in Fig. 1, and the R.E. increases.
As it can be observed, there is a very good agreement
between the mean R.E inflection point and the critical
temperature of the system in the thermodynamic limit.
The numerical estimation of the R.E. inflection point is
explained in appendix IV E.

Fig. 3 shows the mean R.E. as a function of temper-
ature for different values of J2. At high temperatures,
all curves tend to converge to a constant mean value,
as the system is in the paramagnetic phase. At low
temperatures, R.E. decreases with respect to the high-
temperature value for systems with J2 < 1/4, which are
in the Néel phase. This is not the case for systems with
J2 > 1/4, in agreement with the low-temperature phase
transition at J2 = 1/4.

Albeit in Fig. 3 it is possible to distinguish three
regimes that correspond to the three phases of the sys-
tem, for the curves with J2 > 1/4 the R.E. does not
allow to discriminate properly the high and low tempera-
ture regimes. For example, for the gray curve (J2 = 0.4)
in Fig.3 the low and high temperature R.E.s coincide
within dispersion. This is can be understood as a conse-
quence of the training simplicity. The CAE had the task
to reproduce Néel ordered configurations, and with that
knowledge, it is being used to try to distinguish highly
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FIG. 7. Reconstruction error vs temperature for the 400 real-
izations of the unfrustrated system (J2 = 0), computed with
the CAE corresponding to training II. The color scale shows
the staggered magnetization per site m of each snapshot, i.e.,
the order parameter in the Néel phase. Each panel corre-
sponds to an equivalent but independent training, showing
that each Néel ground state can have the lowest R.E. at the
splitting.

frustrated configurations from disordered configurations,
both of which do not present long range order. Nonethe-
less, this difficulty is overcome in training II.

In Fig. 2 it is clear that the dispersion is also a func-
tion of temperature, due to the presence of an ordered
phase and a disordered phase. Fig. 4 shows the standard
deviation σ in the R.E. as a function of temperature,
for different J2 values. For J2 < 1/4 there are peaks in
the dispersion that coincide with the respective inflection
points, denoted by the vertical dashed lines. Addition-
ally, it can be seen that all dispersions converge approx-
imately to the same value at high temperatures. At low
temperature, in contrast, the dispersion augments with
increasing frustration.

For J2 > 1/4 it can be seen that the dispersion aug-
ments concerning the high-temperature value around the
transition temperatures, but there are no peaks as in Fig.
4. A figure that shows this behavior will be presented in
Sec. II C 2, for a different training choice.

2. Training II: frustrated low-temperature training data

We trained a CAE with spin configurations with 0.02 <
T < 0.2 and J2 = 1/2, where the system has no long
range order and a highly degenerate ground state due to
frustration43. We denote this as training II. Fig. 5 shows
snapshots at T = 0.02 for three realizations of systems
with J2 = 1/2 in the upper row, and the corresponding
reconstructions in the lower row, where it can be seen
that there are zones of different local orders. The final
R.E. in validation data during training is order 10−3.

Fig. 6 shows the mean R.E. as a function of tem-
perature for several values of J2. The behavior is sim-
ilar to that of Fig. 3. As the system remains in the

FIG. 8. Phase Diagram of the system. In color scale the
R.E. computed with the CAE corresponding to training II. In
green stars, the inflection points of each mean R.E. curve in
Fig. 6. In black circles joined with dashed lines the transition
temperatures obtained with CNNs that used the green stars
as labels (see text). In blue boxes the specific heat maxima
in the Monte Carlo simulations.

phase in which the autoencoder was trained, the R.E. de-
creases at low temperatures, relative to the shared high-
temperature value.

Fig. 7 shows the R.E. computed for the 400 realiza-
tions of systems with J2 = 0. The color scale corresponds
to the staggered magnetization per site m, i.e., the order
parameter in the Néel phase. Each panel corresponds to a
different but equivalent training, and the vertical dashed
line corresponds to the analytical critical temperature of
the system. In this case the R.E. not only increases, sig-
naling the phase transition, but also it splits in two parts.
The additional information of the order parameter allows
to prove that the splitting corresponds to the Z2 sym-
metry of the Hamiltonian, broken in the ground state.
Nonetheless, there should be no a priori preference for
neither of the two Néel configurations to have the lowest
R.E. For this reason we show that independent trainings
can give the two possible outcomes.

B. Phase Diagram

Fig. 8 shows the T − J2 phase diagram of the sys-
tem, constructed by the CAE corresponding to training
II, where the color scale denotes the R.E. The upper part
of the diagram corresponds to the paramagnetic phase,
where the R.E. is approximately the same for all values
of J2, as shown in Fig. 6. The bottom right (left) corner
of the diagram corresponds to the curves in Fig. 6 with
J2 > 1/4 (J2 < 1/4), that have a decrease (increase) in
their R.E. with respect to the high-temperature value.
Green stars correspond to the mean R.E. inflection point
for each value of J2 in Fig. 6, which are taken as the
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FIG. 9. Reconstruction error vs temperature for the 400 real-
izations of the system with J2 = 0. The left (right) panel was
computed with the CAE corresponding to training III (IV).
The vertical dashed line corresponds to the analytical critical
temperature of the system. The color scale corresponds to the
staggered magnetization per site m, i.e., the order parameter
in the Néel phase.

boundaries between different phases, generalizing the re-
sults from Fig. 2.

To check if the inflection points estimate correctly the
location of the phase transitions, we perform classifi-
cations using a convolutional neural network (CNN) in
which we label the data using this quantity as follows:
Given a value of J2, we take spin configurations that are
far away from the temperature corresponding to the in-
flection point, T ∗, i.e., that have |T − T ∗| > w = 0.2.
We label the high-temperature configurations with 1 and
the low-temperature configuration with 0 and we train a
CNN with these configurations. As the resulting valida-
tion accuracy is higher than 0.999, we can ensure that the
transition is within the temperature window extracted,
i.e., near T ∗. It is known that wrong labeling would lead
to a diminishing in the classification accuracy47.

Then, we make the CNN predict the order-disorder
probabilities for spin configurations in the whole range of
temperatures, and we find the temperature at which the
two probabilities cross each other. The corresponding
transition temperatures obtained are plotted in Fig. 8
in black empty circles joined by dashed lines. Albeit
in these classifications we are using supervised learning
architectures, the labeling is obtained using the previous
unsupervised results from Fig. 6. For this reason, this
second prediction of the transition temperatures can be
still considered as unsupervised learning, similarly to the
confusion method47. Finally, for comparison, blue empty
squares in Fig. 8 correspond to the maximum value of the
specific heat of the system, which signals the transition
for each J2. The CNN architecture and hyperparameters
are presented in appendix IV D.

FIG. 10. Reconstructions computed with the CAE corre-
sponding to training IV. From left to right, a Néel ordered
snapshot with m = −1, J2 = 0 and T = 0.02, a paramag-
netic snapshot with J2 = 0 and T = 4.53, a low-temperature
frustrated snapshot with J2 = 1/2 and T = 0.02, a synthetic
random (infinite temperature) snapshot, and a Néel ordered
snapshot with m = +1, J2 = 0 and T = 0.02.

C. Learning at high temperatures

1. Training III: high-temperature training data

Here we train a CAE with spin configurations with
J2 = 0 and temperatures 4 < T < 4.53, corresponding
to the paramagnetic phase. We denote this training as
training III.
The left panel of Fig. 9 shows the R.E. as a function
of temperature for spin configurations with J2 = 0. Al-
though the CAE was trained in the paramagnetic phase,
it can learn the low-temperature order and it even shows
the splitting as in Fig. 7. It is important to remark that
the reciprocal situation does not occur neither in train-
ing I nor in training II, i.e., when a CAE learns a low-
temperature phase it is unable to reconstruct disordered
snapshots, which is a a harder task.

2. Training IV: random training data

To check whether learning the order of low tempera-
ture is a consequence of the finite-size effects in the data,
we train a CAE with (pseudo-)random arrays of zeros and
ones, which emulate an infinite temperature in the Ising
spin system. We denote this training as training IV. The
right panel of Fig. 9 shows the R.E. as a function of tem-
perature for spin configurations with J2 = 0. The CAE
can reconstruct approximately both the ordered and dis-
ordered spin configurations with J2 = 0 (maximum R.E.
is roughly 0.009). Nonetheless, the transition is still vis-
ible and the splitting is again present.

A similar splitting is observed in the latent variable of
a fully connected autoencoder45 with a single unit layer
in the non-frustrated square lattice, or in the largest prin-
cipal component Z1 of PCA.

The CAE in training IV is capable of reproducing in
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FIG. 11. Standard deviation in R.E. as a function of temper-
ature for several values of J2, computed with the CAE from
to training IV. In dashed lines, the transition temperatures
corresponding to specific heat maxima in the Monte Carlo
simulation.

good approximation all the spin configurations of the J1−
J2 model in the honeycomb lattice, as shown in Fig. 10.

Fig. 11 shows the standard deviations in the mean
R.E. as a function of temperature for several values of
J2 evaluating the CAE from training IV. For J2 < 1/4,
the R.E. presents bifurcations at the ordering tempera-
tures as in Fig. 9 (not shown here), which correspond to
the high variance at low temperatures in Fig. 11. For
J2 > 1/4 there are no mean R.E. changes larger than
the standard deviation at any temperature. The R.E.
dispersion increases around the transition temperatures
(dashed lines) for all J2, and all R.E. dispersions converge
to the same value at high temperatures.

For low temperatures, it is clear that each dispersion
curve goes into a well-defined plateau with a value greater
than the high temperature one. This allows to separate
high and low-temperature data far away from these in-
flection points and label data with this information to
perform a supervised classification as in Fig. 8.

3. Higher ground state degeneracy

As we have observed previously, Figs. 7, and 9 present
a splitting corresponding to the two-fold degeneracy of
the ground state, due to the Z2 symmetry of the Hamilto-
nian. Here naturally the question arises whether the R.E.
calculated by a CAE could be divided into n branches in
case the ground state had a degeneracy n.

For this reason, we briefly explore a system with a four-
fold degeneracy. In Fig. 12 we show the R.E. computed
with the CAE from training IV on data from the anti-
ferromagnetic J1 − J2 Ising model on the square lattice,
with J2/J1 = 0.9. It is well known that for this vale,

FIG. 12. Reconstruction error vs temperature for the 400
realizations of the square lattice with J2/J1 = 0.9, computed
with the CAE corresponding to training IV.

the ground state is four-fold degenerate and exhibits a
stripe-type long-range order29,37.
It is possible that in another equivalent but different
training the R.E. plot shows m branches with m < n. For
this reason, it is important to repeat the training proce-
dure and study the different possible outcomes. Further-
more, it is important to count the number of snapshots
within each branch, constructing a histogram in R.E. for
the minimum temperature value. In this histogram (not
shown here), if the ground state is n−degenerated and
the data set is correctly balanced the bars have equal
heights if m = n or different heights if some of the R.E.
branches cannot be discriminated.

III. SUMMARY AND CONCLUSIONS

In this work, we have employed unsupervised learning
methods to classify phases in classical frustrated antifer-
romagnets, in particular the frustrated Ising model on
the honeycomb lattice.

We trained convolutional autoencoders to discrimi-
nate between different magnetic phases, choosing distinct
training sets in the phase space of the system. We moni-
tor the reconstruction error of the CAE to see where the
phase transitions occur. Starting from the unfrustrated
system, i.e., J2 = 0, we can compare the R.E. curve with
the analytical critical temperature of the system and see
that the R.E. inflection point coincides with this temper-
ature. This criterion to separate two phases can be ex-
tended to the rest of the J2 values and allows to construct
the T−J2 phase diagram of the system. Furthermore, we
validate this approach using a CNN that performs a clas-
sification using labels that are obtained using the CAE,
showing an interesting interplay between neural network
architectures. Additionally, we compare the transitions
determined by both methods with the maximum of the
specific heat obtained by means of Monte Carlo simula-
tions, finding a very good agreement between the three
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methods.
Later on, we show how the R.E. can lift the 2-degeneracy
of the Néel ground state, by splitting into two branches,
for different training choices. We highlight that for case
IV the CAE was trained to reproduce random matrices
filled with zeros and ones, not generated by the Monte
Carlo, although they correspond to an infinite tempera-
ture in the model. In this case, the CAE can reproduce
with low R.E. spin configurations from all the phase space
of the model, and it is possible to monitor the R.E. stan-
dard deviation, instead of the R.E. mean value, to de-
tect phase transitions. Finally, the CAE corresponding
to infinite temperature, case IV, was used to reproduce
spin configurations of the J1−J2 antiferromagnetic Ising
model on the square lattice with J2/J1 = 0.9, to show
that in this case, the R.E. can split in four, which is the
ground state degeneracy in that system.

As possible perspectives we can mention firstly the
anomaly detection using CAEs in frustrated quantum
magnets, searching for an input with the lowest com-
putational cost that allows discriminate in an unsuper-
vised fashion complexly correlated phases such as quan-
tum spin liquids. Secondly, non-linear low dimensional
representations of many-body quantum systems48 are a
very interesting topic since exponentially large Hilbert
spaces could be approximate by smooth manifolds with
a much lower number of variables.
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A. Monte Carlo simulation

The Monte Carlo generation of data, using a Metropo-
lis Algorithm and single-spin-flip dynamics49, is per-
formed as follows. For each value of J2, we make
400 independent simulations starting from the high-
temperature phase (initial temperature: T0 = 4.5). A
set of 200 evenly-spaced temperature values is obtained
from the range [0.02, T0]. For each temperature, the spin
configuration and the temperature are saved once equi-
librium is reached. Thus, our dataset for each value of J2

FIG. 13. Two dimensional PCA representation of the system
with J2 = 0 on the left, and J2 = 1/2 on the right. Each
point corresponds to a spin configuration, and the color scale
corresponds to the temperature.

FIG. 14. Principal components λ of data, for several values
of J2. For each value of J2 the 900 principal components are
normalized to the largest one, and 1 ≤ n ≤ 900 orders them
in decreasing magnitude.

consists of 80000 samples or images. The size of the sys-
tem is 900 sites and the simulation was performed using
periodic boundary conditions.

B. Principal Component Analysis

The PCA50,51consists in performing a reduction of the
dimensionality of given a dataset, while preserving as
much information as possible, by finding new variables
called the principal components. These principal compo-
nents are linear functions of those in the original dataset,
that successively maximize variance and that are uncor-
related with each other. Finding these variables reduces
to find the eigenvalues and eigenvectors of the sample
covariance matrix associated with the dataset. Dimen-
sional reduction is achieved by keeping only the compo-
nents with the largest eigenvalues of the sample covari-
ance matrix. The off-diagonal elements of the sample co-
variance matrix are the covariances between spins, which
are related to the correlation between them.
Non-linear representations can be obtained by using Ker-
nel PCA52

In Fig. 13 we show two-dimensional representations
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computed with PCA for the Ising model with J2 = 0 and
J2 = 1/2. Each spin configuration xn, 1 ≤ n ≤ 80000,
is vectorized, i.e., inserted in a 1D column vector of
N = 900 components which is used as input for the PCA.
It can be seen that high-temperature spin configurations
are mapped to a disk centered at the origin as they are
uncorrelated. Nonetheless, we see that at low temper-
atures linear PCA fails to cluster low-temperature data
in the frustrated model, whereas Néel ordered configura-
tions converge to two well-defined points in these coor-
dinates, with Z1 ≈ ±30 and Z2 = 0. Note that in the
latter case a single variable, Z1, represents the ordered
phase, that has only two types of ordered configurations,
due to the Z2 symmetry of the Hamiltonian.

Fig. 14 shows the 900 PCA eigenvalues for different
values of frustration. Each eigenvalue list is normal-
ized to its maximum value for each J2. For J2 = 0 (or
J2 � 1/4) there is only one relevant principal compo-
nent. This component corresponds to the order param-
eter of the Néel phase, which is a linear combination of
the spins. It can be seen that frustration increases the
number of relevant principal components. It is interest-
ing to remark that the area under the curve is maximum
for J2 values around J2 = 1/4, where the system has its
low-temperature transition from the Néel phase to an-
other phase without long-range order43. The tendency
for a larger number of principal components to be rele-
vant around J2 = 1/4 takes place where the system is
maximally frustrated.

C. Mapping the honeycomb lattice to a square
array

Each unit cell in the honeycomb lattice is indexed by
two integers (i, j), where 0 ≤ i < N1 = 30 and 0 ≤ j <
N2 = 15 as we show in Fig. 15.

( 0 , 0 ) ( 1 , 0 )

( 0 , 1 )

( 0 , 2 )

( 0 , 3 )

( 1 , 1 )

(1,N2-2)

(1,N2-1)

(2,N2-2)

(2,N2-1)

(N1-1,2)

(N1-1,3)

FIG. 15. Honeycomb lattice. Ordered pairs correspond to the
indexation for each cell used in this work.

We map the honeycomb lattice to a square 30 × 30
array A as follows: each spin in the honeycomb lattice is
indexed by three integers in the 3-rank tensor Sk

ij , where

i and j determine the unit cell (i, j), and k = 0 or k =
1 corresponds to the left or right spin in the unit cell,
respectively. Then, we can construct the square 30× 30
array A by taking

Amn = S
mod(n,2)
mbn/2c (3)

with 0 ≤ m,n < 30, being mod(n, 2) the rest in the
division of n by two, and bn/2c the floor function which
gets the integer part in the division.

D. Architectures

1. Convolutional Autoencoders

The encoder is made by two convolutional layers
with relu activation functions, strides=2, filter size=3,
padding=’same’, kernel and bias regularizers are of type
l2 and of magnitude 10−4. The learning rate is 10−3 and
batch size is 256. From the training set, we take ten per-
cent of the data as validation data. The validation data
is not used to adjust the network parameters. It is used
to monitor if the network is overfitting. Each convolu-
tional layer is followed by a Dropout layer with a dropout
rate of 0.2. The initial size of the input images is 30×30,
and the feature maps generated by the encoder are of size
8× 8.

The decoder is made first by two convolutional trans-
pose layers with the same characteristics as the encoder
convolutional layers. Then, the final layer is a convolu-
tional layer with filter size 3, a sigmoid activation func-
tion, and a single filter, that combines all feature maps
in the final output.

We denote N1 and N2 the number of filters in the first
and second layers of both the encoder and decoder, re-
spectively. In trainings I and II N1 = 16 and N2 = 8,
whereas in trainings III and IV N1 = 32 and N2 = 16.
Here we emphasize that the CAE do not have a latent
space of dimension N2 because the enconder produces a
set of N2 feature maps each one of dimension 8× 8.

In trainings I, II and III the number of epochs used is
between 100 and 200. Training IV consisted of 2 epochs
over 250000 pseudo-random snapshots.

Input data of the neural network are normalized. Up
spins are ones and down spins are zeros. Then, when
computing the mean square error between the CAE’s
output and input, the maximum possible mean square
error is 1.

2. Convolutional classifiers

The CNN is made by two convolutional layers with
relu activation functions, filter size=3, no padding, and
no regularizers. The learning rate is 10−4 and the batch
size is 256. Each convolutional layer is followed by a
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max-pooling layer with a pool-size of 2. Next, there is a
flattening layer, connected to a dense layer of 16 neurons
with relu activation functions. Finally, the output layer
has 2 neurons with a softmax activation function.

As the maximum temperature in our Monte Carlo data
is 4.53 and some transitions temperatures are as low as
T ≈ 0.3, the training sets are very unbalanced. To bal-
ance our datasets in the classification we drop some high
temperatures configurations. For J2 > 1/4 the training
sets contain data with 0.02 < T < 1, and for J2 < 1/4
the training sets contain data with 0.02 < T < 3. From
each training set, we take ten percent of the data as val-
idation data. In every training, validation accuracy is

higher than 0.99.

E. Inflection point estimation

To obtain an estimation of the inflection point in the
R.E. results we first compute the mean value over the 400
realizations of the system. Then, we apply a Savitzky-
Golay filter from the scipy library, which is used to
smooth the data, by fitting several local low degree poly-
nomials. In this work, we use a window length of 21 and
a polynomial order of 3. Finally, we take the numerical
derivative and we find its maximum.
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