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Differential equation for the flow rate of discharging silos based on energy balance
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Since the early work of Hagen [G. H. L. Hagen, Ber. Verhandl. K. Preuss. Akad. Wiss. Berlin 17, 35 (1852)]
and Beverloo et al. [W. Beverloo et al., Chem. Eng. Sci. 15, 260 (1961)], the flow rate of granular material
discharging through a circular orifice from a silo has been described by means of dimensional analysis and
experimental fits and explained through the free-fall arch model. Here, in contrast to the traditional approach,
we derive a differential equation based on the energy balance of the system. This equation is consistent with
the well-known Beverloo rule due to a compensation of energy terms. Moreover, this equation can be used to
explore different conditions for silo discharges. In particular, we show how the effect of friction on the flow rate
can be predicted. The theory is validated using discrete element method simulations.

DOI: 10.1103/PhysRevE.101.052905

I. INTRODUCTION

When a granular material (such as seeds) flows through an
orifice at the base of a silo, the resulting flow rate presents
peculiar features when compared with the better-known phe-
nomenology of inviscid fluids. In particular, the flow rate of
grains does not depend on the height h of the material in the
silo. This was noted by Hagen [1] (for a translation of the
German publication see Ref. [2]). Moreover, Hagen showed
that the mass flow rate Q scales as D5/2

o , with Do the diameter
of the circular orifice. Compare this with D2

o, which is valid
for inviscid fluids. Hagen also provided the first heuristic
postulate to explain this 5/2 power, which was later termed
the free-fall arch model [3]. In brief, Hagen postulated that
grains move downward in the silo at a very low velocity until
they arrive at a region (about one orifice radius tall) close
to the opening at which the local density is low and grains
perform a simple free fall. From there, the typical vertical
velocity v at which grains cross the plane of the orifice can
be estimated (vout = √

gDo, with g the acceleration of gravity)
and the mass flow rate calculated as Q = π (Do/2)2ρovout =
(π/4)ρo

√
gD5/2

o , with ρo the local apparent density at the
orifice. It is customary to replace ρo by the density in the bulk
of the silo ρb. Therefore, the π/4 coefficient is replaced by a
constant C that is later fitted to the experimental data. Hagen
also noted that this expression does not agree entirely well
with the data. The solution to this was to consider that the
effective orifice is about one grain diameter d smaller due to
boundary effects, which leads to Q = Cρb

√
g(Do − d )5/2.

Beverloo et al. carried out a series of experiments and
found a more suitable expression to fit the mass flow rate
[4]. This expression (given below) became widely accepted

and is usually referred to as the Beverloo rule. Beverloo
et al. did not refer to Hagen’s work, but found the 5/2 power
based on dimensional analysis. Others in the decade preceding
Beverloo proposed expressions that were less successful. The
improvement with respect to Hagen was the introduction of
an additional constant k to the boundary effect correction. The
Beverloo rule states that the mass flow rate is

Q = Cρb
√

g(Do − kd )5/2, (1)

where k and C are two dimensionless fitting constants. The
fitted value for kexpt may vary between 1.4 and 3 depending
on the shape and size dispersion of the grains. However, Cexpt

≈ 0.58 with almost no influence of the type of material the
grains are made of [5]. The origin for this universal value of
C had not receive much attention until recently [6].

The problem of discharge of grains through an orifice has
been revisited by a number of authors (see, for example,
[7–15] and references therein). The basic phenomenology
has been confirmed in all studies, i.e., (i) the flow rate does
not depend on the column height, (ii) the flow rate scales
with D5/2

o , and (iii) the prefactor is C ≈ 0.58 for almost all
materials. However, Rubio-Largo et al. provided evidence that
the concept of a free-fall arch may not be a realistic picture of
the internal dynamics in the silo around the orifice [16].

This mechanical problem of discharge should be described
from first principles via energy balance as it is done for a fluid
(e.g., Bernoulli’s law). This has not been done successfully
so far, despite some attempts (see, for example, [17]). One
possible reason for this is that the rheological response of
the grains while flowing in a silo has received less attention,
leaving a gap in a basic component of the energy balance
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FIG. 1. Sketch of the axial cross section of a cylindrical silo.

analysis: the dissipated power. In this direction, Staron et al.
[18] have proved that the flow in a discharging silo can be de-
scribed by introducing the μ(I ) rheology model [19] into the
Navier-Stokes equations. This is, in practice, the introduction
of an effective dissipation term into the equations. Recently,
we have shown that, at a global scale in the silo, the flow
is consistent with the quasistatic limit in the μ(I ) rheology
[6]. In that work we provided an expression for the energy
dissipated during the discharge of a silo that will be revisited
in what follows.

In this work we derive a differential equation for Q as a
function of time during the discharge. This is achieved by
using the work-energy theorem for the system of interest,
which is defined as the set of grains that remains inside the silo
at any given time. To calculate the energy dissipation we use a
revised expression of the one presented in Ref. [6]. The result
is consistent with the Beverloo rule. We provide a theoretical
estimate for the value of C that is remarkably close to the value
obtained by experimental fits. Moreover, our equation predicts
an increase in the flow rate when the friction coefficient is
reduced, which is consistent with simulation results.

II. SYSTEM DEFINITIONS

We consider a cylindrical silo (see Fig. 1) of diameter Ds

(radius Rs = Ds/2 and cross section As = πR2
s ) with a flat

base. This base has an orifice of diameter Do in its center
(radius Ro = Do/2 and cross section Ao = πR2

o). With the
orifice covered, the silo is filled with an initial mass Mini of
a granular material that fills the silo up to a certain height. We
will consider that the bulk apparent density of the material
ρb is homogeneous throughout the column as a first-order
approximation. The mass of each grain is denoted by m.

When the orifice is opened, the discharge of grains starts.
During the discharge, the mass M(t ) inside the silo at time t
can be written as

M(t ) = ρbAsz(t ) = 2ρbAszc.m.(t ), (2)

where z(t ) is the height of the column of grains and zc.m.(t ) =
z(t )/2 is the center of mass of the granular column at time t .
Therefore, the mass flow rate Q(t ) is

Q(t ) = −Ṁ(t ) = 2ρbAsvc.m.(t ), (3)

where vc.m.(t ) = |żc.m.(t )| is the speed of the center of mass of
the granular column. Note that since M(t ) decreases with time
during the discharge, Ṁ and żc.m. are negative.

III. SIMULATIONS

To validate our theoretical model we carried out a series
of discrete element method (DEM) simulations of spherical
particles in a cylindrical silo as described in the preceding
section. We used the LIGGGHTS [20] implementation with
a particle-particle Hertz interaction and Coulomb criterion
using a Young modulus Y = 70 MPa, Poisson ratio ν = 0.25,
restitution coefficient e = 0.95, and friction coefficient 0.1 <

μ < 1.0. The same interaction applies for the particle-wall
contacts. Details on the particle-particle interactions are given
in Appendix A. The particle diameters are d = 1 mm and
their material density is ρ = 2500 kg/m3. The silo diam-
eter is Ds = 30 mm (some tests have been run also with
Ds = 24 mm). The orifice diameter is varied in the range
6.0 mm 6 Do 6 10.0 mm. Particles are poured into the silo
to fill a height z(t = 0) ≈ 10Ds (which implies up to 3 ×
105 grains, depending on the silo diameter). The orifice is
initially blocked by a plug. We let the grains come to rest
in the silo by waiting until the kinetic energy per particle
falls below 10−10 J. Then we remove the plug and allow the
material to discharge through the orifice. Although particles
are monosized, we do not observe crystalline structures in the
simulations. The magnitude of the acceleration of gravity is
set to g = 9.81 m/s2 and the integration time step is 1t =
5 × 10−6 s.

IV. WORK-ENERGY THEOREM AND DISSIPATED POWER

We focus on the system composed of the grains inside the
silo at any given time. According to the work-energy theorem,
the change in kinetic energy K̇in of this system of grains is

K̇in = Ẇg − Ẇout + Ẇel − Ẇd, (4)

where Ẇg is the power injected by the force of gravity acting
on the grains, Ẇout is the power loss due to the grains that
leave the silo through the orifice at a velocity vout, Ẇel is the
elastic power, i.e., the rate of change of the elastic energy
of the grain-grain contacts, and Ẇd is the dissipated power
due to the nonconservative interactions (friction and inelastic
collisions between the grains and between the grains and the
walls). Some of the terms in Eq. (4) are in fact negligible (K̇in

and Ẇel) and some are easy to calculate from basic mechanics
(Ẇg and Ẇout). We discuss those contributions in Appendix B.
In the rest of this section we focus on the dissipated power Ẇd.
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FIG. 2. Sketch of a simple plane shear cell. The top plate is
driven at constant velocity v.

In a recent work [6] we showed that the power dissipated
during a silo discharge can be calculated by assuming that
the flow is consistent with a quasistatic shear flow in the
framework of the μ(I ) rheology [19]. Here we present an
improved expression for Ẇd in which we consider in more
detail the local dissipation due to the convergent flow region
in the bottom part of the silo.

Let us first consider a simple plane shear configuration
(see Fig. 2). According to the μ(I ) rheology model [19], the
average tangential stress σxz required to keep the top plate
moving at constant velocity v can be written as σxz = μ(I )σzz.
Here σzz is the confining stress and μ(I ) is an effective friction
coefficient that accounts for all the complex interactions in
the granular sample between the plates. The effective friction
depends on the inertial number I = vd

√
ρ/L

√
σzz, with ρ the

density of the material the grains are made of [19]. The inertial
number suffices to characterize the flow as long as the grains
are stiff and L À d .

The power Ẇd dissipated during the motion of the top plate
in Fig. 2 is simply given by Ẇd = σxzAv, where A is the total
area of the top plate. Hence, the dissipated power can be
written as Ẇd = μ(I )σzzAv. In this expression, the effect of the
properties of the granular material on the dissipation comes
only through μ(I ) since σzz, A, and v are control variables
of the experiment. Interestingly, it has been shown that μ(I )
follows a universal curve for all granular materials as long
as the particle-particle friction is high enough (roughly above
0.4) [19]. However, this curve depends on geometrical factors
like dimensionality [21]. In the quasistatic limit (i.e., I ¿ 1,
with I < 0.01 a typical criterion used for practical proposes),
the value of μ(I = 0) becomes unique to all granular materials
for a given geometry if the particle-particle friction is above
0.4. Therefore, the dissipated power becomes independent of
the details of the particle-particle interactions in this limit (i.e.,
when I → 0 and μ > 0.4).

We postulate that the flow inside a discharging silo can
be modeled in a similar way to the simple plane shear ge-
ometry. In the cylindrical silo geometry, up and away from
the converging flow observed at the bottom of the silo, the
confining pressure can be taken as the mean radial pressure
hσrri(t ) (where the angular brackets indicate an average over
the height of the granular column), the driving velocity as the
velocity of the free surface of the granular column v = 2vc.m.,
and the plate area as the area of contact between the grains
and the silo lateral walls [A1(t ) = πDs2zc.m.(t )]. Note that v

is only a velocity that is characteristic for the motion of the
system at the macroscopic scale (as the plate velocity in the
plane shear experiment) and does not need to be compared

with the actual velocities of the grains or with the velocity
gradients in the system.

Close to the bottom of the silo, over a height of about Rs,
the flow converges to the orifice and the relevant confining
pressure is no longer radial in this section of the silo. We
therefore use, as a proxy for the confining pressure in this
region, the vertical component σ bott

zz (t ) averaged over the
bottom part of the silo (from the base to a height Rs). The
lateral area of this region is A = πDsRs, and we use also
the characteristic velocity v = 2vc.m.. However, there exists a
small region of height approximately equal to Ro right above
the base that does not contribute to the dissipation of energy.
This is due to the fact that grains close to the solid base do
not move significantly and then do not dissipate energy. Of
course, grains in the neighborhood of the orifice do move at
high velocities, but here the packing fraction is so low that
there are very few particle-particle interactions to dissipate
energy. Therefore, for the converging flow zone we take the
effective lateral area as A2 = 2πRs(Rs − Do/2). Using these
approximations, we can write the dissipated power in the
entire granular column as

Ẇd(t ) = μ(I )[hσrri(t )A1(t ) + ασ bott
zz (t )A2]2vc.m.(t ).

(5)

The first term in Eq. (5) accounts for the dissipation along
the upper part of the silo, whereas the second term accounts
for the contribution of the converging flow. The constant α in
this second term is introduced as a correction factor since the
active area, characteristic velocity, and confining pressure in
the converging zone are only estimates that should give the
correct scaling on the various variables but not necessarily the
correct numerical value for the dissipation. Using Eqs. (2) and
(3), we can write Eq. (5) as

Ẇd(t ) = −μ(I )2πRs

·
hσrri(t )

M(t )

ρbAs

+ ασ bott
zz (t )

µ
Rs − Do

2

¶¸
Ṁ(t )

ρbAs
. (6)

V. DIFFERENTIAL EQUATION FOR THE MASS
FLOW RATE

Collecting all terms for the energy balance from
Appendix B and the preceding section, i.e., plugging
Eqs. (B5), (B7), (B9), (B10), and (6) into Eq. (4), one can ob-
tain a differential equation for the mass flow rate Q ≡ −Ṁ(t ).
As we mention in Appendix B, some of these terms are in fact
negligible. In particular, we take K̇in = 0 and Ėel = 0. Finally,
Eq. (4) can be written as

0 = − g

ρbAs
M(t )Ṁ(t ) + Ṁ3(t )

2ρ2
o A2

o

+ μ(I )2πRs

×
·
hσrri(t )

M(t )

ρbAs
+ ασ bott

zz (t )

µ
Rs − Do

2

¶¸
Ṁ(t )

ρbAs
.

(7)
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Solving for −Ṁ,1 we obtain

−Ṁ(t ) = π
√

2

4
ρo

√
gD2

o

½
M(t )

ρbAs
− μ(I )2πRs

gρbAs

×
·
hσrri(t )

M(t )

ρbAs
+ ασ bott

zz (t )

µ
Rs − Do

2

¶¸¾1/2

.

(8)

Equation (8) is a first-order differential equation for M(t ) that
can be closed with an initial condition such as M(t = 0) =
M0. To solve this equation it is necessary to know hσrri(t ),
σ bott

zz (t ), μ(I ), and α. In the next section we revise the Walters
model for the pressure in discharging silos to obtain analytical
expressions for hσrri(t ) and σ bott

zz (t ) to close Eq. (8).
It is worth mentioning at this point that Eq. (7) reduces to

the equation for an inviscid fluid if the last term that accounts
for the dissipated power is neglected. In this case we obtain

−Ṁ2(t )

ρ2
o A2

o

= 2g
M(t )

ρbAs
,

vout =
p

2gz(t ),

(9)

where z(t ) is the column height and vout = Ṁ(t )/ρ2
o A2

o is the
mean velocity of the outflowing material.

VI. PRESSURE IN A DISCHARGING SILO

A. Walters dynamic stresses

Walters [22] and Walker [23] have developed models for
the pressure during silo discharge following an approach
similar to Janssen’s. In order to close Eq. (8) we will use these
previous developments. The expressions for σzz and σrr at a
given depth z0 (measured from the free surface of the granular
column) into the moving column are

σ Walters
zz (z0) = gρbDs

4B
[1 − e−4Bz0/Ds ], (10)

σ Walters
rr (z0) = gρbDs

4 tan φ
[1 − e−4Bz0/Ds ], (11)

where tan φ is the effective friction corresponding to the
wall yield locus [5] and B plays the role of the well-known
Janssen force redirection factor. For discharging (not static)
silos Walters obtains [22]

B = tan φ cos2 δ

(1 + sin2 δ) − 2y sin δ
,

y = 2

3c
[1 − (1 − c)3/2],

c = tan2 φ

tan2 δ
.

(12)

Here φ is the effective friction angle for the wall yield locus
and δ is the effective friction angle for the internal yield locus.
As discussed by Nedderman (see Sec. 3.7 in Ref. [5]), the

1Note that we have selected the negative root since this is the
physically meaningful root corresponding to negative Ṁ.

wall yield locus φ should not be set simply as arctan (μwall ).
Instead, the Jenike rule should be applied

tan φ =
½
μwall if sin δ > μwall

sin δ if sin δ < μwall.
(13)

For the vertical pressure on the converging flow zone we will
use as an estimate

σ bott
zz (z) = σ Walters

zz (z0 = z)

= gρbDs

4B
[1 − e−4Bz/Ds ], (14)

with z the granular column height. Note that Walters defines
z0 in the negative direction; therefore σ Walters

zz (z0 = z) is simply
the vertical pressure on the base of the silo.

Since in Eq. (8) we also require the average hσrri over the
entire column of grains, we average Eq. (11) from z0 = 0 to
the total depth z0 = z of the column, which yields

hσrri(z) = 1

z

Z z

0
σ Walters

rr (z0)dz0

= gρbDs

4 tan φ

·
1 + e−4Bz/Ds − 1

4Bz/Ds

¸
. (15)

In Fig. 3 we show σ bott
zz and hσrri obtained from DEM simula-

tions along with the theoretical predictions from Eqs. (14) and
(15), respectively. The particle-wall friction was set μwall =
0.5, which is larger than the internal friction of the material.
The curves have been fitted by setting tan δ = 0.204 and
tan φ = sin δ, following Eq. (13).

There are two interesting features to emphasize in Fig. 3.
First, hσrri saturates much more slowly than the bottom pres-
sure σ bott

zz . Second, the prediction for hσrri fails to some extent
for low column heights. Although this could be improved, we
will show that these expressions for the pressure are sufficient
to obtain valuable insight into the silo discharge.

B. Asymptotic pressure

A first-order approximation to the solution for Eq. (8) can
be obtained by replacing the asymptotic limit of Eqs. (14) and
(15) for high columns (z À Ds). These asymptotic expres-
sions are

σ bott
zz (z) = gρbDs

4B
[1 + O(z2)],

hσrri(z) = gρbDs

4 tan φ

·
1 − Ds

4Bz
+ O(z2)

¸
.

(16)

VII. COMPARISON WITH THE BEVERLOO RULE

A. Asymptotic equation and the 5/2 power law

Substituting Eq. (16) into Eq. (8) and using z = M(t )/ρbAs

[see Eq. (2)], we obtain

−Ṁ(t ) = π
√

2

4
ρo

√
gD2

o

·
M(t )

ρbAs

µ
1 − μ(I )

tan φ

¶

+ μ(I )Rs

2B

µ
1

tan φ
− 2α

¶
+ αμ(I )

2B
Do

¸1/2

. (17)
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FIG. 3. Plots of (a) hσrri and (b) σ bott
zz as a function of the total

mass M in the silo. Symbols correspond to DEM simulations for
different orifice diameters Do and different silo diameters Ds. Unless
otherwise stated, Ds = 30d . The particle-particle and particle-wall
friction coefficients were set to μ = 0.5. The solid lines correspond
to (a) hσrri according to Eq. (15) and (b) σ bott

zz (z) given by Eq. (14).
We have set tan δ = 0.204 to fit simultaneously both pressures. For
tan φ we used tan φ = sin δ, following Eq. (13).

Equation (17) becomes similar to the Hagen expression for
the flow rate if we select μ(I ) = tan φ = (2α)−1 and B = 1/4.
Under these conditions,

−Ṁ(t ) = π
√

2

4
ρo

√
gD2.5

o . (18)

As we showed in the preceding section, the Walters ex-
pressions for the pressure fit the DEM data if tan δ = 0.204
and tan φ = sin δ = 0.20. For these values, Eq. (12) yields
B = 0.26 ≈ 1/4. Therefore, the well-known Hagen relation
will hold if we simply set μ(I ) = 0.20 and α = 2.5.

To validate the values of μ(I ) and α required for Eq. (17)
to reduce to Eq. (18), we have calculated from our DEM
simulations the energy dissipated during discharge (see
Appendix A for details). In Fig. 4 we plot the dissipated
power along with the expression provided by Eq. (6) using
μ(I ) = 0.20 and α = 2.5. As we can see, the agreement is
remarkable not only for high columns [where the asymptotic
limit was used to predict μ(I ) and α] but also for low column
heights. This indicates that the two parameters introduced to
model the dissipated power in practice take values that lead
to a flow rate compatible with Hagen’s equation. It is worth

FIG. 4. Dissipated power Ẇd (scaled by the mass flow rate Q) as
a function of the total mass M in the silo. Symbols correspond to
DEM simulations for different orifice diameters Do and different silo
diameters Ds. Unless stated otherwise, Ds = 30d . The black solid
line corresponds to the expression proposed in Eq. (6). The blue
dashed and orange dot-dashed lines correspond, respectively, to the
first and second terms in Eq. (6) using μ(I ) = tan φ = sin δ = 0.2
and α = 2.5 as discussed in the text.

mentioning that the contribution due to the second term in
Eq. (5), which corresponds to the dissipation in the converging
zone of the flow, is small but not negligible (see the dot-dashed
line in Fig. 4).

B. Bulk density and prefactor C

As we mentioned in the Introduction, Hagen’s prediction
for the flow rate is Q = −Ṁ = (π/4)ρo

√
gD5/2

o . Therefore,
by measuring the packing fraction ρo at the opening and ρb in
the bulk of the silo one can provide an estimate for the con-
stant C since, according to Hagen’s analysis, πρo/4 = Cρb.
During discharge, ρo ≈ ρb/2 (see Appendix C for details),
implying that C ≈ 0.39. Surprisingly, this estimate is more
than 30% below the value obtained by fitting experiments by
various authors (Cexpt ≈ 0.58) [5].

In Eq. (8) the nondimensional prefactor (i.e., π
√

2/4)
differs from Hagen’s prefactor. If we use ρo ≈ ρb/2 (see
Appendix C) to replace the packing fraction at the orifice
by the bulk packing fraction in Eq. (8), the nondimensional
prefactor becomes π

√
2

8 ≈ 0.56, which can be compared with
the constant C in the Beverloo rule. This value deviates less
than 4% from the known value Cexpt ≈ 0.58. Hence our Eq. (8)
seems to be much more accurate in predicting the prefactor
than the Hagen equation.

It is important to note that the value of C is determined
by the expression for the power lost through the orifice [see
Eq. (B9) and compare with Eqs. (7) and (8)]. A key role is
played by the area of the cross section of the orifice Ao. For
a noncircular cross section, the factor C will take a different
value. For example, for a square orifice of side L (Ao = L2),
the prefactor becomes C = √

2/2 (bear in mind that we take
ρo ≈ ρb/2). This is consistent with the experimental results
from Ref. [24]. Based on the previous discussion, in the rest
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FIG. 5. Mass flow rate as a function of (D/d − k)5/2. Symbols
correspond to the DEM data. The lines correspond to both the
Beverloo equation (yellow solid) and the asymptotic expression
(black dashed) for the present work [Eq. (18) plus the boundary effect
correction] setting C = π

√
2

8 and fitting k = 1.72 ± 0.02. For these
simulations Ds = 30d and μ = 0.5 for the particle-particle and the
particle-wall interactions.

of the paper we will set C = π
√

2
8 when we use the Beverloo

expression for a circular orifice.

C. The −kd boundary effect correction

When calculating our energy contributions in Appendix B,
we assume that the system can be considered as a continuum
while calculating Ẇout. We calculate the mass flow rate as
−Ṁ(t ) = ρoAovout without considering that the orifice has a
size only a few times the size of one grain. This introduces
boundary corrections that we do not take into account.

The simplistic correction, in the style of Beverloo, done
by replacing the orifice diameter Do by an effective smaller
diameter Do − kd has been questioned [11,25]. However, this
is a simple way to incorporate this effect and we will use this
in what follows. For spherical grains, most authors conducting
either experiments or simulations in three dimensions indicate
that k ≈ 1.4. However, such a fitting value corresponds to
the parameter C fitted to 0.58. As discussed in the preceding
section, we now have a theoretical basis for setting C = π

√
2

8 .
If we do this and fit the only remaining parameter k we find,
for our DEM data (see Fig. 5), that k = 1.72 ± 0.02. This is
the value we will use for the rest of the paper. Note that with
C and k selected in this manner the Beverloo equation and the
asymptotic expression (18) for the current theory coincide.

VIII. EVOLUTION OF THE FLOW RATE DURING
DISCHARGE

Equation (8) closed by Eqs. (14) and (15) does not need to
be solved numerically as a function of time since a parametric
plot of −Ṁ(t ) as a function of M(t ) can be directly obtained.
In Fig. 6(a) we plot the flow rate during discharge. We also
include M(t ) without scaling in Fig. 6(b) as a reference. As
we can see, for most of the discharge, Eq. (8) predicts a
constant flow rate, in agreement with our DEM simulations

FIG. 6. (a) Mass flow rate as a function of the total mass M in
the silo during the discharge. The flow rate is scaled by the value
from the Beverloo equation, i.e., the asymptotic flow rate for a tall
column. The solid line corresponds to the prediction by Eq. (8)
using μ(I ) = 0.2 and α = 2.5. Symbols correspond to DEM data
for different Do and Ds. Unless stated otherwise, Ds = 30d . The
friction coefficient is set to μ = 0.5 for the particle-particle and the
particle-wall interactions. (b) Mass in the silo as a function of time
for the same simulations as in (a). Note that for the narrow silo we
used a lower initial mass.

and experimental observations. However, the model predicts
an early drop in the flow rate well before this is observed in the
simulations. We believe this discrepancy is connected with the
poor prediction of the pressure contribution hσrri for the final
stages of the discharge [see Fig. 3(a)]. We expect that future
developments on the estimation for the internal pressure in
silos will lead to an immediate improvement of the prediction
of Eq. (8) for the evolution of the flow rate.

Despite the shortenings of the prediction in the final stages
of the discharge, Eq. (8) provides a way to calculate the
evolution of the discharge. This offers the possibility to study
problems such as forced discharges that show a nonconstant
flow rate [6].

IX. PREDICTIONS FOR LOW PARTICLE-PARTICLE
FRICTION

In the previous sections we have observed excellent agree-
ment between the Beverloo equation and our theory by using
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μ(I ) = 0.2. This is possible because μ(I ) is not very sensitive
to the material properties of the grains if μ > 0.4 for the
particle-particle interaction [19]. This is why a wide range of
materials can be fitted to the Beverloo equation with a single
value for the constant C. However, if μ < 0.4 the effective
friction μ(I ) starts to drop. Therefore, we must expect that the
flow rate will depend on the particle-particle friction if μ <

0.4. Some authors have indeed reported that for low friction
the flow rate is higher [12]. This effect is not accounted
for in the Beverloo equation except for the fact that the
constant C can be fitted to a new value. However, Eq. (8) can
predict the effect of lowering μ without changing either the
nondimensional prefactor or k (we recall that k is introduced
when correcting Do by Do − kd). The correction is obtained
by tuning μ(I ), which has a clear physical interpretation from
the μ(I ) rheology.

In Fig. 7(a) we plot the mass flow rate during discharge
for different values of μ used in our DEM simulations. We
scaled the flow rate by the one predicted by Beverloo et al.
in the previous sections, which holds valid for large friction
(μ > 0.5). The solid lines correspond to Eq. (8), where we
have used as a fitting parameter the value of μ(I ). For μ > 0.4
we use μ(I ) = 0.2 as in the previous sections. For μ < 0.4
we set μ(I ) to lower values, while we keep α−1 = tan φ and
k = 1.72 as in the preceding section. The actual values of μ(I )
used are shown in Fig. 7(b). For reference, we also include
M(t ) without scaling in Fig. 7(c).

The values of μ(I ) are difficult to predict. These depend,
for example, on the geometry. In the quasistatic limit for
plane shear, while μ(I ) = 0.28 in two dimensions [19] it rises
to 0.36 in three dimensions [21]. It is difficult to provide
an independent estimate for μ(I ) as a function of μ for the
particular case of a cylindrical silo. However, Eq. (8) provides
the insight that the mass flow rate scales as

√
μ(I ).

X. CONCLUSION

We have used the work-energy theorem to derive an ex-
pression for the mass flow rate of a discharging silo as a
function of the mass inside the silo [see Eq. (8)]. For wide
silos and stiff grains, we have shown that the changes in
kinetic energy and elastic energy can be neglected. We have
used the concepts of the μ(I ) rheology to calculate the power
dissipated during discharge. The asymptotic limit of Eq. (8)
resembles the well-known Beverloo rule. Interestingly, the
nondimensional prefactor that we predict is within 4% of the
experimental fitted values. In addition, we have shown that
Eq. (8) provides a means to explain the higher flow rates
observed in low-friction materials.

It would be important to test the limitations of this ap-
proach when different conditions are used such as two-
dimensional silos; silos, orifices, and particles with different
shapes; hoppers; bumpy walls; use of an overweight; and use
of soft and/or deformable grains. In particular, recent simula-
tions with spherocylinders [26] have shown that μ(I ) depends
on aspect ratio, which should have an impact on the flow rate.
Also interesting is the potential application to suspensions and
submerged grains passing through constrictions since there
are recent developments that indicate that the μ(I ) rheology is
suitable to describe the flow in these systems [27,28]. Forced

FIG. 7. (a) Mass flow rate as a function of mass in the silo for
DEM simulations for different values of the friction coefficient μ. We
set Do = 10d and Ds = 30d . The particle-particle and particle-wall
values of μ are made equal. The flow rate is scaled by the Beverloo
equation. The solid lines correspond to the prediction of Eq. (8)
where μ(I ) is set to 0.2 if μ > 0.4 and to lower values if μ < 0.4.
(b) Values of μ(I ) as a function of μ used in (a). The solid line in
(b) is only a guide to the eye. (c) Mass in the silo as a function of
time for the same simulations as in (a).

silo discharges using overweights have shown nonconstant
flow rates during discharge [6,29]. An extension of Eq. (8)
to forced flows may be suitable to model the discharge under
such conditions.
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Finally, we suggest a potential extension for this theory.
The μ(I ) rheology is a local approximation that does not
account for the effects of particle size. The use of nonlocal
approximations (see, for example, [30]) may help to obtain
a correction to account for the empty annulus effect and so
avoid the simplistic approximation introduced to consider the
boundary effects at the orifice.
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APPENDIX A: INTERACTIONS FOR THE DEM
SIMULATIONS

We used LIGGGHTS [20] to calculate the trajectories of each
particle by integrating the Newton-Euler equations [31]. The
equations of motion for N grains are solved via a velocity
Verlet algorithm by advancing in small time intervals 1t .
We use the Hertz particle-particle interaction model with
Coulomb criterion [31]. In this model, the normal component
of the contact force between two grains i and j is defined as

Fn = knδ
3/2
n − γnδ

1/4
n δ̇n, (A1)

where

kn =
√

d

3

Y

1 − ν2
(A2)

is the elastic constant for normal contacts and δn is the overlap
in the normal direction between particles i and j, with Y the
Young modulus, ν the Poisson ratio, and d the diameter of the
particles. The damping constant for normal contact is

γn =
r

5

6

ln(e)p
ln2(e) + π2

r
Y m

1 − ν2

4
√

d, (A3)

which results from the solution of the Herztian spring-dashpot
model [32]. Here m is the grain mass and e is the coefficient
of restitution which is independent of the velocity [33]. In
addition, δ̇n is the normal relative velocity of the particles i
and j.

The tangential component of the contact force between
particles i and j is

Ft = −sgn(vt )min
¡¯̄

ktδtδ
1/2
n − γt δ̇tδ

1/4
n

¯̄
, μFn

¢
, (A4)

with vt the tangential relative velocity of the spheres at the
point of contact which takes into account the relative velocity
of the centers of the spheres and their rotation. The elastic
constant for tangential contacts is

kt = Y
√

d

(2 − ν)(1 + ν)
. (A5)

The damping constant for tangential contact is

γt = −2

r
5

6

ln(e)p
ln2(e) + π2

s
Y m

2(2 − ν)(1 + ν)
4
√

d . (A6)

Further, Ft is limited by Coulomb friction, with μ the friction
coefficient [31]. In this model, the static and dynamic friction
coefficients coincide. The tangential displacement δt , which
depends on the history of the contact, is calculated as

δt (t ) =
Z t

tc

vt (t
0)dt 0, (A7)

where tc is the time at which the contact begins.
To calculate the dissipated power in DEM simulations

there exist two basic approaches as described below.
Approach 1. At each time step the work done by the non-

conservative terms in the contact forces is calculated and this
is saved in a cumulative variable. This is done by taking the
dot product between the displacement δr of each contact and
the nonconservative part of the contact force in that time step
[i.e., the force vector resulting from combining the second
term in Eq. (A1) and either the second term in the absolute
value of Eq. (A4) or μFn, whichever applies]. This approach
has the advantage that one can accumulate separately different
contributions such as the tangential contribution [frictional,
Eq. (A4)] and the normal contribution [inelastic collision,
Eq. (A1)]. However, this is CPU demanding since the oper-
ation has to be done at every time step of the simulation.

Approach 2. At two different arbitrary times (which may
be separated by many time steps) one calculates the potential
energy of all conservatives forces and the total kinetic energy
(including rotations). The conservative forces include gravity
and the conservative terms of the contact forces [i.e., the first
term in Eq. (A1) and the first term in the absolute value of
Eq. (A4)]. These potential energies can be calculated at any
time since the conservative forces depend only on the current
positions of the particles (not the actual trajectories or veloc-
ities). Therefore, one does not need to make this calculation
at every time step to track trajectories. The difference in total
energy (potential plus kinetic) between the two times under
consideration corresponds to the energy dissipated by the non-
conservative terms in the contact interactions. Unfortunately,
this approach will not provide detailed information on the
contribution of each dissipation mode (friction and normal
collisions).

We have used approach 2 to obtain the dissipated energy.
This prevents us from having access to the detail of how much
energy is lost by friction and how much by normal collisions.
However, this is a very efficient method and suffices for the
purposes of the present study.

APPENDIX B: CONTRIBUTIONS TO THE
WORK-ENERGY THEOREM

In Fig. 8 we plot the different contributions to the power
injected or extracted from the silo obtained via a DEM simula-
tion of the silo discharge. We have run simulations for various
silo diameters, particle-particle interaction parameters, and
orifice sizes. All cases studied display the same trends as the
ones shown in this sample simulation.
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FIG. 8. Contributions to the work-energy balance during the
discharge of a silo as a function of time (DEM simulations): power
injected by gravity Ẇg, dissipated power Ẇd, power loss through the
orifice Ẇout , elastic power Ẇel, and rate of change of the internal
kinetic energy K̇in. Data correspond to a silo with Ds = 30d and
Do = 6d , while the particle-particle and particle-wall friction coef-
ficients are set to μ = 0.5.

1. Internal kinetic energy K̇in

As we can see in Fig. 8, the contribution of K̇in is one order
of magnitude smaller than Ẇout and three orders of magnitude
smaller than Ẇg. Therefore, we can neglect K̇in. To provide
a partial explanation for this observation consider the kinetic
energy of the grains inside the silo [34]

Kin(t ) = 1

2

X
i=1

mv2
i (t ). (B1)

The sum runs over all particles inside the silo at time t and
vi(t ) is the velocity of particle i. This can be expressed in
terms of the center-of-mass velocity vc.m. and the granular
temperature as Kin(t ) = Kc.m.

in (t ) + K temp
in (t ), where

Kc.m.
in (t ) = 1

2
M(t )v2

c.m.(t ) (B2)

and

K temp
in (t ) = 1

2

N (t )X
i=1

mi[vi(t ) − vc.m.(t )]2. (B3)

We will disregard the temperature term and focus on the
center of mass. We assume here that the x and y components
of vc.m. are null and therefore |vc.m.| = vc.m. = −żc.m.. Hence,
the rate of change of the kinetic energy is

K̇in(t ) ≈ K̇c.m.
in (t )

= M(t )vc.m.(t )v̇c.m.(t ) + 1
2v2

c.m.(t )Ṁ(t ), (B4)

which can be written, using Eqs. (2) and (3), as

K̇in(t ) ≈ 1

4ρ2
b A2

s

[M(t )Ṁ(t )M̈(t ) + 1
2 Ṁ3(t )]. (B5)

As we can see, K̇in decays as A−2
s . Therefore, K̇in will be

small for wide silos. We will see below that other terms in the
energy balance decrease as A−1

s .

2. Gravitational energy Ẇg

The gravitational potential energy of the particles inside the
silo is

Ug(t ) = M(t )gzc.m.(t ) = gM2(t )

2ρbAs
, (B6)

where we have used Eq. (2). Therefore, the power injected by
the action of gravity is

Ẇg(t ) = −U̇g(t ) = − g

ρbAs
M(t )Ṁ(t ). (B7)

As we can see, Ẇg scales with A−1
s in contrast to the faster

decay displayed by K̇in. We recall here that Ṁ(t ) is negative;
therefore Ẇg(t ) is positive. It is worth mentioning that Ẇg

is mostly dissipated and goes into Ẇd (see Fig. 8). A very
small portion of Ẇg goes into the draining grains (Ẇout), as
we discuss in the following section.

3. Discharge energy loss Ẇout

While the system discharges, the particles that leave the
system take away some energy since their own kinetic energy
is no longer part of the internal energy of the silo. If during a
time interval dt at time t the system discharges a mass dM =
−Ṁ(t )dt at velocity vout, then the kinetic energy removed per
unit time is

K̇out(t ) = − 1
2v2

outṀ(t ). (B8)

By definition, −Ṁ(t ) = ρoAovout. Therefore,

Ẇout = K̇out(t ) = − Ṁ3(t )

2ρ2
o A2

o

. (B9)

The power lost by discharge does not depend on the silo cross
section but on the orifice cross section Ao. Then again, Ẇout is
positive since Ṁ(t ) is negative. It is important to note that the
definition −Ṁ(t ) = ρoAovout is not strictly correct since the
velocity and the density at the orifice are not homogeneous
(see Appendix C for details) [25].

4. Elastic energy Ẇel

If the grains are stiff, the variation in the elastic energy
at the contacts is expected to be small. Here Ẇel corresponds
to the rate of change of the conservative component of the
contact forces Ėel. In Fig. 8 we show the rate of change in
elastic energy during a silo discharge in a DEM simulation. As
we can see, this term is of the order of the change in kinetic
energy K̇in and can be neglected in comparison with Ẇg and
Ẇout. Of course, this may be inadequate for very soft grains.
For our purposes, we simply disregard this contribution in the
analysis. However, this can be eventually included by using
the stress-based expression for the elastic energy density in
the limit of small deformations [35]

Eel = Aszc.m.σ², (B10)

with σ the stress tensor and ² the strain tensor.
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APPENDIX C: ESTIMATION OF ρo

Since the packing fraction and the particle velocities are
not homogeneous across the orifice, the correct flow rate has
to be calculated as [25]

Q =
Z Do/2

0
vo(r)ρo(r)2π r dr, (C1)

where vo(r) and ρo(r) are, respectively, the vertical velocity
and density profiles at the horizontal plane of the orifice as a
function of the distance r to the center of the orifice. If the
profiles are flat, one can write

Q = ρovoAo, (C2)

where Ao is the cross section of the orifice and ρo and vo are,
respectively, the mean density and mean vertical velocity at
the orifice, i.e.,

ρo = A−1
o

Z Do/2

0
ρo(r)2π r dr,

vo = A−1
o

Z Do/2

0
vo(r)2π r dr.

(C3)

This is in general invalid (for nonflat profiles) because the
integral of the product vo(r)ρo(r) is different from the product
of the integrals of vo(r) and ρo(r). It is worth mentioning that
if ρo(r) does not depend on r, then Eq. (C2) is valid if vo

is defined as in Eq. (C3). This is why expression (C2) is valid
for incompressible fluids. However, for granular materials, the
density across the orifice is not constant and Eq. (C2) is actu-
ally a poor approximation if ρo and vo are defined as in (C3).

Therefore, the definitions for vo and ρo in the simplified
equation (C2) need to be replaced by effective values rather
than mean values. As an example, we can set vo to the mean
value of vo(r) but then choose ρo to yield the correct flow rate.
We have done this for experiments and simulations from the
literature and found that setting vo to the mean value of vo(r)
leads to an effective value of ρo ∼ ρb/2. The mean value for
the packing fraction at the orifice is in fact lower (about ρb/3).
As an example, in our simulations for Do = 6d , the mass
flow rate is Q = 0.003 12 kg/s. The corresponding vertical
velocity at the orifice (averaged over a cylindrical region that
fits exactly in the orifice and has a height of d) is vo = 0.1353
m/s. Therefore, from Eq. (C2) above we find that the effective
apparent density at the orifice is ρo = 815 kg/m3. Since our
bulk ρb = 1475 kg/m3, then ρo/ρb = 0.55.
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