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Abstract. Multiclass problems are usually of high technological value,
but many classification methods are binary in origin. In the last years,
several improved solutions based on the combination of simple classifiers
were introduced. An interesting solution is based on creating a hierarchy
of sub-problems by clustering prototypes of each one of the classes; there-
fore the solution is heavily influenced by the label’s information. In this
work we analyze a new strategy to solve multiclass problems that makes
more use of spatial information than other methods. We construct a hier-
archy of subproblems, but opposite to previous developments, based only
on spatial information and not using a single prototype for each class.
We evaluate the use of different clustering methods (either agglomera-
tive or divisive) for this task and also the use two different classifiers
(linear SVM and FDA-GenRidge) for each sub-problem (if needed, be-
cause in several cases the clustering method directly gives a subset with
samples of a single class). We compare the new method with several pre-
vious approaches, finding promising results. The good performance of our
approach is virtually independent of the classifier coupled to it, which
suggest that it success is primarily related to the use of an appropriate
clustering strategy.

1 Introduction

Many interesting machine learning tasks are multiclass classification problems,
i.e., they can be posed as the problem of assigning a given example to one of a
finite set of classes. For example, a handwritten recognition system has to read
a series of strokes in a device and to assign them to one of the valid entries
to the system. Other classical examples include text and speech categorization
[3], object recognition in machine vision [10] or cancer diagnosis based on gene
expression data [20]. However, the most effective and influential classifiers avail-
able nowadays, Adaboost [9] and the Support Vector Machine (SVM) [6], were
designed to handle solely two classes (binary classifiers). Thus, the problem of
extending these binary classifiers to multiclass problem efficiently has been the
subject of several publications on the last years. Lorena et al. [17] is a valid an
complete review of recent works in the field.
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In this paper we describe the UPM (Unsupervised data-driven Partitioning
of Multiclass problems) method, a novel strategy to deal with multiclass prob-
lems, that combines unsupervised and supervised learning. Applying a clustering
algorithm, the method recursively splits the dataset in two, until the resulting
sub-problems can be easily discriminated. The result of the process is a decision
tree, which drives each example to an appropriate classifier at a given leaf. We
analyze the performance of the new method using diverse supervised and un-
supervised methods over several different multiclass datasets. Our results show
that UPM has potential advantages over similar approaches.

The rest of the paper is organized as follows. In the next section we review
previous works on multiclass problems, which motivate our development. In Sec-
tion 3 we give a detailed presentation of the UPM method. Then, in Section 4
we evaluate the combination of UPM with different clustering methods and clas-
sifiers on five datasets and finally, in Section 5 we discuss the results and future
lines of research.

2 Related Works

As we stated before, the problem of extending binary classifiers to multiclass
problem has been the subject of several publications on the last years. In partic-
ular, for SVM there are some direct extensions to multiclass problems, but un-
fortunately they do not produce accurate classifiers in most cases. For example,
Weston and Watkins [24] proposed a new formulation of the SVM (WW-SVM
from here on) that can solve a multiclass problem as a single optimization task.
Crammer and Singer [5], on the other side, introduced a generalized notion of
the margin of multiclass problems, with which they cast them as constrained
optimization tasks with a quadratic objective function, leading to multiple op-
timization problems of reduced size. We call that method the CS-SVM.

In general, most published efficient strategies are based on reducing the mul-
ticlass problem to a set of binary ones. There are mainly two types of approaches
to do this.

The first kind of methods is based on the principle that all classes are equiv-
alent (we call them “flat strategies”) and, in order to make a decision, each class
is compared to all others in the same way. The most simple method is the “One—
vs-All” or OVA method [21], in which a k—class problem is decomposed into k
binary sub-problems consisting in separating one of the classes from the rest.
Hastie and Tibshirani [12] suggested a different approach in which all k(k—1)/2
pairs of classes are compared to each other. This approach is called “One—vs-
One” or OVO, and is usually considered to be more effective than the OVA
approach [14], in particular for SVM. Flat methods are simple to understand
and implement, but they ignore useful information when solving the problem.
For example, it is easy to see that some classes in a given problem could be so
distant in the feature space that there is no need to train a particular classifier
on them. Also, Dietterich and Bakiri [7] presented an ensemble method in which
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the classes are partitioned into opposing subsets using error-correcting codes,
with a redundant number of classifiers.

The second kind of methods are Hierarchical Strategies (HS), which attempt
to use some of the spatial information in the problem at hand. HS methods build
a decision tree (or a decision directed acyclic graph [19]) with a binary classifier
at each node, and one class at each leaf. HS methods differ in the way in which
each binary classifier is created [8,23]. For example, Liu et al. [16] at each step
split the classes in two subsets using the k-means clustering method [18] applied
to the centroids of each class, and then train an SVM to learn to discriminate
both groups. The procedure is iterated until each node contains a single class.
The idea behind this method (called Adaptive Hierarchical Multi-class SVM or
AHM-SVM) is to look at each step for the split with the biggest separation
between both subsets. The number of binary classifiers created by AHM-SVM
is low, k — 1. Benabdeslem and Bennani [4] introduced a very similar procedure
(which we will call ALHC-SVM), in which the k-means clustering is replaced
with the average linkage hierarchical clustering method [15].

Both HS methods described before create a hierarchy of sub-problems based
on prototypes of each one of the k classes. According to this, the solution pro-
duced by the clustering stage is heavily influenced by the label’s information.
Furthermore, they use a single prototype for each class, assuming that all classes
are compact structures in the feature space. Unfortunately, real world datasets
frequently do not have this property.

3 The Unsupervised Partitioning Method for Multiclass
Problems

The UPM method follows the same principle that our previous REPMAC de-
velopment for imbalanced problems [1]: To divide the multiclass problem intelli-
gently into several sub-problems (clusters) in order to translate a big multiclass
problem into a set of simpler and smaller sub-problems. The general strategy
is simple, we first use a clustering method in order to produce a hierarchy of
sub-problems and then we train classifiers, when needed, to solve the simpler
problems at the leaves of the decision tree. In Figure 1 we show a scheme of
UPM.

Our strategy to solve multiclass problems makes use of even more spatial
information than cited HS methods, because UPM produces a hierarchy of sub-
problems, but opposite to previous developments, based only on spatial infor-
mation and not using class labels at any time neither a single prototype for
each class. Our goal is to split the problem into a series of simple and natural
sub-problems using a given clustering method (either agglomerative or divisive).
Following, we apply a classifier to each sub-problem (if needed, because in sev-
eral cases the clustering method directly gives a subset with samples of a single
class).
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UPM

Inputs:
D : The dataset
Cl() : A clustering method
DF() : A decision function (i.e. a classifier)

Function UPM(D, Cl, DF):
1. Apply Cl to D to create D1 and Do
2. Fori=1to 2:
IF Stopping—Criteria(D;) is met THEN
Build a classifier DF(D;)
ELSE
CALL UPM(D;,Cl,DF)

Fig. 1. The UPM algorithm.

3.1 Hierarchy Construction

In order to create the hierarchy of subproblems we applied in this work two
different hierarchical clustering methods.

Divisive clustering: On one side, we used a divisive method, recursively split-
ting the dataset in two with the well-known k-means clustering method [18] (KM
from here on). Divisive clustering methods usually have a stopping criteria for
the recursive process. In this case we stop the recursion if:

i) all the datapoints in a cluster belong to the same class or

ii) there are only two classes in the cluster or

iii) there are less than S, points in the cluster .

The first two conditions are easy to understand, the last one stops the split-
ting if the cluster has only a few datapoints and a further split should leave us
with less points than needed to train efficiently a classifier at the given node.

Aglomerative clustering: On the other side, we applied two well-known hier-
archical clustering methods [22], which are agglomerative in nature: the Average
Linkage (AL) and the Single Linkage (SL) strategies. In this case, the method
builds a full hierarchy, starting from individual datapoints and ending with all
the dataset in a single cluster. In order to use this hierarchy in the learning pro-
cess we need to prune the resulting tree with the aim of having problems that
can be solved at each leaf. According to this, starting from the root, we go down
the tree and check at each node if any of the three stopping criteria explained
above is met. When this is the case, we prune the tree at that node and replace
the subtree with a leaf containing all the points in it.

! We usually use S, = 15 in this work, but we discuss this selection in detail in the
next section.
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Classifiers: At the final step, an appropriate decision function is used to assign
classes to all the points at each leaf. If the cluster has only one class (criteria
(i) was met) then we obviously assign that class to the leaf. If criteria (ii) was
met (a binary problem) we fit directly a binary classifier to the datapoints in the
cluster. Finally, in the few cases in which the leaf was created by criteria (iii) we
fit a multiclass classifier to the leaf.

In this work we use two types of classifiers. On one side we utilize the well-
known SVM [6] which find the maximum-margin separating hyperplane between
datapoints of different classes. Linear SVM has only one free parameter, the
constant C' that controls the margin. When one of the clusters meets criteria (ii)
we train a binary linear SVM with the datapoints in the cluster. If the leaf was
created by criteria (iii), we fit an OVO-SVM to the leaf.

We also use Flexible Discriminant Analysis as classifier. FDA was intro-
duced by Hastie et al. [11] as an improved version of classical Fisher’s LDA [13].
LDA is a standard tool for classification and dimension reduction. Roughly, it
seeks a linear combination of features, which maximizes the ratio of its between-
class variance to its within-class variance. After that, classes are typically as-
signed according to Mahalanobis distances to class centroids in this transformed
space. FDA is a regularized version of LDA, more appropriate for noisy, high—
dimensional situations. The method is based on recasting the LDA problem as a
regularized linear regression one, and then to apply any of the many well-known
techniques available for this task. We use here the standard version of FDA called
Ridge Regression (GenRidge) [13], which has only one free parameter, the ridge
constant A that penalizes high values of the fitted variables. A plays a similar
role to the C' parameter in SVMs, regulating the margin of the solutions [13].
As FDA is a direct multiclass classifier, we fit an standard GenRidge FDA to a
given cluster when criteria (ii) or (iii) is met.

Outliers handling: Outliers, which by definition are isolated points of one
class, are usually a problem for HS methods. At this first development stage we
choose to ignore outliers: If at a given cluster there are less than O,,;, datapoints
of a given class (O, = 4 in this work) we consider them as outliers and do not
count them when evaluating the stopping criteria or training a classifier.

3.2 Classification of New Datapoints

Once we have the full decision tree, a new example is classified following this
procedure: At each level of the tree (starting from the root), the example is
assigned to one of the branches, according to the rules of the clustering method
(for example, for divisive KM, looking for the nearest centroid or looking for the
nearest neighbor for SL). The procedure is iterated until a leaf is reached, where
the example is classified using the decision function associated to that leaf (a
given class for pure nodes or a classifier in other cases).
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Table 1. Details of the 5 datasets used in this work. The k column shows the number
of classes, p column shows the number of inputs, train and test columns show the
corresponding number of datapoints in each set.

Dataset k P train test
Clouds 5 2 600 400
Pendigits 10 16 7494 3498
Letters 26 16 16000 4000
Satimage 6 36 4435 2000
Yeast 10 8 1113 371

4 Experimental Evaluation

We evaluated the performance of the UPM method first over an artificial dataset
and then using 4 different datasets obtained from the UCI repository [2]. In Table
1 we show their main characteristics. All used problems have several classes and
different number of samples/features. Three datasets (Clouds, Pendigits and
Letters) are well balanced while the other two show classes with a low fraction
of samples.

The Clouds artificial datasets is a two dimensional problem with 5 classes.
Four classes are simple Gaussian distributions, but class one is a bimodal distri-
bution created by the union of two well-separated Gaussians. Figure 2 show a
sample of the dataset.

4.1 Setup

In this work we analyze the performance of UPM using three different clustering
methods (KM, SL and AL) coupled with two classifiers: linear SVM and FDA-
GenRidge. As we have fixed external test sets for evaluation, for each dataset we
produced a single run of each method, training with the corresponding subset
and after that applying the classifiers to the test set.

In the initial set of experiments we evaluated the use of SVM classifiers. In
this case we selected for comparison several multiclass SVM methods that were
already discussed in the Related Works section. First, we applied two direct
multiclass SVM methods, the WW-SVM and the CS-SVM. Then we considered a
flat method, the OVO strategy. Finally, we included two HS methods, the AHM—-
SVM and the ALHC-SVM. For the UPM method we used the three clustering
strategies discussed before, KM, SL and AL. In all cases we used linear SVMs as
classifiers, with the C' parameter selected by an internal Cross Validation (CV)
of the corresponding training data.

For the second set of experiments we utilized FDA-GenRidge as classifier. In
this case we used for comparison the direct multiclass FDA-GenRidge (as it is
available) and the OVO strategy. We also evaluated both HS strategies discussed
before and the three UPM methods (KM, SL and AL), in all cases replacing the
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Table 2. Comparison of the classification error using linear SVM classifiers.

WW CS OVO ALHM AHM KM SL AL
Clouds 0.115 0.113 0.110 0.113  0.110  0.023 0.108 0.025
Pendigits 0.078 0.081 0.048 0.135 0.127  0.050 0.029 0.076
Letters  0.283 0.253 0.144  0.285 0.271 0.156 0.130 0.155
Satimage 0.160  0.174  0.138 0.153  0.162 0.110 0.139 0.116
Yeast  0.402 0.512 0.394  0.412 0.461 0.434  0.442 0.439

Table 3. Comparison of the classification error using FDA-GenRidge classifiers.

FDA OVO ALHM AHM KM SL AL
Clouds 0.133 0.123 0.135 0.123 0.033  0.125 0.040
Pendigits 0.171 0.060  0.181 0.166 0.048  0.029  0.078
Letters  0.305 0.189 0.373 0.307  0.165 0.098  0.155
Satimage 0.178 0.157  0.177  0.198 0.114  0.136 0.121
Yeast  0.383 0.529 0426 0407 0404 0471 0.420

linear SVM with an FDA-GenRidge classifier. In all cases the ridge constant A
was determined by an internal CV as same as previous experiment.

4.2 Results

In Table 2 we show the corresponding error levels for all methods using SVM
classifiers. In four out of five problems one of the versions of UPM gives the best
result and in the Yeast dataset only the OVO strategy outperforms our method.
It is interesting to note that the traditional OVO method works better than
all other previous methods in the five datasets considered in this experiment.
Comparing the results of the three different strategies for constructing the hi-
erarchy of subproblems in UPM, the divisive KM is superior in three cases and
the agglomerative SL in others two, while AL ends in between of both methods
in 4 out of the five cases.

The error levels obtained with FDA-GenRidge classifiers are shown in Table
3. The performance of all methods over the five datasets is slightly lower than
the implementation with linear SVM. The key result is that, as with SVM, an
UPM version outperforms the other methods in four out of the five datasets.
Another interesting result is that OVO is superior to the direct implementation
of FDA in all but the last dataset.

In Table 4 we show, for different values of S, the test set error level and
the number of classifiers (grouped by type) used by the UPM method with
AL clustering. It can be seen that in all datasets the influence of S, in the
performance of the method is minimum. As expected, the number of multiclass
leaves increases and the total number of leaves decreases with higher S, values.
As a compromise, we choose S, = 15 as the general stopping criteria in this
work. With respect to the number of binary classifiers, it is interesting to note
that the ALHM and AHM methods use less of them (k — 1) than all UPM
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Table 4. Analysis of the structure created by UPM and its dependence with the .S,
parameter. The last three columns show the number of each type of classifier for the
AL - linear SVM case.

One-

Dataset Sp Error Binary Multiclass
class
10 0.075 9 15 0
15 0.076 9 15 0
Pendigits 20 0.075 9 15 0
25 0.074 9 15 0
30 0.075 9 15 0
10 0.155 198 194 0
15 0.155 196 194 1
Letters 20 0.153 182 188 12
25 0.155 164 177 26
30 0.155 153 162 38
10 0.116 34 30 0
15 0.116 34 30 0
Satimage 20 0.113 33 29 1
25 0.114 29 29 3
30 0.116 27 27 5
10 0.437 23 23 0
15 0.439 22 22 1
Yeast 20 0.439 16 20 5
25 0.423 16 19 6
30 0.409 13 19 7

versions, but their performance is limited, as was shown in Tables 2 and 3. On
the other hand, UPM usually produces less binary classifiers than the OVO
method (usually near a half of OVO’s k(k — 1)/2). Furthermore, UPM with AL
produces several clusters that have only one class (no classifier needed).

4.3 Analysis

In Figure 2 we show a plot of the artificial Clouds dataset. It can be noted
that classes 2 to 5 have the spatial distribution that is assumed by the other
HS strategies. However, points of class 1 have a very different structure, with
two well defined clusters each one. In Table 5 we report the error levels for each
individual class in this problem. For “simple” classes like 2 or 3 all methods
show similar results. On the other hand, for more complex classes like 1 and 5
(located between the two clusters of class 1), the new UPM strategy (in the KM
and AL versions) clearly outperforms previous HS methods.

In order to add evidence in this direction, we produced a new problem derived
from the Pendigits dataset by joining classes 0 and 1 in a unique class (called
“0+1”) and keeping the rest of the dataset unchanged. In Table 6 we show
the error levels for each class using SVM classifiers and, in the last row, the
results of all methods for the new combined class. It is clear from the table that
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Fig. 2. Visualization of the'artificial Clouds dataset.

Table 5. Clouds dataset: detail of error levels per class, using SVM classifiers.

Class WwW CS OVO ALHM AHM KM SL AL
1 0.325 0513 0275 0313 0.300 0.075  0.275  0.100
2 0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000
3 0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000
4 0.038  0.050 0.038 0.038 0.013 0.038 0.025  0.013
5 0.213 0.000 0.238 0.213 0.238 0.000 0.238  0.013

previous HS methods have increased considerably their error levels while the
UPM strategy can easily cope with this problem.

The same effect can be seen in the Letters dataset. In Table 7 we show the
corresponding error levels of six particular classes for all methods. Again, it is
clear from the table that the complex classes do not degrade the performance of
UPM methods as they do with previous HS methods.

5 Conclusions

In this work we discussed a new strategy to deal with multiclass problems, the
UPM method. It has two steps, first it uses a clustering algorithm to construct a
hierarchy of easier subproblems, and then it trains classifiers to solve each indi-
vidual sub-problem. One of the advantages of the new method is that it usually
produces clusters containing only one class, where no classifiers are needed.
Using five datasets we compared our new algorithm with previous methods
for multiclass problems. Overall, UPM showed the best results in four datasets,
being second in performance in the fifth case. We evaluated three different strate-
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Table 6. Pendigits dataset: detail of error levels for all classes using SVM classifiers .
Also, error level for an artificial class created by joining samples from classes 0 and 1.

Class WW CS OVO ALHM AHM KM SL AL

0 0.110  0.105 0.085 0.143 0.077  0.058 0.030  0.041
1 0.121 0.091 0.047  0.404  0.135 0.071 0.041 0.025
2 0.016  0.019 0.022 0.113 0.055 0.025 0.008 0.036
3 0.021 0.021 0.012 0.024  0.021 0.018 0.012 0.086
4 0.019  0.022 0.011 0.025 0.069 0.047  0.025 0.115
5 0.0567  0.107  0.027  0.269 0.266 0.063 0.039 0.054
6 0.042  0.045 0.015 0.030 0.033 0.021 0.003 0.033
7 0.168  0.170 0.118 0.173 0.247  0.118 0.085 0.091
8 0.152  0.140 0.098 0.110 0.193 0.012 0.006 0.051
9 0.068  0.086 0.042 0.042 0.176 0.063 0.036 0.140
0+1 0226 0.199 0.109 0.287  0.354  0.066 0.032 0.037

Table 7. Letters dataset: detail of error levels for some classes using SVM classifiers.

Class WwW CSs OVO ALHM AHM KM SL AL
0.591 0.513 0.234 0.364 0.474 0.169 0.182 0.130
0.250 0.197 0.151 0.276 0.217 0.125 0.112 0.118
0.576 0.483 0.272 0.285 0.298 0.185 0.172 0.099
0.293 0.248 0.172 0.242 0.401 0.159 0.127 0.140
0.497  0.424 0.344 0.430 0.457 0.212 0.166 0.179
0.231 0.169 0.113 0.244 0.238 0.113 0.069 0.081

HnO O Q@

gies for constructing the hierarchy, one divisive and two agglomerative. The AL
strategy seems to be the most useful, as it shows good results in all cases with
a limited number of classifiers. The evaluation of two type of classifiers showed
that the performance of UPM is similar in all cases, being only slightly lower
when using FDA—GenRidge classifiers. This suggests that UPM’s success is inde-
pendent of the classifier selection, being more related to the use of an intelligent
clustering strategy to solve multiclass problems.

We also showed that UPM’s unsupervised strategy is more efficient when fac-
ing the problem of classes with complex spatial structures than previous meth-
ods, like for example some classes of the Clouds, Pendigits or Letters datasets.

Future work includes an extended evaluation of the UPM method, including
other datasets and classifiers.
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