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Abstract. Feature selection is a useful machine learning technique aimed
at reducing the dimensionality of the input space, discarding useless
or redundant variables, in order to increase the performance and in-
terpretability of models. The well-known Recursive Feature Elimination
(RFE) algorithm provides good performance with moderate computa-
tional efforts, in particular for wide datasets. When using Support Vector
Machines (SVM) for multiclass classification problems, the most typical
strategy is to apply a simple One–Vs–One (OVO) strategy to produce a
multiclass classifier starting from binary ones. In this work we introduce
improved methods to produce the final ranking of features on multiclass
problems with OVO–SVM, based on different combinations of the set
of rankings produced by the diverse binary problems. We evaluated our
new strategies using wide datasets from mass–spectrometry analysis and
standard datasets from the UCI repository. In particular, we compared
the new methods with the traditional average strategy. Our results sug-
gest that one of our new methods outperforms the traditional scheme in
most situations.

1 Introduction

In-silico chemistry [1] and biology, “high-throughput” technologies [2] or text
processing are current problems of high technological importance in machine
learning, which share the characteristic of presenting much more features than
measured samples [3] (wide datasets). Usually, most of these variables have a
relatively low importance for the problem at hand. Furthermore, in some cases
they interfere with the learning process instead of helping it, a problem usually
known as “the curse of dimensionality”.

Feature selection is a useful pre–processing technique aimed at the solution of
this problem[4]. Its main goal is to find a small subset of the measured variables
that improve, or at least do not degrade, the performance of the modeling method
applied to the dataset. But feature selection methods do not only avoid the curse
of dimensionality, they also allow a considerable reduction in model complexity,
an easier visualization and, in particular, a better interpretation of the data
under analysis and the developed models [5].
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The well-known Recursive Feature Elimination (RFE) algorithm provides
good performance with moderate computational efforts [6] on wide datasets. The
original and most popular version of this method uses a linear Support Vector
Machine (SVM) [7] to select the features to be eliminated, which is widely used
in Bioinformatics [6, 8]. Alternative methods were introduced by Granitto et al.
[9, 10] and Izetta et al. [11], which basically replace SVM with Random Forest
or ANN ensembles into the core of the RFE method.

Typical feature selection algorithms are designed for binary classification
problems. Multiclass problems have received much less attention, because of their
increased difficulty and also because some classifiers (needed for the selection) are
designed to solve binary problems. Most methods available for feature selection
on multiclass problems are simple extensions of base methods. For example, RFE
can be associated to a multiclass classifier like Random Forest [12].

Although SVM was originally developed to deal only with binary problems, it
was extended to solve multiclass problems in different ways [13, 14], but with low
success. On the other hand, in the last years several methods were developed to
solve a multiclass problem using an appropriate combination of binary classifiers
[15, 14]. The most used strategy for multiclass SVM is known as “One–vs–One”
(OVO). In this case a problem with c classes is replaced with c(c− 1)/2 reduced
problems, each one consisting in discriminating a pair of classes. Thus, the most
common way of implementing a multiclass SVM-RFE method is to use directly
the RFE algorithm over an OVO-SVM.

Interestingly, this common solution to the multiclass RFE-SVM problem in-
volves some decisions about the feature selection process that are usually ne-
glected. In particular, the algorithm uses a very simple solution to the problem
of selecting candidate features from multiple lists [16]. As the original problem
is decomposed into several binary sub-problems, the algorithm produces a list
of relevant features for each one of these sub-problems. In this work we review
the base strategy used in this case and propose two new strategies aimed at an
efficient selection of features from multiple candidates coming from the several
OVO binary problems.

The rest of this article is organized as follows: in Section 2, we describe the
typical OVO–RFE feature selection scheme and discuss our two new strategies.
In Section 3 we evaluate the three methods using wide and normal datasets.
Finally, we draw some conclusions in Section 4.

2 Multiclass RFE

Granitto et al. [17] explain that the RFE selection method [6] is a recursive
process that ranks variables according to a given measure of their importance.
At each iteration the importance of each feature is measured and the less rel-
evant one is removed. Another possibility, which is the most commonly used,
is to remove a group of features each time, in order to speed up the process.
Usually, 10% of the variables are removed at each step until the number of vari-
ables reaches a lower limit, and from that point on the variables are removed
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one at a time [18]. The recursion is needed because for some measures the rela-
tive importance of each feature can change substantially when evaluated over a
different subset of features during the stepwise elimination process (in particular
for highly correlated features). The (inverse) order in which features are elim-
inated is used to construct a final ranking. The feature selection process itself
consists only in taking the first n features from this ranking. In the original bi-
nary version of SVM–RFE [6], the projection of W (the normal vector to SVM’s
decision hyperplane) in the direction of each feature is used as the measure of
importance.

As we discussed in the previous section, the OVO strategy is the most typ-
ical way to produce multiclass feature selections based on SVM classifiers. In
this case, a problem with c classes is decomposed into p = c(c − 1)/2 binary
problems discriminating between all possible pairs of classes. At each step of
the RFE algorithm an OVO–SVM is adjusted using the training data over all
the remaining features and a single ranking of variables is produced, from which
some variables are eliminated. To produce a single ranking from the set of binary
problems, the method simply averages the (unsigned) components of W from all
the binary problems. In the following, we will call this base method the Average
SVM–RFE. The drawback of this strategy is that a feature that is crucial for a
given class but useless in other cases is usually ranked bellow other features that
have a moderate relevance for all the classes (because of the simple averaging
over the components of W ).

On the other side, this problem can be viewed as the problem of selecting
candidates from multiple ranked lists [16]. In fact, we can follow an “a posteriori”
strategy, letting each OVO problem produce a complete ranking of features for
each individual problem using binary SVM–RFE, and then using voting schemes
to produce combined rankings valid for the complete multiclass problem. Our
goal here is to give more relevance to features that are the most discriminant for
some binary problems and on the other hand to reduce the ranking of “average”
features that never reach top positions in the individual rankings.

With this in mind we implemented two different schemes. The first strategy
is called Best Ranking. For each feature we keep only the best ranking among
the p binary problems and we produce the final ranking based on that informa-
tion. When we have a tie (as many different features could reach the same best
position), we order those features according to the average position over the p
rankings. The second strategy is called K-First. The general idea in this case
is to consider not only the best position but a group of features ranked at top
positions. To this end, for each binary problem we selected the top K features
and assigned each one a weight that is proportional to its position in that re-
duced ranking (i.e., we give a weight of 1 to the top feature, 0 to the K + 1
one, and a linear scale in between). After that, we produce the final ranking
averaging these weights over the p lists. The K parameter completely regulates
this strategy. Changing its value, the K-First strategy could be more similar to
the Average strategy (for high K values) or to the Best Ranking strategy (for

40JAIIO - ASAI 2011 - ISSN: 1850-2784 - Página 194



Fig. 1. The computational setup used for the feature selection process
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very low K values). In this work we used a fixed value for K equal to 10% of
the total number of features in the problem.

3 Experiments

3.1 Experimental setup

It is well-known that a feature selection method that uses (in any way) informa-
tion about the targets may lead to overfitting, in particular with wide datasets.
Thus, an appropriate experimental setup is needed for these experiments [19].

As in previous works [11], we use a computational setup consisting of two
nested processes. The outer loop performs n times a random split of the dataset
in a training set (used to develop the models – including the feature selection
step), and in a test set, used to estimate the accuracy of the models. The inner
process (Figure 1) supports the selection of nested subsets of features and the
development of classifiers over these subsets (using only the learning subset pro-
vided by the outer loop). The results of the n replicated experiments are then
aggregated to obtain error rates estimation.

3.2 Datasets

We used five real world datasets, listed in Table 1. The first three problems are
wide datasets, while the last two are traditional “tall” problems that were in-
cluded to check the new methods also in this more typical context. The first two
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refer to cultivar characterization of berry fruits (Strawberries [20] and Rasp-
berries) and the third one to typicality assessment of Grana cheeses [21]. All
products come from Trento Province, North Italy, or other places in the same
area. In all cases the headspace composition of the samples has been measured
by direct injection in a PTRMS apparatus (experimental details can be found in
previous papers [20]). Each sample was then associated to its PTR-MS spectrum
normalized to unit total area. The last two datasets were obtained from the UCI
repository [22] and were selected for being real world data with several classes.

For all cases we replicate the feature selection process on n = 100 runs. For
each run, we split the dataset at random into train/test sets with a 75%/25%
proportion, stratifying on class frequencies. Each train set is used for the three
SVM-RFE strategies to select features and to develop models, which are then
evaluated on the corresponding test set.

3.3 Classification Errors

In Figures 2, 3 and 4 we compare the three selection methods on the PTR-MS
datasets. In all cases we show mean classification errors (± the standard error
of the mean) as a function of the number of features selected at each step for
the three methods. In the last two cases the K-First strategy clearly produces
the lowest error rates, while in the Fragola case there are not clear differences in
this aspect. On the other hand, it is always interesting to analyze the behavior
of the methods when selecting only a few features. In this case the results are
opposite, in two out of the three problems K-First shows the worst results.

In Figures 5 and 6 we show the corresponding results for the two tall datasets.
Qualitatively, the results are similar to the wide datasets. In both problems the
K-First strategy shows the minimum error rate and also its performance degrades
when considering just a few features.

4 Analysis and Conclusions

In this exploratory work we have introduced two new strategies for feature se-
lection on multiclass problems, all based on the well-known SVM-RFE method.
We discussed the traditional OVO strategy (Average) and its limitations and

Table 1. Details on the five datasets used in this work.

Dataset Variables Samples Classes

Fragola 232 233 9
Lampone 232 92 5
Grana 235 60 4

Satimage 36 500 6
Pendigits 16 500 10
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Fig. 2. Error rates as a function of number of variables selected by the three RFE
methods for the Fragola dataset.
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described the Best Ranking and K-First strategies. Both methods are based on
simple strategies to produce ranked list from multiples sources in voting theory.

The Best Ranking strategy works by giving high rankings to features that
are very relevant at least for one problem. Our results suggest that this strategy
is not superior to the traditional method. It is probable that this method is
discarding relevant features (that are not ranked strictly at the first position) at
early stages of the process.

The K-First strategy, on the other hand, considers a subset of very rele-
vant features for each binary problem. Our preliminary results suggest that this
strategy has the potential to discard redundant or irrelevant features at the first
stages of the method, leading in almost all cases to the lowest error rates. How-
ever, the method clearly loss performance when working with a few features. We
believe that this is related to our use of a fixed K value. It is evident in all figures
that K-First’s results deteriorates when working with less than K features. More
work is needed in this direction in order to evaluate diverse alternatives to our
current simple threshold strategy.
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Fig. 3. Error rates as a function of number of variables selected by the three RFE
methods for the Lampone dataset.
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Fig. 5. Error rates as a function of number of variables selected by the three RFE
methods for the Pendigits dataset.

4 6 8 10 12 14 16

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Features

Er
ro

r r
at

e

Best Ranking
K−First
Average

Argentina, (2009).
12. Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001)
13. Crammer, K., Singer, Y., On the Learnability and Design of Output Codes for

Multiclass Problems, Machine Learning, 47, 201233, 2002.
14. Hsu, C.-W., Lin C.-J.: A comparison of methods for multi-class support vector

machines , IEEE T. Neural Networ., 13 415-425 (2002)
15. Allwein, E., Schapire, R., Singer, Y.: Reducing Multiclass to Binary: A unified

Approach for Margin Classifiers. J. Mach. Learn. Res. 1, 113-141 (2000)
16. G. Jurman, S. Merler, A. Barla, S. Paoli, A. Galea, C. Furlanello: Algebraic stabil-

ity indicators for ranked lists in molecular profiling. Bioinformatics, 24(2), 258-264
(2008)

17. Granitto, P. M., Biasioli, F., Furlanello C., Gasperi, F., Efficient Feature Selection
for PTR-MS Fingerprinting of Agroindustrial Products. Proceedings of ICANN08,
18th International Conference on Artificial Neural Network, Prague, Czech Repub-
lic, (2008).

18. Furlanello, C., Serafini, M., Merler, S., Jurman, G.: Entropy-Based Gene Ranking
without Selection Bias for the Predictive Classification of Microarray Data. BMC
Bioinformatics 4, 54 (2003)

19. Ambroise, C., McLachlan G.: Selection bias in gene extraction on the basis of
microarray gene-expression data. P. Natl. Acad. Sci. USA 99, 6562–6566 (2002)

40JAIIO - ASAI 2011 - ISSN: 1850-2784 - Página 200



Fig. 6. Error rates as a function of number of variables selected by the three RFE
methods for the Satimage dataset.

5 10 20

0.
15

0.
20

0.
25

0.
30

0.
35

Features

Er
ro

r r
at

e

Best Ranking
K−First
Average

20. F. Biasioli, F. Gasperi, E. Aprea, D. Mott, E. Boscaini, D. Mayr and T.D. Märk,
J. Agr. Food Chem. 51, 7227 (2003).

21. F. Biasioli, F. Gasperi, E. Aprea, I. Endrizzi, V. Framondino, F. Marini, D. Mott
and T.D. Märk, Food Qual. Prefer. 173, 63 (2006).

22. Asuncion, A., Newman, D.: UCI machine learning repository (2007),
http://www.ics.uci.edu/ mlearn/MLRepository.html

40JAIIO - ASAI 2011 - ISSN: 1850-2784 - Página 201




