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Abstract This paper presents measurements of the W+ →
μ+ν and W− → μ−ν cross-sections and the associated
charge asymmetry as a function of the absolute pseudora-
pidity of the decay muon. The data were collected in proton–
proton collisions at a centre-of-mass energy of 8 TeV with the
ATLAS experiment at the LHC and correspond to a total inte-
grated luminosity of 20.2 fb−1. The precision of the cross-
section measurements varies between 0.8 and 1.5% as a func-
tion of the pseudorapidity, excluding the 1.9% uncertainty on
the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are
compared with predictions based on next-to-next-to-leading-
order calculations with various parton distribution functions
and have the sensitivity to discriminate between them.

1 Introduction

Measurements of the W+ and W− boson cross-sections in
hadron collisions are a sensitive probe of quantum chromody-
namics (QCD). High-precision predictions at next-to-next-
to-leading-order (NNLO) accuracy in QCD are available to
compare with data. Of particular interest is the ability of
such measurements to discriminate between different parton
distribution functions (PDFs) [1–7], because the W boson
rapidity1 y is strongly correlated with the initial-state parton

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point in the centre of the detector and the z-axis
coinciding with the axis of the beam pipe. The x-axis points from the
interaction point to the centre of the LHC ring, and the y-axis points
upward. Polar coordinates (r , φ) are used in the transverse plane, φ

being the azimuthal angle around the beam pipe. The pseudorapidity is
defined in terms of the polar angle θ as η = − ln tan(θ/2). The rapidity
y of a system is defined in terms of its energy E and its longitudinal
momentum pz as y = (1/2) ln[(E+pz)/(E−pz)]. Angular separations
between particles or reconstructed objects are measured in η–φ space
using �R = �

(�η)2 + (�φ)2.

�e-mail: atlas.publications@cern.ch

momentum fractions x . In high-energy proton–proton colli-
sions, the main production mechanism of single W bosons
is a valence quark annihilating with a sea antiquark. The W
bosons are preferentially produced with a boost in the direc-
tion of the incoming valence quark, as the quark is more
likely to be at a higher x than the corresponding antiquark.
Since the PDFs of u and d quarks in the proton differ (largely
due to there being two valence u quarks and one valence d
quark), there is a production asymmetry between W+ and
W− bosons (referred to in this paper as the W boson charge
asymmetry), which also varies as a function of rapidity. The
boson rapidity cannot be determined unambiguously in lep-
tonic decays of the W boson because the decay neutrino
passes through the detector unobserved. The charge asym-
metry can instead be measured as a function of the decay
lepton’s pseudorapidity η�, which is strongly correlated with
the W boson rapidity.

The W boson charge asymmetry was measured in proton–
antiproton collisions by the CDF and D0 collaborations [8–
10]. It was also measured, along with the individual cross-
sections, in proton–proton collisions at the LHC by the
ATLAS Collaboration at centre-of-mass energies of

√
s =

5 TeV [11] and 7 TeV [2], by the CMS Collaboration at
√
s =

7 and 8 TeV [12–14], and by the LHCb Collaboration at
√
s

= 7 and 8 TeV [15–17].
This paper presents measurements of the integrated fidu-

cial cross-sections for W+ → μ+ν and W− → μ−ν̄,
as well as the differential cross-sections, dσWμ+ /dημ and
dσWμ− /dημ, as a function of |ημ|, where ημ is the pseudo-
rapidity of the decay muon. The data used were collected
in proton–proton collisions at a centre-of-mass energy of√
s = 8 TeV with the ATLAS experiment at the LHC and cor-

respond to a total integrated luminosity of 20.2 fb−1 [18]. The
muon decay channel (W → μν) is particularly well suited
for this measurement due to good lepton identification and
small contributions from background processes. In addition,
a measurement of the W boson charge asymmetry Aμ is pre-
sented, also as a function of |ημ|. The asymmetry is defined
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in terms of the W+ and W− differential cross-sections as

Aμ = dσWμ+ /dημ − dσWμ− /dημ

dσWμ+ /dημ + dσWμ− /dημ

. (1)

The measurements are performed in a fiducial phase space,
which is defined by the kinematics and geometrical accep-
tance of the muon. All measurements are compared with
predictions from a calculation performed at NNLO accuracy
using the DYNNLO program [19]. The DYNNLO predic-
tions are produced with six different PDF sets.

2 The ATLAS detector

The ATLAS detector [20] at the LHC covers nearly the entire
solid angle around the collision point. It consists of an inner
tracking detector (ID) surrounded by a thin superconducting
solenoid, electromagnetic and hadronic calorimeters, and a
muon spectrometer (MS) incorporating three large supercon-
ducting toroid magnets. The ID is immersed in a 2 T axial
magnetic field and provides charged-particle tracking in the
range |η| < 2.5. A high-granularity silicon pixel detector
typically provides three measurements per track and is fol-
lowed by a silicon microstrip tracker, which usually provides
four three-dimensional measurement points per track. These
silicon detectors are complemented by a transition radiation
tracker, which enables radially extended track reconstruction
up to |η| = 2.0.

The calorimeter system covers the pseudorapidity range
|η| < 4.9. Electromagnetic calorimetry is provided by barrel
and endcap high-granularity lead/liquid-argon (LAr) sam-
pling calorimeters in the |η| < 3.2 region. A thin LAr pre-
sampler, covering |η| < 1.8, corrects for energy loss in the
material upstream of the calorimeters. Hadronic calorimetry
is provided in the |η| < 1.7 region by the steel/scintillator
tile calorimeter, segmented into three barrel structures, and
in the endcap region by two copper/LAr calorimeters. The
forward regions 3.1 < |η| < 4.9 are covered by copper/LAr
and tungsten/LAr calorimeter modules optimised for elec-
tromagnetic and hadronic measurements, respectively.

The MS has separate trigger and precision tracking cham-
bers measuring the deflection of muons in a magnetic field
generated by superconducting air-core toroids. The precision
chamber system covers the region |η| < 2.7 with three lay-
ers of monitored drift tubes, complemented by cathode-strip
chambers in the forward regions 2.0 < |η| < 2.7, where the
background is highest. There is a transition between the bar-
rel and endcap muon detectors around |η| = 1.05. The muon
trigger system covers the range of |η| < 2.4 with resistive-
plate chambers in the barrel and thin-gap chambers in the
endcap regions.

A three-level trigger system [21,22] selected candidate
events in 2012. The level-1 trigger was implemented in hard-
ware and used a subset of detector information to reduce the
event rate to a design value of at most 75 kHz. This was fol-
lowed by two software-based trigger levels which together
reduced the event rate to about 400 Hz.

3 Analysis methodology

3.1 Description of the measurements

The integrated cross-sections for W+ → μ+ν and W− →
μ−ν̄ production are measured in a fiducial phase space
defined at the particle level by requiring the muon transverse
momentum pμ

T to be greater than 25 GeV and the neutrino
transverse momentum pν

T to be greater than 25 GeV. The
absolute muon pseudorapidity is required to be less than 2.4.
The W boson transverse mass is

mT =
�

2pμ
T pν

T (1 − cos (φμ − φν)) , (2)

where φμ and φν are the azimuthal angles of the muon and
neutrino, respectively. For this analysis, mT must be at least
40 GeV, both at reconstruction and particle level. The require-
ments on fiducial quantities are defined before the emission
of final-state photon radiation (i.e. at the ‘Born level’).

The differential cross-sections and charge asymmetry are
measured in the same fiducial phase space as for the inte-
grated measurement. These are measured in 11 bins of abso-
lute muon pseudorapidity between 0 and 2.4 with bin edges at
0, 0.21, 0.42, 0.63, 0.84, 1.05, 1.37, 1.52, 1.74, 1.95, 2.18, and
2.4. The bin edges are identical to those used in the ATLAS
7 TeV measurement [2].

3.2 Data and simulated event samples

The data for this analysis comprise the entire ATLAS
√
s =

8 TeV data set recorded between April and December 2012,
corresponding to an integrated luminosity of 20.2 fb−1. The
average number of proton–proton interactions per bunch
crossing �μ� was 20.7. Only events recorded with stable
beams and the detector operating well are selected. The
relative uncertainty of the LHC proton beam energy of
±0.1% [23] has no significant effect on the results.

Events from Monte Carlo (MC) simulations, including
simulation of the ATLAS detector, are used for the back-
ground estimation and to correct the measured data for detec-
tor acceptance, efficiency, and resolution effects.

The W → μν signal process was simulated using
Powheg- Box [24,25] at next-to-leading order (NLO) in
perturbative QCD using the CT10 set of PDFs [26] and
interfaced to Pythia 8.170 [27] with the AU2 set of tuned
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parameters [28] to simulate the parton shower, hadroni-
sation, and underlying event and to Photos [29] to sim-
ulate final-state photon radiation (FSR). This is referred
to as Powheg+Pythia8 in this paper. An alternative sig-
nal sample was simulated using NLO Sherpa 1.4 [30]
and the CT10 PDF set to cross-check the results obtained
using Powheg+Pythia8 and to evaluate systematic uncer-
tainties in the signal modelling.

Powheg+Pythia8 with the CT10 PDF set was used to
simulate the background processes W → τν and Z → μμ

(with the AU2 tune set) and Powheg+Pythia6 [31,32] also
with the CT10 PDF set was used to simulate the t t̄ pro-
cess (with the P2011C tune set [33]). The Z → ττ pro-
cess was simulated using Alpgen [34] with the CTEQ6L1
PDF set [35] interfaced to Herwig [36] to simulate the par-
ton shower and Jimmy [37] to model the underlying event.
The single-top process in the s-channel and Wt-channels was
simulated with MC@NLO [38] interfaced to Jimmy. The
t-channel was generated with AcerMC [39] interfaced to
Pythia. The backgrounds from the diboson processes WW ,
WZ , and Z Z were simulated using Herwig at leading order
with the CTEQ6L1 PDF set. In all cases, the Geant4 [40]
program was used to simulate the passage of particles through
the ATLAS detector [41]. The multijet background is esti-
mated using a data-driven technique, described in Sect. 3.4.
A bb̄ → μX MC sample, simulated using Pythia8 with the
AU2 tune set, is used to cross-check the data-driven estima-
tion.

Differences in reconstruction, trigger, and isolation effi-
ciencies for muons between MC simulations and data are
evaluated using a tag-and-probe method [42] and are cor-
rected by reweighting the MC simulated events. The muon
reconstruction efficiencies are parameterised versus η and
φ, the muon isolation efficiencies versus η and transverse
momentum pT, and the muon trigger efficiencies versus η,
φ, and pT. The reconstruction, trigger and isolation effi-
ciencies are evaluated separately for positive and negative
muons. This separate evaluation is particularly necessary in
the case of the trigger efficiencies, which differ by up to
3% (depending on η) between positive and negative muons,
much greater than the total uncertainty in the cross-section
from other sources. Corrections are also applied to MC events
for the description of the muon momentum scales and reso-
lution, which are determined from fits to the observed mass
distributions of Z → μμ candidates in data and MC simu-
lations [42]. To correct for charge-dependent biases of the
muon momentum scale due to residual misalignments in
the ID and MS, an additional momentum-dependent correc-
tion parameterised versus η and φ is applied. An associated
uncertainty corresponding to the full size of the correction is
included.

All simulated samples are normalised using their respec-
tive inclusive cross-sections at higher orders in perturbative

QCD. The W and Z predictions are scaled to the NNLO
calculation obtained with DYNNLO v1.5 [19,43] and the
MSTW2008 PDF set [44]. The production of top quarks is
normalised using the prediction at NNLO+NNLL precision
from the Top++2.0 program for t t̄ [45–51], to the calcula-
tions in Refs. [52–54] for single top quarks, and for diboson
production to the NLO calculations following the procedure
described in Ref. [55].

The effect of multiple interactions per bunch crossing
(pile-up) is simulated by overlaying minimum-bias MC
events generated with Pythia8 (with the A2 tune set) [41].
The simulated event samples are reweighted to describe the
distribution of the number of pile-up events in the data. The
MC simulations are also reweighted to better describe the dis-
tribution of the longitudinal position of the primary proton–
proton collision vertex [56] in data.

3.3 Event selection

Candidate W → μν events are selected with the requirement
that at least one of two single-muon triggers are satisfied. A
high-threshold trigger requires muons to have pT > 36 GeV,
whilst a low-threshold trigger requires pT > 24 GeV along-
side the requirement that the muon must be isolated from
additional nearby tracks.

Muon candidates are reconstructed by combining tracks
measured in both the ID and the MS [42]. The pT of the ID
track is required to be greater than 25 GeV and the absolute
pseudorapidity to be less than 2.4. Track quality require-
ments are imposed for muon identification and background
suppression. The transverse impact parameter significance is
required to be less than 3 to ensure that the muon candidates
originate from a primary proton–proton interaction vertex.
The muon candidates are also required to be isolated, satis-
fying Iμ < 0.1, where Iμ is the scalar sum of the pT of tracks
within a cone of size �R = 0.4 around the muon (excluding
the muon track) divided by the pT of the muon. Events are
required to contain exactly one muon candidate satisfying
the above criteria.

To reduce background contamination, in particular from
multijet processes, events are required to have missing trans-
verse momentum Emiss

T greater than 25 GeV. The Emiss
T is

reconstructed using energy depositions in the calorimeters
and tracks reconstructed in the inner detector and muon spec-
trometer [57]. It is defined as the absolute value of the nega-
tive of the vectorial sum of the transverse momenta of recon-
structed objects (e.g. electrons, muons, jets) and tracks not
associated with these objects. These are labelled the hard and
soft terms, respectively.

The W boson transverse mass mT is required to be larger
than 40 GeV. This variable is defined analogously to Eq. (2)
with pν

T replaced by Emiss
T and φν replaced by the azimuthal

angle related to the Emiss
T .
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3.4 Estimation of backgrounds

The backgrounds from all sources other than multijet pro-
cesses are estimated using the MC samples detailed in
Sect. 3.2. The Z → μμ process with one of the muons not
identified contributes between 1% and 8% of selected data
events, depending on the value of |ημ|. This is the largest
background for |ημ| � 1.4. The contribution from W → τν

where the τ -lepton decays into a muon is 2% of the selected
data events and approximately constant as a function of |ημ|.
The backgrounds from Z → ττ , t t̄ , and the diboson pro-
cesses WW , WZ , and Z Z each amount to less than 0.3% of
the selected data.

Multijet processes contribute between 2% and 4% of the
selected data and are the largest sources of background for
|ημ| � 1.4. The number and properties of the background
events arising from multijet processes are estimated using
a data-driven template-fit technique, similar to that used in
Ref. [58]. A multijet-dominated sample is obtained from
data by selecting events passing the nominal selection except
that the muon fails the isolation criterion. For this purpose,
events satisfying a trigger without an isolation requirement
are used. Multijet templates are constructed from this sam-
ple, in a series of mutually exclusive slices in muon isola-
tion, for each distribution of interest. The residual contri-
bution from signal and other background sources, estimated
from MC simulations, is subtracted. The normalisations of
the multijet templates in the signal region are obtained by
fitting the templates to data in three discriminating variables:
Emiss

T ,mT, and the ratio pμ
T /mT. The fits are performed in two

phase-space regions (fitting regions) in which the selections
on Emiss

T and mT are relaxed in order to enrich the multijet
background contribution. A requirement that the W trans-
verse momentum be less than 30 GeV is introduced in one
fitting region to remove a region poorly modelled by signal
MC simulations. The normalisation of the multijet template
is allowed to float in each of the fits and the total MC-based
signal plus background is kept constant. The multijet normal-
isation in the signal selection is extracted using each discrimi-
nating variable in both fitting regions (a total of six estimates).
It is assumed that the normalisations of the templates in the
fitting regions are the same as for the signal selection. The fits
described above are performed for each muon-isolation slice
(i.e. six fits per slice). The normalisation estimate extracted
in each muon-isolation slice (for a particular discriminating
variable and fitting region) is used to linearly extrapolate to
an isolation value of 0.05, which is the average isolation of
multijet events in the signal region as estimated using the
bb̄ → μX MC simulation.

The central value of the multijet background is chosen
to be the average of the extrapolated curves at Iμ = 0.05,
and the spread gives one component of the systematic uncer-
tainty, which is estimated to be bin-to-bin correlated and 50%

Table 1 The number of data events after event selection for W+ →
μ+ν and W− → μ−ν̄ and the percentage of selected data that each of
the three major backgrounds constitutes

W+ → μ+ν W− → μ−ν̄

Number of events 50 390 184 34 877 365

Percentage of data

Multijet 2.4 ± 0.3 3.1 ± 0.3

W → τν 1.9 ± 0.1 2.0 ± 0.1

Z → μμ 3.1 ± 0.2 4.0 ± 0.2

Others 0.62 ± 0.02 0.82 ± 0.03

charge correlated. This uncertainty component includes the
effects from the choice of the discriminating variable and the
definition of the fitting regions. Another component arises
from the effect of the cross-section uncertainty on the sig-
nal simulation contribution in the fitting regions (±5%). The
fit is repeated varying this and the deviation from the nom-
inal normalisation is taken as an uncertainty, which is again
treated as being charge and bin-to-bin correlated. The fit also
has a statistical uncertainty, which is treated as being uncor-
related between charges and bins. This is largely due to the
limited number of data events for the multijet templates pass-
ing the signal selection in each muon-isolation slice. The size
of the multijet systematic uncertainty is reported in Sect. 4.
The above procedure is performed separately in each bin
of muon pseudorapidity. A summary of the most important
backgrounds including systematic uncertainties is given in
Table 1.

Figure 1 shows the muon η, muon pT, and W transverse
mass distributions of selected events with positive muons
(left) and with negative muons (right). The data are com-
pared with the sum of MC and data-based estimates for the
signal and the backgrounds. The predictions are normalised
to the luminosity of the data, after first normalising each
MC cross-section to a corresponding higher-order predic-
tion. A normalisation shift between data and MC simula-
tions of approximately 1% is observed for the positive muon
plots. This is covered by the uncertainty in the MC signal
prediction due to the cross-section uncertainty. Otherwise,
the combined prediction describes the data well and within
the uncertainties.

3.5 Obtaining the fiducial cross-sections

The fiducial W± differential cross-sections in bin i of pseu-
dorapidity (dσWμ± /dημ)i are obtained from

�dσWμ±

dημ

�

i
= Ndata,i − Nbkg,i

�ηi · CW±,i · � Ldt
,
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Fig. 1 The muon η (top), muon pT (centre), and W boson transverse mass (bottom) distributions of selected events with positive muons (left) and
negative muons (right). The statistical uncertainties of the data points are smaller than the size of the markers

where Ndata,i is the number of selected candidate events in
data, Nbkg,i is the number of background events estimated
using the methods described in Sect. 3.4, �ηi is the width

of bin i , and
� Ldt is the integrated luminosity. The results

are provided as a function of absolute pseudorapidity, where
�|ηi | = 2 · �ηi . The term CW±,i is a factor (different for
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Table 2 The CW±,i values with their associated systematic uncertain-
ties as a function of |ημ| and the integrated global correction factor
CW± , each for W+ and W−

|ημ| W+ → μ+ν W+ → μ+ν

0.00–0.21 0.508 ± 0.004 0.505 ± 0.004

0.21–0.42 0.684 ± 0.004 0.679 ± 0.004

0.42–0.63 0.702 ± 0.005 0.702 ± 0.005

0.63–0.84 0.611 ± 0.004 0.613 ± 0.005

0.84–1.05 0.603 ± 0.004 0.601 ± 0.005

1.05–1.37 0.795 ± 0.006 0.796 ± 0.007

1.37–1.52 0.848 ± 0.008 0.845 ± 0.007

1.52–1.74 0.861 ± 0.009 0.856 ± 0.007

1.74–1.95 0.856 ± 0.009 0.855 ± 0.008

1.95–2.18 0.792 ± 0.008 0.794 ± 0.009

2.18–2.40 0.802 ± 0.008 0.812 ± 0.011

Integrated 0.736 ± 0.003 0.727 ± 0.003

positive and negative channels) which corrects for the vari-
ous detector inefficiencies and resolution effects. This is esti-
mated using W → μν signal MC simulations and defined
for each bin i as the number of reconstructed events satisfy-
ing the same selection criteria as data divided by the number
of generated events in the fiducial phase space. The charge
asymmetry is then evaluated in each absolute pseudorapidity
bin using Eq. (1). A bin-by-bin correction method is used as
the purity of each bin is 99% or larger, where the bin purity
is defined as the ratio of events generated and reconstructed
in a certain bin to all events reconstructed in that bin (where
all events are in the generator-level fiducial phase space).

The integrated fiducial cross-sections (σWμ± ) are obtained
using one global correction factor,CW± , (i.e. the total number
of reconstructed events satisfying the same selection criteria
as data divided by the total number of generated events in the
integrated fiducial phase space). The values are also obtained
by summing the differential cross-sections as a function of

|ημ|, and the results are consistent. Table 2 lists theCW±,i val-
ues with their associated systematic uncertainties as a func-
tion of |ημ| and gives the integrated global correction factor
CW± , each for W+ and W−.

4 Systematic uncertainties

This section describes the sources of systematic uncertainty
considered for the cross-section and the asymmetry measure-
ments. The size of these uncertainties as a function of |ημ| is
provided in Figs. 2 and 3. The data statistical uncertainties are
also shown and are small compared with the total systematic
uncertainty. Table 3 lists the W+ → μ+ν and W− → μ−ν̄

cross-sections and the asymmetry as a function of the abso-
lute pseudorapidity of the muon, along with the data sta-
tistical uncertainties and dominant systematic uncertainties.
Most sources of systematic uncertainty, described below, are
treated as being correlated between the positive and negative
muon channels unless otherwise noted, and therefore their
relative impact is reduced for the asymmetry measurement.

Experimental sources of uncertainty are possible mis-
modelling of the muon momentum scale, resolution, or
charge-dependent sagitta bias as well as of the reconstruc-
tion, trigger, and isolation efficiencies. Such uncertainties
form a small but non-negligible fraction of the total uncer-
tainty, 0.5% or less of the differential cross-section. A test
is performed to check the compatibility of the cross-sections
measured separately in positive and negative muon pseudo-
rapidity; this is an important cross-check of the correction
procedure as the detector is not forward-backward symmet-
ric with respect to the trajectory of a charged particle. A
further small uncertainty (up to 0.4% depending on the |ημ|
bin) is added to cover the small differences observed. This
uncertainty is treated as being uncorrelated between charges
and propagated to the asymmetry measurement. The above
uncertainties are combined in the column labelled ‘Muon

Fig. 2 The relative systematic
uncertainty from each source for
the W+ (left) and W− (right)
differential cross-sections as a
percentage of the differential
cross-section. Also shown are
the total systematic and
statistical uncertainties
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Fig. 3 The systematic uncertainty from each source for the W boson
charge asymmetry as an absolute difference from the central value. Also
shown are the total systematic and statistical uncertainties

Reconstruction’ in Table 3. Additional sources of uncertainty
are the mis-modelling of the pile-up event activity and of the
primary vertex longitudinal position, both of which are small.

Uncertainties from the mis-modelling of the missing trans-
verse momentum also contribute substantially to the total
systematic uncertainty in the cross-section, although they
are reduced for the asymmetry measurements. These include
mis-modelling in the jet energy scale and resolution, as well
as of the momentum balance between the soft term and the
total transverse momentum of the hard objects in Z → μμ

calibration events [57]. The muon-related uncertainties in the
missing transverse momentum are treated as being fully cor-
related with those of the signal muon and are part of the muon
systematic uncertainties. The sum of all soft-term uncertain-
ties is the largest or second largest contributor (depending on
the |ημ| bin) to the total uncertainty in the differential cross-
sections but is significantly less important for the asymmetry
measurement. The hard-term uncertainties are small for both
the cross-section and asymmetry measurements. The soft-
term and hard-term uncertainties are assumed to be uncorre-
lated with each other.

Uncertainties due to the mis-modelling of the background
processes are also considered. For the backgrounds modelled
with MC simulations, these are estimated by varying their
normalisation within theoretical uncertainties and observing
the effect on the final measurements. The cross-section uncer-
tainty for the Z → μμ process and the W → τν process is
5% [59]. The cross-section uncertainty for t t̄ production is
6% [45–51], and for single top production 7% [52–54]. The
cross-section uncertainty for diboson production is 5% for
WW and Z Z production and 7% for WZ production [55].

As mentioned in Sect. 3.4, there are three components of
the uncertainty in the multijet background normalisation. The

two correlated uncertainties are larger for the cross-section
measurements (totalling around 0.5%), whilst the effect of
the statistical component is larger for the asymmetry mea-
surement.

The statistical uncertainty due to the limited number of
MC events for the other backgrounds and for the signal pro-
cess is small for the cross-section measurement (less than
0.2%) but becomes significant for the asymmetry measure-
ment (around one third of the total uncertainty), as it is com-
pletely uncorrelated between positive and negative channels.

Theoretical sources of uncertainty arise from the choice
of PDF interfaced to the Powheg+Pythia8 signal MC sim-
ulations (the CT10 PDF set). This uncertainty is estimated
by reweighting the Powheg+Pythia8 events to the nominal
values of the CT14 [1] and MSTW2008nlo68cl [44] PDF
sets using the LHAPDF interface [60], taking the difference
to the nominal values and adding in quadrature. The PDF
uncertainty is small for both the fiducial cross-section and
asymmetry measurements.

The alternative Sherpa signal sample is used to esti-
mate an uncertainty from Powheg+Pythia8 related to the
modelling of the matrix elements that impact kinematics,
as well as the underlying event activity and hadronisa-
tion (which affects the Emiss

T measurement). The difference
between the dressed-level CW values obtained using the
Powheg+Pythia8 and Sherpa simulations is statistically
significant and assigned as a systematic uncertainty. This
is labelled as ‘Modelling’ in Table 3. The dressed-level is
defined by combining the four-momentum of each muon
after photon FSR with that of photons radiated within a cone
defined by �R = 0.1 around the muon. This is one of the
largest systematic uncertainties for both the cross-section (up
to 1% at large |ημ|) and the asymmetry measurements. The
uncertainty in the luminosity is 1.9% [18]. For the asymme-
try, the uncertainty in the luminosity only affects the asym-
metry measurement through negligible effects in the back-
ground estimation, and it is therefore considered fully corre-
lated between the W+ and W− samples.

5 Theoretical predictions

The W+ and W− integrated and differential cross-sections
and the W boson charge asymmetry are compared with
theoretical predictions from an optimised version of the
DYNNLO generator [19], which simulates initial-state QCD
corrections to NNLO accuracy at leading order in the
electroweak couplings with parameters set according to
the Gμ scheme [61]. The input parameters (the Fermi
constant GF, the masses and widths of the W and Z
bosons, and the CKM matrix elements) are taken from
Ref. [62]. The DYNNLO predictions are calculated with the
PDF sets from CT14 NNLO [1], ATLASepWZ2016 [2],
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Table 3 Cross-sections
(differential in ημ) and
asymmetry, as a function of
|ημ|. The central values are
provided along with the
statistical and dominant
systematic uncertainties: the
data statistical uncertainty (Data
Stat.), the Emiss

T uncertainty, the
uncertainties related to muon
reconstruction (Muon Reco.),
those related to the background,
those from MC statistics (MC
Stat.), and modelling
uncertainties. The uncertainties
of the cross-sections are given in
percent and those of the
asymmetry as an absolute
difference from the nominal

|ημ| Data stat. Emiss
T Muon reco. Background MC stat. Modelling

dσWμ+ /dημ [pb]

0.00–0.21 630.3 0.06 0.45 0.40 0.48 0.17 0.67

0.21–0.42 635.2 0.05 0.48 0.21 0.42 0.13 0.40

0.42–0.63 641.6 0.05 0.48 0.45 0.40 0.13 0.31

0.63–0.84 638.1 0.06 0.52 0.23 0.44 0.14 0.31

0.84–1.05 642.8 0.06 0.60 0.32 0.42 0.14 0.37

1.05–1.37 654.7 0.04 0.56 0.34 0.39 0.09 0.57

1.37–1.52 661.0 0.06 0.56 0.22 0.42 0.12 0.86

1.52–1.74 662.3 0.05 0.62 0.27 0.40 0.10 0.97

1.74–1.95 661.8 0.05 0.61 0.43 0.39 0.10 0.85

1.95–2.18 657.5 0.05 0.54 0.48 0.43 0.10 0.76

2.18–2.40 641.5 0.05 0.48 0.42 0.41 0.10 0.88

dσWμ− /dημ [pb]

0.00–0.21 493.7 0.07 0.41 0.40 0.49 0.18 0.47

0.21–0.42 489.6 0.06 0.43 0.20 0.44 0.14 0.47

0.42–0.63 485.8 0.06 0.49 0.45 0.43 0.14 0.48

0.63–0.84 474.3 0.07 0.57 0.23 0.46 0.16 0.55

0.84–1.05 465.0 0.07 0.56 0.31 0.42 0.16 0.67

1.05–1.37 455.7 0.05 0.62 0.34 0.43 0.10 0.73

1.37–1.52 439.7 0.07 0.63 0.23 0.47 0.14 0.68

1.52–1.74 427.3 0.06 0.61 0.28 0.55 0.12 0.65

1.74–1.95 410.2 0.06 0.68 0.44 0.58 0.12 0.74

1.95–2.18 389.1 0.06 0.67 0.49 0.51 0.13 0.95

2.18–2.40 368.3 0.07 0.65 0.40 0.58 0.13 1.21

Aμ

0.00–0.21 0.1215 0.0005 0.0004 0.0007 0.0012 0.0012 0.0010

0.21–0.42 0.1294 0.0004 0.0004 0.0003 0.0008 0.0010 0.0003

0.42–0.63 0.1383 0.0004 0.0002 0.0027 0.0008 0.0009 0.0008

0.63–0.84 0.1473 0.0004 0.0004 0.0005 0.0009 0.0010 0.0012

0.84–1.05 0.1605 0.0004 0.0007 0.0016 0.0009 0.0011 0.0015

1.05–1.37 0.1792 0.0003 0.0004 0.0017 0.0009 0.0007 0.0008

1.37–1.52 0.2011 0.0004 0.0008 0.0005 0.0009 0.0009 0.0008

1.52–1.74 0.2156 0.0004 0.0006 0.0012 0.0015 0.0007 0.0015

1.74–1.95 0.2347 0.0004 0.0007 0.0023 0.0015 0.0007 0.0005

1.95–2.18 0.2565 0.0004 0.0008 0.0026 0.0010 0.0008 0.0009

2.18–2.40 0.2706 0.0004 0.0010 0.0005 0.0014 0.0008 0.0015

HERAPDF2.0 [3], NNPDF3.1 [4], PDF4LHC15 [5] and
MMHT2014 NNLO [6]. The renormalisation and factorisa-
tion scales are set equal to the invariant mass of the muon–
neutrino pair.

Uncertainties in the DYNNLO prediction due the choice
of scales are evaluated by varying the factorisation and renor-
malisation scales independently by factors of 0.5 and 2 from
their nominal values. The uncertainty on the CT14 NNLO
prediction is evaluated using the corresponding PDF error
sets.

6 Results

The measured integrated fiducial cross-sections multiplied
by the branching fraction for the decay into a muon and a
neutrino are listed in Table 4, along with the associated uncer-
tainties which are dominated by the 1.9% uncertainty in the
luminosity. Also provided is the sum of the W+ → μ+ν

and W− → μ−ν̄ integrated cross-sections and their ratio,
the total uncertainties on which are 2.1% and 0.3% respec-
tively. The data are compared with the NNLO predictions
from DYNNLO, the total uncertainties on which are dom-

123



Eur. Phys. J. C (2019) 79 :760 Page 9 of 25 760

Table 4 The measured fiducial
production cross-sections times
branching ratio for W+ → μ+ν

and W− → μ−ν̄, their sum, and
their ratio for both data and the
predictions from DYNNLO
(CT14 NNLO PDF set)

Data

σ (W+ → μ+ν) [pb] 3110 ± 0.5 (stat.) ± 28 (syst.) ± 59 (lumi.)

σ (W− → μ−ν̄) [pb] 2137 ± 0.4 (stat.) ± 21 (syst.) ± 41 (lumi.)

Sum [pb] 5247 ± 0.6 (stat.) ± 49 (syst.) ± 100 (lumi.)

Ratio 1.4558 ± 0.0004 (stat.) ± 0.0040 (syst.)

DYNNLO (CT14 NNLO PDF set)

σ (W+ → μ+ν) [pb] 3015 ± 92 (PDF) ± 15 (scale)

σ (W− → μ−ν̄) [pb] 2105 ± 53 (PDF) ± 10 (scale)

Sum [pb] 5120 ± 140 (PDF) ± 23 (scale)

Ratio 1.4320 ± 0.0100 (PDF) ± 0.0007 (scale)

 [p
b]

μη
/dσ

 d

600

650

700

750

800

Data DYNNLO-CT14 NNLO

Stat.+Sys. Unc. DYNNLO-CT14 PDF Unc.

Stat.+Sys.+Lum. Unc. DYNNLO-CT14 Tot. Unc.

-1 = 8 TeV, 20.2 fbsATLAS

ν+μ→+W

|
μ

η|
0 0.5 1 1.5 2

Th
eo

ry
/D

at
a

0.95

1

1.05

 [p
b]

μη
/dσ

 d

350

400

450

500

550

600

650

700
Data DYNNLO-CT14 NNLO

Stat.+Sys. Unc. DYNNLO-CT14 PDF Unc.

Stat.+Sys.+Lum. Unc. DYNNLO-CT14 Tot. Unc.

-1 = 8 TeV, 20.2 fbsATLAS

ν−μ→−W

|
μ

η|
0 0.5 1 1.5 2

Th
eo

ry
/D

at
a

0.95

1

1.05

600

650

700

750

800

 [p
b]

μη
/dσ

 d

Data
Stat.+Sys. Unc.
Stat.+Sys.+Lum. Unc.

CT14 NNLO
ATLASepWZ16
HERAPDF2.0
NNPDF3.1
PDF4LHC15
MMHT2014 NNLO

-1 = 8 TeV, 20.2 fbsATLAS

ν+μ→+W

0 1 2
|

μ
η|

0.95

1

1.05

Th
eo

ry
/D

at
a

350

400

450

500

550

600

650

700 [p
b]

μη
/d σ

 d

Data
Stat.+Sys. Unc.
Stat.+Sys.+Lum. Unc.

CT14 NNLO
ATLASepWZ16
HERAPDF2.0
NNPDF3.1
PDF4LHC15
MMHT2014 NNLO

-1 = 8 TeV, 20.2 fbsATLAS

ν−μ→−W

0 1 2
|

μ
η|

0.95

1

1.05

Th
eo

ry
/D

at
a

Fig. 4 The W+ (left) and W− (right) fiducial cross-sections, differ-
ential in muon pseudorapidity multiplied by the branching fraction for
the decay into a muon and a neutrino are shown as a function of the
absolute muon pseudorapidity. The data are presented with systematic
and total uncertainties (the data statistical uncertainties are smaller than
the size of the markers) and are compared with the predictions from

DYNNLO. In the top two plots, the CT14 NNLO PDF set is used, and
DYNNLO is shown with its associated total theoretical uncertainty. In
the bottom two plots, the data are compared with the central values of
six different PDF sets described in the text. The statistical uncertainties
of the DYNNLO predictions are indicated by error bars. The ratios of
the data to the corresponding prediction are shown in the lower panels
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Fig. 5 The W boson charge asymmetry as a function of absolute muon
pseudorapidity. The data are presented with systematic and total uncer-
tainties (the data statistical uncertainties are smaller than the size of
the markers). In the left plot, the data are compared with the predic-
tion from DYNNLO in which the CT14 NNLO PDF set is used. The
DYNNLO prediction is also shown with its associated total theoretical

uncertainty, along with the component from the PDF set. In the right
plot, the data are compared with the central prediction from DYNNLO
produced using a selection of PDFs. The statistical uncertainties of the
DYNNLO predictions are indicated by error bars. The ratios of the data
to the corresponding prediction are shown in the lower panels

inated by the component from the PDF uncertainty. Data
and theory agree well and within the uncertainties, although
the ratio measurements differ by approximately two standard
deviations. The results presented in Table 4 are consistent,
within about one standard deviation, with those measured
using W boson decays in the electron channel in data at a
centre-of-mass energy of 8 TeV [63].

The W+ and W− fiducial cross-sections, differential in
muon pseudorapidity, multiplied by the branching fraction
for the decay into a muon and a neutrino, are shown as a
function of absolute muon pseudorapidity in Fig. 4. These
are presented with systematic and total uncertainties. The
data statistical uncertainties are smaller than the size of the
markers. The cross-section values are detailed in Table 3.
The measured cross-sections are compared with theoretical
predictions obtained using DYNNLO.

In the top plots of Fig. 4, DYNNLO is shown with its
associated total theoretical uncertainty, and from the PDF
uncertainty (evaluated with the CT14 NNLO error sets). The
component from the PDF uncertainty dominates the total and
is shown separately. The data precision is similar to the intrin-
sic theoretical uncertainty from scale variations but is much
higher than the uncertainty from the PDF. Therefore the data
are useful for constraining and evaluating the performance of
different PDF sets. In the bottom plots the data are compared
with the central values of each PDF set described above.
The statistical uncertainties of the DYNNLO predictions are
indicated by error bars.

The measured W boson charge asymmetry as a function
of absolute muon pseudorapidity is presented in Fig. 5. The
values are detailed in Table 3. Again the data are shown with

its total systematic uncertainty. In Fig. 5 (left) the data are
compared with the prediction from DYNNLO in which the
CT14 NNLO PDF set is used. The DYNNLO prediction is
also shown with its associated total theoretical uncertainty,
along with the component from the PDF set, which domi-
nates. In Fig. 5 (right) the data are compared with the central
prediction from the six PDF sets considered. The statistical
uncertainties of the DYNNLO predictions are indicated by
error bars. The ratios of the data to the corresponding pre-
diction are shown in the lower panels. The comparison with
ATLASepWZ2016 and NNPDF3.1 is of particular interest
as both include information from the ATLAS 7 TeV measure-
ment [2], which is expected to be largely uncorrelated with
the current data being presented. It is observed that its cen-
tral value is generally closer to the data than the alternatives,
other than HERAPDF2.0 which performs about as well.

7 Conclusion

Fiducial cross-sections for W+ → μ+ν and W− → μ−ν̄

and the W boson charge asymmetry are measured differ-
entially as a function of the absolute muon pseudorapidity
using 20.2 fb−1 of data from proton–proton collisions at a
centre-of-mass energy of 8 TeV with the ATLAS experiment
at the LHC. The muon and neutrino transverse momenta are
required to be greater than 25 GeV and the W boson trans-
verse mass to be greater than 40 GeV. A precision of 0.8–
1.5% is achieved for the cross-section values, depending on
the pseudorapidity, whilst an uncertainty between 0.002 and
0.003 (in absolute units) is obtained for the asymmetry. The
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integrated fiducial W± production cross-sections are also
determined. The measurements are compared to predictions
at NNLO accuracy in QCD computed with the DYNNLO
program. The precision of the measurement is better than
both the uncertainties on the PDF sets as well as the spread
between different sets, showing the sensitivity of the mea-
surement to discriminate between them and serve as input to
improve the knowledge on the proton structure.
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M. Mikestikova141, M. Mikuž91, H. Mildner149, M. Milesi104, A. Milic167, D. A. Millar92, D. W. Miller37, A. Milov180,
D. A. Milstead45a,45b, R. A. Mina153,p, A. A. Minaenko123, M. Miñano Moya174, I. A. Minashvili159b, A. I. Mincer124,
B. Mindur83a, M. Mineev79, Y. Minegishi163, Y. Ming181, L. M. Mir14, A. Mirto67a,67b, K. P. Mistry137, T. Mitani179,
J. Mitrevski114, V. A. Mitsou174, M. Mittal60c, A. Miucci20, P. S. Miyagawa149, A. Mizukami81, J. U. Mjörnmark96,
T. Mkrtchyan184, M. Mlynarikova143, T. Moa45a,45b, K. Mochizuki109, P. Mogg52, S. Mohapatra39, R. Moles-Valls24,
M. C. Mondragon106, K. Mönig46, J. Monk40, E. Monnier101, A. Montalbano152, J. Montejo Berlingen36, M. Montella94,
F. Monticelli88, S. Monzani68a, N. Morange132, D. Moreno22, M. Moreno Llácer36, P. Morettini55b, M. Morgenstern120,
S. Morgenstern48, D. Mori152, M. Morii59, M. Morinaga179, V. Morisbak134, A. K. Morley36, G. Mornacchi36,
A. P. Morris94, L. Morvaj155, P. Moschovakos36, B. Moser120, M. Mosidze159b, T. Moskalets145, H. J. Moss149,
J. Moss31,m, K. Motohashi165, E. Mountricha36, E. J. W. Moyse102, S. Muanza101, J. Mueller139, R. S. P. Mueller114,
D. Muenstermann89, G. A. Mullier96, J. L. Munoz Martinez14, F. J. Munoz Sanchez100, P. Murin28b, W. J. Murray178,144,
A. Murrone68a,68b, M. Muškinja18, C. Mwewa33a, A. G. Myagkov123,an, J. Myers131, M. Myska142, B. P. Nachman18,
O. Nackenhorst47, A.Nag Nag48, K. Nagai135, K. Nagano81, Y. Nagasaka62, M. Nagel52, E. Nagy101, A. M. Nairz36,
Y. Nakahama117, K. Nakamura81, T. Nakamura163, I. Nakano127, H. Nanjo133, F. Napolitano61a, R. F. Naranjo Garcia46,
R. Narayan11, D. I. Narrias Villar61a, I. Naryshkin138, T. Naumann46, G. Navarro22, H. A. Neal105,*, P. Y. Nechaeva110,
F. Nechansky46, T. J. Neep21, A. Negri70a,70b, M. Negrini23b, C. Nellist53, M. E. Nelson135, S. Nemecek141,
P. Nemethy124, M. Nessi36,d, M. S. Neubauer173, M. Neumann182, P. R. Newman21, T. Y. Ng63c, Y. S. Ng19,
Y. W. Y. Ng171, H. D. N. Nguyen101, T. Nguyen Manh109, E. Nibigira38, R. B. Nickerson135, R. Nicolaidou145,
D. S. Nielsen40, J. Nielsen146, N. Nikiforou11, V. Nikolaenko123,an, I. Nikolic-Audit136, K. Nikolopoulos21, P. Nilsson29,
H. R. Nindhito54, Y. Ninomiya81, A. Nisati72a, N. Nishu60c, R. Nisius115, I. Nitsche47, T. Nitta179, T. Nobe163,
Y. Noguchi85, M. Nomachi133, I. Nomidis136, M. A. Nomura29, M. Nordberg36, N. Norjoharuddeen135, T. Novak91,
O. Novgorodova48, R. Novotny142, L. Nozka130, K. Ntekas171, E. Nurse94, F. G. Oakham34,av, H. Oberlack115,
J. Ocariz136, A. Ochi82, I. Ochoa39, J. P. Ochoa-Ricoux147a, K. O’Connor26, S. Oda87, S. Odaka81, S. Oerdek53,
A. Ogrodnik83a, A. Oh100, S. H. Oh49, C. C. Ohm154, H. Oide55a,55b, M. L. Ojeda167, H. Okawa169, Y. Okazaki85,
Y. Okumura163, T. Okuyama81, A. Olariu27b, L. F. Oleiro Seabra140a, S. A. Olivares Pino147a, D. Oliveira Damazio29,
J. L. Oliver1, M. J. R. Olsson171, A. Olszewski84, J. Olszowska84, D. C. O’Neil152, A. Onofre140a,140e, K. Onogi117,

123



760 Page 18 of 25 Eur. Phys. J. C (2019) 79 :760

P. U. E. Onyisi11, H. Oppen134, M. J. Oreglia37, G. E. Orellana88, Y. Oren161, D. Orestano74a,74b, N. Orlando14,
R. S. Orr167, V. O’Shea57, R. Ospanov60a, G. Otero y Garzon30, H. Otono87, M. Ouchrif35d, F. Ould-Saada134,
A. Ouraou145, Q. Ouyang15a, M. Owen57, R. E. Owen21, V. E. Ozcan12c, N. Ozturk8, J. Pacalt130, H. A. Pacey32,
K. Pachal49, A. Pacheco Pages14, C. Padilla Aranda14, S. Pagan Griso18, M. Paganini183, G. Palacino65, S. Palazzo50,
S. Palestini36, M. Palka83b, D. Pallin38, I. Panagoulias10, C. E. Pandini36, J. G. Panduro Vazquez93, P. Pani46,
G. Panizzo66a,66c, L. Paolozzi54, C. Papadatos109, K. Papageorgiou9,h, A. Paramonov6, D. Paredes Hernandez63b,
S. R. Paredes Saenz135, B. Parida166, T. H. Park167, A. J. Parker89, M. A. Parker32, F. Parodi55a,55b, E. W. P. Parrish121,
J. A. Parsons39, U. Parzefall52, L. Pascual Dominguez136, V. R. Pascuzzi167, J. M. P. Pasner146, E. Pasqualucci72a,
S. Passaggio55b, F. Pastore93, P. Pasuwan45a,45b, S. Pataraia99, J. R. Pater100, A. Pathak181, T. Pauly36, B. Pearson115,
M. Pedersen134, L. Pedraza Diaz119, R. Pedro140a, T. Peiffer53, S. V. Peleganchuk122a,122b, O. Penc141, H. Peng60a,
B. S. Peralva80a, M. M. Perego132, A. P. Pereira Peixoto140a, D. V. Perepelitsa29, F. Peri19, L. Perini68a,68b, H. Pernegger36,
S. Perrella69a,69b, K. Peters46, R. F. Y. Peters100, B. A. Petersen36, T. C. Petersen40, E. Petit101, A. Petridis1, C. Petridou162,
P. Petroff132, M. Petrov135, F. Petrucci74a,74b, M. Pettee183, N. E. Pettersson102, K. Petukhova143, A. Peyaud145,
R. Pezoa147b, L. Pezzotti70a,70b, T. Pham104, F. H. Phillips106, P. W. Phillips144, M. W. Phipps173, G. Piacquadio155,
E. Pianori18, A. Picazio102, R. H. Pickles100, R. Piegaia30, D. Pietreanu27b, J. E. Pilcher37, A. D. Pilkington100,
M. Pinamonti73a,73b, J. L. Pinfold3, M. Pitt180, L. Pizzimento73a,73b, M.-A. Pleier29, V. Pleskot143, E. Plotnikova79,
D. Pluth78, P. Podberezko122a,122b, R. Poettgen96, R. Poggi54, L. Poggioli132, I. Pogrebnyak106, D. Pohl24, I. Pokharel53,
G. Polesello70a, A. Poley18, A. Policicchio72a,72b, R. Polifka143, A. Polini23b, C. S. Pollard46, V. Polychronakos29,
D. Ponomarenko112, L. Pontecorvo36, S. Popa27a, G. A. Popeneciu27d, D. M. Portillo Quintero58, S. Pospisil142,
K. Potamianos46, I. N. Potrap79, C. J. Potter32, H. Potti11, T. Poulsen96, J. Poveda36, T. D. Powell149, G. Pownall46,
M. E. Pozo Astigarraga36, P. Pralavorio101, S. Prell78, D. Price100, M. Primavera67a, S. Prince103, M. L. Proffitt148,
N. Proklova112, K. Prokofiev63c, F. Prokoshin147b, S. Protopopescu29, J. Proudfoot6, M. Przybycien83a, A. Puri173,
P. Puzo132, J. Qian105, Y. Qin100, A. Quadt53, M. Queitsch-Maitland46, A. Qureshi1, P. Rados104, F. Ragusa68a,68b,
G. Rahal97, J. A. Raine54, S. Rajagopalan29, A. Ramirez Morales92, K. Ran15a,15d, T. Rashid132, S. Raspopov5,
M. G. Ratti68a,68b, D. M. Rauch46, F. Rauscher114, S. Rave99, B. Ravina149, I. Ravinovich180, J. H. Rawling100,
M. Raymond36, A. L. Read134, N. P. Readioff58, M. Reale67a,67b, D. M. Rebuzzi70a,70b, A. Redelbach177, G. Redlinger29,
K. Reeves43, L. Rehnisch19, J. Reichert137, D. Reikher161, A. Reiss99, A. Rej151, C. Rembser36, M. Renda27b,
M. Rescigno72a, S. Resconi68a, E. D. Resseguie137, S. Rettie175, E. Reynolds21, O. L. Rezanova122a,122b, P. Reznicek143,
E. Ricci75a,75b, R. Richter115, S. Richter46, E. Richter-Was83b, O. Ricken24, M. Ridel136, P. Rieck115, C. J. Riegel182,
O. Rifki46, M. Rijssenbeek155, A. Rimoldi70a,70b, M. Rimoldi20, L. Rinaldi23b, G. Ripellino154, B. Ristić89, E. Ritsch36,
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