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Abstract: A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled
from the ChEMBL database and studied by means of a conformation-independent quantitative
structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors
are explored with the main intention of capturing the most relevant structural characteristics affecting
the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL,
Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR
results. The best multivariable linear regression models are found with the replacement method
variable subset selection technique. The balanced subsets method partitions the dataset into training,
validation, and test sets. It is found that the proposed linear QSAR model improves previously
reported models by leading to a simpler alternative structure-activity relationship.

Keywords: polo-like kinase-1 inhibitors; quantitative structure-activity relationships; half-maximal
inhibitory concentration; replacement method; molecular descriptors

1. Introduction

Polo-like kinases (PLKs) are characterized by a multidomain structure consisting of a highly
conserved N-terminal catalytic domain (KD) and a relatively divergent C-terminal polo-box domain
(PBD), composed of either one or two polo boxes [1,2]. This serine/threonine kinase family is an
important regulator of mitotic progression [3].

Among the different identified PLKs, PLK1 is the most investigated member of the family because
it is highly expressed in proliferating cells and overexpressed in many cancers, thus resulting in an
attractive target for anticancer therapeutic development [4].

Polo-like kinase 1 (PLK1) is involved in centrosome maturation, kinetochore function, spindle
formation, chromosome segregation, and cytokinesis [5]. The PBD is critical to PLK1 localization and
function and negatively regulates the kinase activity of the catalytic domain [1]. Inhibitors targeting KD,
the so-called ATP-competitive PLK1 inhibitors, have attracted much attention over the last years [6].

Inhibiting PLK1 activity results in a potent antitumor effect both in vitro and in vivo [7]; therefore,
much attention has been focused on characterizing PLK1 and synthesizing its inhibitors [5]. Figure 1
shows the molecular structures of some encouraging agents in current clinical trials.

Among the various methodologies available in the literature for predicting the biological activities
of compounds, the quantitative structure-activity relationship (QSAR) theory [8–12] is considered as a
useful and well-known strategy. The main hypothesis behind every QSAR study is that the chemical
structure is responsible for the bioactivity of the compound.

Therefore, the structure is quantified through molecular descriptors; in other words, numerical
quantities carrying specific and relevant information about the constitutional, topological, geometrical,
hydrophobic, and/or electronic characteristics of the compounds are investigated [13–16]. Thousands
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of molecular descriptors are now available in the literature, and it has to be decided how to select those
numerical variables that best characterize the experimental activity under consideration.
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The most relevant descriptors are selected with an appropriate mathematical technique and
statistically correlated to the experimental activity, resulting in a mathematical model that is used
to find out useful structure-activity parallelisms. In this way, QSAR models constitute a fast and
cost-effective alternative to experimental measurements.

The availability of newer and higher quality experimental measurements has encouraged and
justified the development of newer and alternative QSAR models with improved statistical quality;
therefore, this research field has continued to evolve over the years.

A large number of structure-activity relationship (SAR) studies has been reported in the past for
analyzing the PLK1 inhibition although, however, very few account for quantitative approaches [17–20].
Therefore, in the present work, we develop a QSAR analysis for searching predictive models on a large
and structurally diverse dataset of 530 PLK1 inhibitors. For this purpose, we resort to the conformation-
independent QSAR approach and consider constitutional and topological representations of the inhibitors’
chemical structures for deriving the molecular descriptors.

The main advantage of not considering molecular conformations is that the only experimental data
needed for establishing the QSAR models is the experimental inhibitory activity being analyzed [21–24].
No further experimental information is required, such as data on the experimental X-ray crystal
structure of the PLK1 kinase domain with a given inhibitor in certain conformation [25]. In addition,
it is known that the ligand–receptor complex has not been solved for all inhibitor types having different
interaction modes—that is, in a heterogeneous dataset like the one considered in this work.

The inclusion of more specific experimental information is appropriate whenever a microscopic
and more sophisticated modeling methodology is involved, such as CoMFA (comparative molecular
field analysis) and CoMSIA (comparative molecular similarity indices analysis) [17,26]. However,
as commented previously, such specific experimental details are usually unavailable for any chemical
system of interest; therefore, the application of the conformation-independent QSAR approach can be
considered as a useful and valid alternative.
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2. Materials and Methods

2.1. Experimental Dataset

The structurally diverse PLK1 inhibitors were compiled from ChEMBL [27,28], an open data
resource of binding, functional, and ADMET bioactivity data. The experimental inhibitory effectiveness
is expressed as the half-maximal inhibitory concentration IC50 (nM).

After removing duplicates, compounds with ambiguous data, compounds having molecular
weights higher than 1000 g mol−1, and compounds without reported bioactivities, the dataset consisted
of 530 compounds with IC50 values ranging from 0.8 to 145,000 nM and molecular weights ranging
from 164.2 to 949.97 g mol−1. The complete list of compounds studied here is provided in Table S1 as
Supplementary Material.

2.2. Structural Representation and Molecular Descriptors Calculation

The 530 chemical structures studied here are provided as canonical SMILES notation in Table S1
of the Supplementary Material section. All file format conversions were performed with Open Babel
for Windows [29]. The molecular structures were visualized with ACDLabs ChemSketch freeware [30].

The conformation-independent molecular descriptors were computed as follows. We used the
Pharmaceutical Data Exploration Laboratory (PaDEL) freeware version 2.20 [31] because it has the
advantage that it is a freely available and open-source program. PaDEL allowed us to calculate 1444
0D-2D descriptors and 12 fingerprint types (16,092 bits) [32]. The categorical (indicator) fingerprint
descriptors involve the presence or count of specific chemical substructures: we treated the fingerprints
like they were “constitutional descriptors” describing the molecular composition and, as such, they could
be used for modeling any property of interest.

More molecular descriptors were calculated with the Molecular Descriptors from 2D structures
(Mold2) freeware [33], which generated 777 1D-2D structural variables with molecules in MDL
sdf format.

Finally, 2D molecular descriptors were calculated with the Quadratic, Bilinear and N-Linear MapS
(QuBiLs) [34] suite by using the graph-theoretic electronic-density matrices and atomic weightings
(MAS) module from the ToMoCoMD-CARDD free multi-platform freeware. The QuBiLs-MAS
algebraic module calculated 8448 quadratic, bilinear, and linear maps based on pseudograph-theoretic
electronic-density matrices and atomic weightings, when the program was used with the following
options selected: ‘bilinear’, ‘linear’, and ‘quadratic’ algebraic forms; ‘atom-based’, ‘non-chiral’
and ‘duplex’ constraints; ‘non-stochastic’, ‘simple stochastic’, ‘double stochastic’ and ‘mutual
probability’ matrix forms (maximum order 15); ‘keep all’ cut-off; ‘total’ groups; ‘Ghose-Crippen LogP’,
‘polarizability’, ‘charge’, ‘polar surface area’, ‘electronegativity’, ‘refractivity’, ‘mass’ and ‘van der
Waals volume’ properties; ‘Euclidean distance’, ‘arithmetic mean’, and ‘standard deviation’ invariants
(non-standardized option).

Through PaDEL, Mold2, and QuBiLs-MAS we derived 26,761 non-conformational molecular
descriptors with the intention of exploring the most relevant structural characteristics affecting the
studied PLK1 bioactivity.

2.3. Model Development

2.3.1. Molecular Descriptors Selection

First, the ‘collinear’ or linearly dependent descriptor pairs were identified, and only one variable
from each pair was kept for further analysis. Non-informative descriptors not relevant to the QSAR
analysis were excluded (i.e., descriptors with constant and near-constant values and descriptors with at
least one missing value), leading to a pool of 11,565 linearly independent non-conformational descriptors.

We employed the replacement method (RM) technique [35] in order to generate multivariable
linear regression (MLR) models on the training set (train) by searching in a pool having D = 11,565
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descriptors for optimal subsets containing d descriptors (d is much lower than D), with the smallest
values for the standard deviation (Strain).

The main idea behind the RM is that one can approach the minimum of Strain by judiciously
taking into account the relative errors of the coefficients of the least-squares model given by a set
of d descriptors. In other words, we should find the global minimum of Strain(d) in a subspace of
D!/[d!(D − d)!] points d, where D represents the total number of available descriptors.

The quality of the results achieved with this technique approaches that obtained by performing
an exact (combinatorial) full search of molecular descriptors although, of course, requires much less
computational work. The RM is computationally more expensive than the stepwise regression (SR)
and genetics algorithm (GA) approaches, although produces similar or better results than GA and
better results than SR [36].

Table S2 includes a list of mathematical equations involved in the present study. All the MatLab
programmed algorithms used in our calculations are available upon request.

2.3.2. Model Validation

The complete molecular set of 530 inhibitors was split into three subsets: training (train), validation
(val), and test sets. The training set was used to calibrate the model and to obtain its parameters
through the RM technique, while the validation set helped to calibrate and partially validate the
model by predicting the bioactivity of compounds not included in train. Finally, the test set contained
compounds “never seen” during the calibration step with train and val, and demonstrates the real
predictive capability of the QSAR.

The dataset partitioning has to achieve similar structure-activity relationships in the three subsets;
in other words, the training set molecules should be representative of the validation and test set
compounds. For this purpose, the split of the dataset was carried out by means of the balanced subsets
method (BSM) [37,38], a procedure proposed by our group that ensures that balanced subsets are
generated. The BSM is based on the k-means cluster analysis (k-MCA) method [39]: the essence of
k-MCA is to create k-clusters or groups of compounds in such a way that compounds in the same
cluster are very similar in terms of distance metrics (i.e., Euclidean distance), and compounds in
different clusters are very distinct.

The linear regression models are also theoretically validated through the leave-one-out
cross-validation (loo) procedure [40], and also through the more rigorous leave-30%-out cross-validation
(l30‰) method.

2.3.3. Applicability Domain

A predictive QSAR model is only able to predict molecules falling within its applicability domain
(AD), so that the predicted activity is not a result of substantial extrapolation (unreliable prediction) [41,42].
The AD definition is dependent on the model’s descriptors and the experimental activity.

In this work, we determined the AD through two alternative methodologies. The first one is
based on the well-known leverage approach [43] where a test set compound i must have a calculated
leverage hi smaller than the warning leverage h∗. The second one is based on a simple standardization
approach [42]: a given test set compound i having d standardized descriptor values sik, k = 1, . . . , d
must have a maximum value smax

ik ≤ 3. In the case that smax
ik > 3 and its minimum value smin

ik < 3,
then the snew

i parameter has to be calculated and must fulfill the condition: snew
i = hsii+ 1.28.σsi ≤ 3,

where hsii is the mean of sik values for i and σsi is the standard deviation for such values.

3. Results and Discussion

After partitioning the dataset of 530 PLK1 inhibitors into train, val, and test sets using the BSM
technique, we obtain balanced subsets with Ntrain = 265, Nval = 133 and Ntest = 132 compounds;
in addition, Table S1 denotes the members of val (ˆ) and test (*) sets. Therefore, the calibration
compounds in train and val constitute 75% of the whole dataset.
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The best MLR models, including the most representative 1–9 molecular descriptors, are presented
in Table 1. A brief description of such descriptors is also supplied in Table S3. From the results of
Table 1, it is clearly appreciated that the Strain parameter continuously improves with the addition
of molecular descriptors into the linear equation. However, according to the validation set results,
the most predictive models (lowest Sval) have 8 and 9 descriptors. We kept the model’s dimension as
small as possible and selected the following 8-descriptor model and associated statistical quality:

log10 IC50 = 0.46mindssC − 0.85maxHCsats + 0.88M66 − 0.54PC494−
2.76PC534 − 1.12PC686 + 2.68KR3577 − 1.44KR4268 + 4.37

(1)

Ntrain = 265, R2
train = 0.69, Strain = 0.80

R2max
ij = 0.14, VIFmax = 1.11, o3 = 1, R2

rand = 0.13, Srand = 1.35

R2
loo = 0.67, Sloo = 0.83, R2

l30%o = 0.58, Sl30%o = 0.95

Nval = 133, R2
val = 0.75, Sval = 0.82

Ntest = 132, R2
test = 0.69, Stest = 0.85

Table 1. Molecular descriptors involved in the best linear regression quantitative structure-activity
relationship (QSAR) models for polo-like kinase-1 (PLK1) inhibitors. The selected model appears
in bold.

d Descriptors R2
train Strain R2

val Sval R2
test Stest

1 Sub99 0.31 1.18 0.39 1.25 0.28 1.31
2 PC534; AP170 0.49 1.02 0.56 1.08 0.52 1.06
3 PC534; KR4261; AP170 0.52 0.99 0.68 0.95 0.57 0.98
4 nHBAcc3; PC534; KR4261; AP170 0.57 0.94 0.71 0.90 0.62 0.93
5 PC534; KR3577; KR4268; AP170; KRC3897 0.61 0.90 0.71 0.89 0.71 0.83
6 maxHCsats; M66; PC534; KR3577; KR4268; KRC3897 0.64 0.87 0.74 0.85 0.69 0.84
7 maxHCsats; M66; PC534; PC686; KR3577; KR4268; AP159 0.66 0.84 0.74 0.84 0.66 0.89

8 mindssC; maxHCsats; M66; PC494; PC534; PC686;
KR3577; KR4268 0.69 0.80 0.75 0.82 0.69 0.85

9 mindssC; maxHCsats; M66; PC494; PC534; PC686; KR3577;
KR4268; APC510 0.70 0.79 0.75 0.82 0.70 0.85

A plot for the log10 IC50 predictions given by Equation (1) as a function of the experimental values
is provided in Figure 2. The dispersion plot of residuals in Figure 3 tends to obey a random pattern
around the zero line, suggesting that Equation (1) predicts the whole dataset without systematic errors
or residual bias.

The o3 parameter indicates the number of outlier compounds in the training set having
a residual (difference between experimental and predicted activity) greater than 3 times Strain.
The only outlier in the training set is 171, 1-{4-[(4-chlorophenyl)methoxy]-3-methoxyphenyl}-N-
[(pyridin-4-yl)methyl]methanamine. After close inspection of this specific compound, it is easily
concluded that the abnormal behavior can be completely attributed to the highly heterogeneous
dataset being analyzed, involving molecular weights from 164.2 to 949.97 g mol−1 and bioactivities
from 0.8 to 145,000 nM.

Our proposed 8-descriptor model approves the internal validation process of loo and l30‰
(500,000 cases) cross-validation procedures through the prediction of 1 or 80 molecules excluded at a
time from the training set. According to the specialized literature [40], the cross-validation R2

loo and
R2

l30‰ explained variances should be greater than 0.5, although this is a necessary but not sufficient
condition for the real predictive power.



Cells 2018, 7, 13 6 of 11
Cells 2018, 7, x FOR PEER REVIEW  6 of 11 

 

 
Figure 2. Predicted and experimental 

10 50log IC  values according to the quantitative structure-

activity relationship (QSAR) of Equation (1). 

 
Figure 3. Dispersion plot of residuals for Equation (1). 

The 3o  parameter indicates the number of outlier compounds in the training set having a 
residual (difference between experimental and predicted activity) greater than 3 times trainS . The 
only outlier in the training set is 171, 1-{4-[(4-chlorophenyl)methoxy]-3-methoxyphenyl}-N-[(pyridin-
4-yl)methyl]methanamine. After close inspection of this specific compound, it is easily concluded 
that the abnormal behavior can be completely attributed to the highly heterogeneous dataset being 
analyzed, involving molecular weights from 164.2 to 949.97 g mol−1 and bioactivities from 0.8 to 
145,000 nM. 

Our proposed 8-descriptor model approves the internal validation process of loo and l30‰ 
(500,000 cases) cross-validation procedures through the prediction of 1 or 80 molecules excluded at a 
time from the training set. According to the specialized literature [40], the cross-validation 2

looR  and 
2

‰30lR  explained variances should be greater than 0.5, although this is a necessary but not sufficient 
condition for the real predictive power. 

Figure 2. Predicted and experimental log10 IC50 values according to the quantitative structure-activity
relationship (QSAR) of Equation (1).

Cells 2018, 7, x FOR PEER REVIEW  6 of 11 

 

 
Figure 2. Predicted and experimental 

10 50log IC  values according to the quantitative structure-

activity relationship (QSAR) of Equation (1). 

 
Figure 3. Dispersion plot of residuals for Equation (1). 

The 3o  parameter indicates the number of outlier compounds in the training set having a 
residual (difference between experimental and predicted activity) greater than 3 times trainS . The 
only outlier in the training set is 171, 1-{4-[(4-chlorophenyl)methoxy]-3-methoxyphenyl}-N-[(pyridin-
4-yl)methyl]methanamine. After close inspection of this specific compound, it is easily concluded 
that the abnormal behavior can be completely attributed to the highly heterogeneous dataset being 
analyzed, involving molecular weights from 164.2 to 949.97 g mol−1 and bioactivities from 0.8 to 
145,000 nM. 

Our proposed 8-descriptor model approves the internal validation process of loo and l30‰ 
(500,000 cases) cross-validation procedures through the prediction of 1 or 80 molecules excluded at a 
time from the training set. According to the specialized literature [40], the cross-validation 2

looR  and 
2

‰30lR  explained variances should be greater than 0.5, although this is a necessary but not sufficient 
condition for the real predictive power. 

Figure 3. Dispersion plot of residuals for Equation (1).

As a way of demonstrating that the QSAR model is not a result of chance correlation, the experimental
log10 IC50 activity values were scrambled with Y-randomization [44] (100,000 cases). When Srand (S for
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Y-randomization) is greater than Strain, a valid and useful structure-activity relationship is found, as is
the case for Equation (1).

The recommended external validation criteria to assure predictive capability [40] are also achieved: 1−
R2

0/R2
test(1.18× 10−3) < 0.1 or 1− R02

0 /R2
test(0.12) < 0.1; 0.85 ≤ k(0.93) ≤ 1.15 or 0.85 ≤ k0(1.00) ≤ 1.15;

R2
m(0.67) > 0.5.

The Rmax
ij parameter from Equation (1) is the maximum correlation coefficient between descriptor

pairs: R2max
ij = 0.14 indicates that there is no serious overlapping structural information. VIFmax is

the maximum variance inflation factor, a parameter that measures the maximum multicollinearity
among descriptors. A VIF of 1 for a specific descriptor means that there is no correlation between
this descriptor and all the remaining descriptors of the model, and a VIF exceeding 10 indicates that
multicollinearity is a problem in the dataset [45]. For Equation (1), VIFmax = 1.11. The complete
squared correlation matrix and VIF values are provided in Table S4.

It is known that a successful QSAR model is established only when it surpasses the validation
process, in other words, by testing its ability to predict the experimental bioactivity of compounds
that are not considered during the model calibration [46,47]. The QSAR of Equation (1) has an
acceptable predictive capability for the external test set of 132 “never seen” experimental log10 IC50

values according to R2
test and Stest parameters and Figures 2 and 3. This QSAR can thus be applied to

predict new inhibitors with unknown experimental IC50.
The eight conformation-independent structural indices of Equation (1) have quite a straightforward

structural interpretation:

• Two electrotopological state atom-type descriptors: mindssC, the minimum atom-type E-state:
=C<; and maxHCsats, the maximum atom-type H E-state: H bonded to B, Si, P, Ge, As, Se, Sn,
or Pb.

• A MACCS fingerprint descriptor: M66, the number of CC(C)(C)A fragments, where A is any valid
periodic table element symbol.

• Three PubChem fingerprint descriptors: PC494, the presence of O=C-C:N fragment, where ‘:’
denotes bond aromaticity; PC534, the presence of S-C:C-O fragment; and PC686, the presence of
O=C-C-C-C-O fragment.

• Two Klekota–Roth fingerprint descriptors: KR3577, the presence of SMARTS substructure
Cc1cccc(C)c1NC=O; and KR4268, the presence of SMARTS substructure Nc1ccccc1O.

The numerical values for these descriptors are provided in Table S5: all of them have positive
numerical values with the exception of mindssC, which has either positive or negative values. The
sign of the regression coefficient in the linear model indicates when the descriptor contribution
increases or decreases the predicted log10 IC50 values. Therefore, it is possible to propose the following
useful QSAR guide for the chemical synthesis of new PLK1 inhibitors. Molecular structures of
inhibitors simultaneously having higher positive values of maxHCsats, PC494, PC534, PC686, and
KR4268 and lower values for mindssC, M66, and KR3577 would exhibit lower predicted log10 IC50

values, being predicted as more active PLK1 inhibitors.
In order to apply the proposed QSAR guide, the molecular structures to be predicted have to

fall within the model’s applicability domain (AD). Within the leverage approach [43], a compound
with high leverage (hi) would reinforce the model if the compound is in the train or val (good leverage)
calibration sets; but such a compound in the test set could have unreliable predicted data, the result
of substantial extrapolation of the model (bad leverage) [41]. Equation (1) reveals that most of the
test set compounds have hi values falling under the h∗ limit (0.1019) with the exception of five test set
compounds: 495, 508, 509, 511, and 516. The Williams plot (standardized residuals as a function of the
hi values) is provided in Figure 4.
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This result obtained with the leverage approach for the test set approximately coincides with the
one obtained by using the standardization approach, as the two conditions smax

ik ≤ 3 or snew
i ≤ 3 are

followed by all the test set compounds with the exception of seven compounds: the five previous
test compounds and two more compounds lying near the h∗ limit: 453 and 457. Thus, the predicted
log10 IC50 values for most of the test set compounds can be considered as reliable.

Finally, the obtained regression model in Equation (1) can be converted into a classification
model by classifying compounds with experimental IC50 ≤ 1000 nM as highly active inhibitors and
experimental IC50 > 1000 nM as poorly active inhibitors. Then, the Cooper statistics [48] related to
accuracy (A%), sensitivity (SE), and specificity (SP) and the Matthews correlation coefficient (MCC)
can be calculated. The classification results for Equation (1) in the test set are acceptable as A% = 83%,
SE = 0.73, SP = 0.95, MCC = 0.69.

A previous study developed by Kong and Yan [20] employed the current ChEMBL database of
PLK1 inhibitors for establishing various in silico classification models. The 16 single classifier models
and one consensus Kohonen’s self-organizing map (SOM) model were applied to a dataset of 601
noncongeneric PLK1 inhibitors. For these 16 single classifier models, four machine learning methods
were used: support vector machine (SVM), naive Bayes (NB), C4.5 decision tree (C4.5 DT), and random
forest (RF), with MCC ranging from 0.609 to 0.864 and A% ranging from 78.7% to 93.1% for the test set.
Then, a consensus SOM model was built based on four single classifier models to obtain a more reliable
and robust model, outperforming all the single classifier models with MCC = 0.87 and A% = 93.6% on
the test set.

The models reported in [20] achieved acceptable results. However, the linear QSAR model of
Equation (1) represents an improved alternative model having the following characteristics:

i. Our proposed model performs both regression and classification.
ii. Dataset partitioning: three subsets are considered, such as train, val, and test instead of only two

(train and test) in [20]. In this way, it is more convenient for analyzing the predictive performance
of the model.

iii. Model’s size: a fewer number of molecular descriptors are involved in the final selected
model—i.e., 8 instead of 10–15. Therefore, the parsimony´s principle is accomplished (Ockham’s
razor) [49] by following the common practice of keeping the model’s dimension as small
as possible.
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iv. No energy or geometry optimization is performed on the inhibitor chemical structures. The conformation-
independent QSAR approach considers only constitutional and topological representations for
deriving the molecular descriptors.

v. A simpler modeling methodology based on MLR analysis is applied in the present study.

4. Conclusions

Polo-like kinase-1 is an attractive target for anticancer therapeutic development so the prediction
of its inhibitors has been of great interest during the last years. The linear regression QSAR model
established in this work on a structurally diverse set of 530 PLK1 inhibitors has an acceptable predictive
capability in the external test set and is based on eight non-conformational molecular descriptors.

For chemical structures falling within the applicability domain of this model, a QSAR guide for the
chemical synthesis of new PLK1 inhibitors is provided as follows: molecular structures of inhibitors
simultaneously having higher positive values of maxHCsats, PC494, PC534, PC686, and KR4268
and lower values for mindssC, M66, and KR3577 would exhibit lower predicted log10IC50 values,
being predicted as more active PLK1 inhibitors.

The consideration of the constitutional and topological aspects of the molecular structures in the
conformation-independent QSAR approach achieves acceptable results. New investigations on other
physicochemical and biological properties of interest will be published soon elsewhere.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/7/2/13/s1.
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