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Abstract: Developing disease models to simulate and analyse yield losses for various pathogens
is a challenge for the crop modelling community. In this study, we developed and tested a simple
method to simulate septoria tritici blotch (STB) in the Cropsim-CERES Wheat model studying the
impacts of damage on wheat (Triticum aestivum L.) yield. A model extension was developed by
adding a pest damage module to the existing wheat model. The module simulates the impact
of daily damage on photosynthesis and leaf area index. The approach was tested on a two-year
dataset from Argentina with different wheat cultivars. The accuracy of the simulated yield and leaf
area index (LAI) was improved to a great extent. The Root mean squared error (RMSE) values for
yield (1144 kg ha−1) and LAI (1.19 m2 m−2) were reduced by half (499 kg ha−1) for yield and LAI
(0.69 m2 m−2). In addition, a sensitivity analysis of different disease progress curves on leaf area
index and yield was performed using a dataset from Germany. The sensitivity analysis demonstrated
the ability of the model to reduce yield accurately in an exponential relationship with increasing
infection levels (0–70%). The extended model is suitable for site specific simulations, coupled with
for example, available remote sensing data on STB infection.

Keywords: wheat; disease; yield; septoria tritici blotch; leaf area index; crop modelling;
decision support system for agrotechnology transfer (DSSAT); Cropsim-CERES Wheat

1. Introduction

Wheat (Triticum aestivum L.) is the second most important staple food crop for human nutrition.
It is grown worldwide on approximately 220 million hectares under different climatic conditions.
It is projected that wheat production must increase by 1.6% annually to meet the expected global
demand by 2050 [1]. However, increasing temperatures and changing global rainfall patterns will
likely influence breeding, management, fertilization and crop protection strategies for wheat [2] and
also influence disease patterns [3,4]. Hence, crop protection measures will play an important role
under future climate change, as rising temperatures and changes in rainfall pattern, will cause more
favourable conditions for pests and diseases, especially in the warming north, where wheat production
is predominant [2].

On a global scale, there are approximately 50 diseases and pests, which have the potential to
damage wheat and reduce farmer’s income [5–7]. On a global level, the most widely adapted wheat
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fungal diseases are leaf rust caused by “Puccinia triticina E.,” stripe rust caused by “Puccinia striiformis
W.,” stem or black rust caused by “Puccinia graminis E.,” powdery mildew caused by “Blumeria graminis
P.” and septoria tritici blotch (STB) caused by “Zymoseptoria tritici D.” [1]. The infection by “Zymoseptoria
tritici D.” is the most economically damaging wheat disease worldwide [8]. It can cause yield reductions
of 50% to 60% [9] by creating leaf lesions resulting in defoliation and reduced photosynthesis. It has
been estimated that 70% of the annual usage of fungicides in Europe is related to the treatment of this
disease [10].

During the past decade, there has been an increasing resistance of STB to azole and strobilurin
fungicides in Europe [9–11]. Breeding for STB disease resistance is complicated, due to the variability
of the pathogen reproduction cycle [12,13]. Researchers have studied different strategies including
tillage, crop rotation, delayed sowing, fungicide application and a proper level of fertilizer application
to reduce or control the infection of STB [14]. It appears that moderate fungicide application coupled
with the right amount of fertilizer is a strategy that holds promise for environmentally friendly wheat
production, while reducing at the same time STB infection.

Crop models are suitable for decision support and contribute to a better understanding in the
development of new wheat production strategies. They can play a vital role in understanding plant
growth processes, the impact of different weather scenarios as well as management strategies on disease
outbreak, final yield and grain quality. Hence, crop models might help to spread the production of
wheat in more economic and sustainable ways.

Crop models can also provide an insight into yield losses due to pests and diseases, including STB.
Several mechanistic wheat crop growth models have been developed over the last several decades,
including APSIM [15], WheatGrow [16], STICS [17], Sirius [18] and DSSAT [19]. These models were
developed to study crop-environment interaction and to evaluate optimum management strategies.

The Cropsim-CERES-Wheat (CCW) model [20–22] included in the DSSAT version 4.6 [23] was
developed to study the impact of genetics, management, weather and climate change on wheat
growth and yield. The model simulates daily plant development based on daily maximum and
minimum temperature, daylength and vernalisation requirements. Growth is computed on a daily
basis using a radiation use efficiency approach. Carbon is allocated daily to different plant parts based
on the development stage. The CCW model has been linked with remote sensing data [24] and was
successfully tested with different cultivars, soil characteristics as well as in different climatic conditions
including Canada [25], Argentina [26], Southern Italy [27] and the United Kingdom [28]. Currently the
CCW model does not account for damage due to weeds, pests or diseases [29]. As a consequence,
inaccurate simulations of crop growth and yield result when simulating datasets that include pests
and diseases [30,31].

Developing and incorporating a disease damage extension would expand the use of the
CCW model to simulate and study the impact of disease damage on crop growth and yield.
Batchelor et al. [32] incorporated a pest damage into the CROPGRO [33] family of models distributed
with the DSSAT [34]. In their approach, they defined pest coupling points as daily rate and state
variable modifiers to simulate the impact of daily pest damage on leaf, stem, seed, shell and root
state variables and daily photosynthesis rate based on daily inputs of pest damage. They tested this
approach for different pest damage types for peanut and soybean crops. They evaluated this approach
using a dataset to simulate the impact of velvetbean caterpillar on soybean.

Using the same approach, the purpose of this work was to: (i) develop a disease model extension
for the simulation of STB in wheat, to (ii) evaluate the model performance using a dataset from
Argentina; and (iii) to conduct a sensitivity analysis for the impact of different disease progress curves
on leaf area index and yield using a dataset from Germany.
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2. Materials and Methods

2.1. Model Development

Currently the CCW model does not account for competition with weeds, pests or diseases.
To solve this problem, modifications of the current CCW version are necessary to include the impact of
leaf diseases on final crop yield.

Plant dry matter accumulation and yield can be expressed as a function of leaf area index (LAI),
radiation use efficiency and the loss of assimilates due to respiration. Pathogens can modify both leaf
area index and daily photosynthesis [35].

The primary damage resulting from STB is defoliation, which reduces both leaf area and leaf
photosynthetic rate [36,37].

To apply the damage theory, it was necessary to integrate the pest damage module [32] structure
into the current CCW wheat model (Figure 1). These changes included the adding and linkage of
the following subroutines to the original version: PEST.for, LINDM.for, PESTCP.for, VEGDM.for and
OPPEST.for. A pest damage definition file was created to define the coupling point “leaf area” for
the leaf disease STB (Figure 1), where daily damage could be applied to state and rate variables in
the model. Percent cumulative leaf area destroyed (PCLA) was chosen as major coupling point in
the model.
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Figure 1. A simplified diagram of the Cropsim-CERES-Wheat (CCW) model with the pest damage
module incorporated.

Field observed damage levels were entered in the time series file, referred to as File T in the DSSAT
family of models. In this file, the year and day of year (DOY) are entered, along with STB infection in
percent. Observed disease infection was linked to the percent cumulative leaf area destroyed (PCLA)
coupling point. This damage type (i.e., PCLA) is defined in the pest damage definition model input
file, which links field observed damage type and levels to the internal model pest damage coupling
point. The model uses a linear interpolation to compute daily damage from periodic field observations.
In this work, it was assumed that STB infection began ten days before the first infection symptoms were
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observed in the field. This assumption was made, based on Sánchez-Vallet et al. [38] who reported a
latent period for STB between day 8 and 14 after infection depending on the environmental conditions.
The daily percentage of damage (Npt) was calculated between field observations using

Npt = Prt∗ +
(Prt − Prt∗)(
Dpt − Dpt∗

) × (Ds − Dpt∗
)

(1)

Npt = daily reported damage for damage type p at time t; Dpt = DOY of next field observation of
damage (Prt); Dpt* = DOY of previous field observation of damage (Prt*); Ds = day of current simulation;
Prt = damage level reported in the next field observation; Prt* = damage level reported in the previous
field observation.

The daily damage calculation, which was applied to the leaf area coupling point (Pit) is calculated
in the PESTCP. for subroutine (Figure 1) by Equation (2):

Pit =
(

Npt
)(

Cip
)

(2)

The pest coefficient (Cip) allows the model to convert units of damage into units used for the
model state or rate variable that is being damaged.

After calculating the daily damage to be applied to the diseased leaf area based on interpolations
from field observations, the daily damage (Dipt) to be applied to the leaf area state variable
(defoliated leaf area) is calculated by the following equation:

Dipt = Xit
∗ − (Xtit − Xsit)×

(
1 − Pit

100

)
(3)

Xit* = state or model variable i on day t, before application of damage; Xit = state or model variable i
on day t, after application of damage; Xtit = cumulative amount of coupling point I; Xsit = cumulative
senescence of coupling point I; Dipt = amount of damage applied on state or model variable i on day t;
Pit = coupling point leaf area.

Finally, the model state or rate variable is adjusted by subtracting the computed defoliation from
the leaf area state variable by Equation (4):

Xit = Xit
∗ − Dipt (4)

Xit = state or model variable i on day t, after application of damage; Xit* = state or model variable i on
day t, before application of damage; Dipt = amount of damage applied on state or model variable i on
day t.

2.2. Field Trials

In this study, datasets from two different locations were used for model development. The first
dataset was recorded on the Experimental Station Julio Hirschhorn in La Plata (34◦56’ S, 57◦57’ W, 15 m
above sea level, 16.3 ◦C average temperature; 946 mm mean annual precipitation) National University
of La Plata in Argentina. The second experiment was carried out at the Experimental Station Ihinger
Hof (48◦44’ N, 8◦55’ E; 480 m above sea level, mean annual temperature 9.1 ◦C and 714 mm mean
annual precipitation) University of Hohenheim in Germany.

The trial in Argentina was conducted in two consecutive years (2010 and 2011) and published by
Castro and Simón [39]. The objective of this trial was to test the tolerance of ten different Argentinean
wheat cultivars (Triticum aestivum L.) for STB and to evaluate the disease impact on grain yield and
grain quality. The sowing dates were on 15th of July in 2010 and 16th of June in 2011. The soil type
was a silty loam. Nitrogen was applied as urea at 100 kg N ha−1 at sowing and 80 kg N ha−1 at the
end of tillering. Three different inoculation levels with Zymoseptoria tritici D. were performed. The first
level was the control treatment, the second was considered to be a low inoculation level (with 5 × 105
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spores mL−1 suspension), while the third treatment was considered as high inoculation treatment
(5 × 106 spores ml−1 suspension). All inoculations were performed at growth stage 22 (beginning
of tillering) [40] and at growth stage 39 (flag leaf emergence). For model development weather data
(daily temperature, rainfall, solar radiation) from the weather station La Plata (34◦56’ S, 57◦57’ W),
disease severity ratings (%) from three growth stages (GS 39, 60, 82), leaf area index (LAI) which was
calculated from the green leaf area (GLAI) plus non-green leaf area (NGLAI), yield, soil properties and
management information were collected.

The second trial in Germany was conducted in 2006 using the cultivar Monopol with three
inoculation levels (control treatment; low inoculation 50%; high inoculation 100%) of Zymoseptoria
tritici. Inoculation was imposed by spraying 50% or 100% of a spore suspension (1 × 106 spores
per mL, strain CBS 292.69) onto the plots at growth stage 32 [41]. The sowing date was 22nd of
October 2005 on a silty clay soil. Nitrogen in form of ammonium nitrate was applied at three growth
stages: 100 kg N ha−1 at GS 30, 80 kg N ha−1 at GS 32 and 40 kg N ha−1 at GS 49. The objective
of this field trial was to use different vegetation indices to determine the occurrence of plant
diseases in winter wheat (Triticum aestivum L.). For model sensitivity analysis, data including
temperature, rainfall and solar radiation from the weather station Ihinger Hof, as well as growth stages,
yield monitoring data, disease severity ratings and the LAI at growth stages GS 31, 34 and 49 were
collected. Further information on the trial layout can be found in Gröll [41].

2.3. Model Calibration and Evaluation

The modified CCW model extension was incorporated into the DSSAT 4.6 software. Model inputs
were created for both datasets from Argentina and Germany. The dataset from La Plata of 2010,
which included phenological, yield, soil data (Table 1) and weather data, was used for calibration to
test the ability of the model to simulate the impact of STB on wheat growth and yield.

Table 1. Soil properties for experiments in La Plata and Ihinger Hof used in the simulation.

Location La Plata Clay
Content %

Sand
Content % Silt Content % LLL * DUL ** SAT ***

0–30 cm 20.7 28.9 50.4 0.226 0.457 0.561
30–60 cm 20.7 28.9 50.4 0.226 0.457 0.561
60–90 cm 20.7 28.9 50.4 0.226 0.457 0.561

Location Ihinger Hof

0–30 cm 43.3 9.9 46.8 0.247 0.412 0.467
30–60 cm 43.3 9.9 46.8 0.247 0.412 0.467
60–90 cm 25.0 18.8 56.2 0.142 0.313 0.503

* Lower limit =̂ permanent wilting point (pF 4.2). ** Drained upper limit =̂ field capacity (pF 1.8). *** Saturated =̂
saturated water content (pF 0).

Genetic coefficients for growth and development were calibrated using the 2010 dataset and the
control treatment for each cultivar. Calibration was performed by sequentially adjusting the genetic
coefficients (Table 2) to minimize the error between measured and simulated values [19]. The existing
species file was set as default and the existing ecotype UKWH01 as well as the cultivar file were
modified. Coefficients for phenological development (P1V, P1D, P1–P5 and PHINT) were calibrated in
the first step, followed by crop growth coefficients (G1, G2 and G3). The RMSE, index of agreement
(d-Index) and modelling efficiency (EF) statistics were used to assess the quality of the calibration
(see section statistical evaluation). After calibration of individual cultivars, the percentage infection
with STB of the low and high inoculation was applied to test the model response. The dataset from La
Plata of 2011 was used for model validation.
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Table 2. Cultivar coefficients in Cropsim-CERES-Wheat (CCW) model used to simulate crop development, crop growth and crop yield for different cultivars.

Ihinger Hof La Plata

Parameter Definition Monopol ACA801 B75
Aniversario

Buck
Brasil

Buck Guapo *
Baguette 10 *
Klein Zorro *

Relmó Centinela *

Klein
Escorpion

Klein
Flecha

Klein
Chaja

Cultivar file

P1D Percentage reduction in development rate in a photoperiod 10 h
shorter than the threshold relative to that at the threshold 110 100 100 100 100 100 100 100

P1V Days at optimum vernalizing temperature required to
complete vernalisation 90 20 20 20 20 20 20 20

G1 Kernel number per unit canopy weight at anthesis (kernels g−1) 15 25 25 20 22 22 22 25
G2 Standard kernel size under optimum conditions (mg) 48 25 30 30 30 35 30 39
G3 Standard, non-stressed dry weight of a single tiller at maturity (g) 2.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
P5 Duration of the grain filling phase (◦C d) 600 420 430 420 420 420 420 420

PHINT Interval between successive leaf tip appearances (◦C d) 90 92 92 92 92 80 93 92

Ecotype file

P1 Duration of phase end juvenile to terminal spikelet 350 350 350 350 350 350 350 350
P2 Duration of phase from double ridges to the end of leaf growth (◦C d) 200 250 250 250 250 250 250 250

P3 Duration of phase from the end of leaf growth to the end of spike
growth (◦C d) 300 220 220 220 220 220 220 220

P4 Duration of phase from the end of spike growth to the end of the
grain fill lag (◦C d) 380 300 300 300 300 300 300 300

PARUE Conversion rate from photosynthetically active radiation to dry
matter before the last leaf stage (g MJ−1) 2.3 2.7 2.7 2.7 2.7 2.7 2.7 2.7

SLAS Specific leaf area, standard first leaf (cm2/g) 400 450 450 450 450 450 450 450

* various wheat cultivars with the same cultivar coefficients.
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The second dataset from Ihinger Hof was used for sensitivity analysis to test the model on a
different location to proof the concept and to test the responsiveness of the model of different STB
infection levels. The calibration was performed in the same way as in La Plata with the control
treatment by modifying the necessary cultivar coefficients (Table 2). We applied 0%, 10%, 20%, 30%,
50% and 70% damage rates at maximum LAI (GS 39) and started the damage application at growth
stage GS 31 to estimate the corresponding yield loss. The different damage rates were used to test the
model responsiveness on a broad disease range, which typically starts to impact yield after growth
stage 31 [42].

Statistical Evaluation

The statistical model evaluation was conducted by comparing the simulated and observed LAI
and yield of the different inoculation treatments (dataset from La Plata).

For statistical analysis, the root mean squared error (RMSE. Equation (5)), the index of agreement
(d-Index, Equation (6)) [43] and the modelling efficiency (EF, Equation (7)) were used. The RMSE was
used to quantify the amount of variation between simulated and measured values on a metric scale.
The d-Index shows if the model is under -or over-estimating the measurements. The EF parameter
compares simulated values with the average of the measurements. For a perfect fit between simulated
and observed data, the RMSE should be at 0 and the d-Index and EF parameter should have a value
of 1.0.

The statistical evaluation was done for simulation runs of the original CCW version and the
modified CCW for LAI and yield from both years (2010; 2011) on the location La Plata over all cultivars
and inoculation treatments.

Root mean square error (RMSE):

RMSE =

[
1
n

n

∑
i=1

(Si − Oi)
2

]0.5

(5)

Index of agreement (d):

d = 1 −
[

∑n
i=1(Si − Oi)

2

∑n
i=1
(∣∣Si − O

∣∣+ ∣∣Oi − O
∣∣)2

]
(6)

Modelling efficiency (EF):

EF = 1 −
[

∑n
i=1(Si − Oi)

2

∑n
i=1
(
Oi − O

)2

]
(7)

where: Oi = observed values; Si = simulated values; n = numbers of samples; O = mean of observed data

3. Results and Discussion

3.1. Model Calibration for La Plata

3.1.1. Leaf Area Index

The calibration was performed on the 2010 dataset by fitting the relevant genetic coefficients
(Table 2) for phenology and growth. One essential prerequisite for model development is an
accurate simulation of growth stages. In this study, growth stages (GS 39; GS 60; GS 82) were
predicted by the model conclusively: For all ten cultivars the flowering date (GS 65) was documented
approximately 110 days after sowing (DAS), the model simulated this growth stage 115 DAS. A similar
result was obtained by comparing observed and simulated DAS of the early dough stage (GS 82)
(observed approximately at 131 DAS, simulated 132 DAS).
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The main focus of this model calibration was on the adjustment of leaf area as a major coupling
point for disease damage. Figures 2 and 3 illustrate the simulated and the observed values for leaf area
index and grain yield across different inoculation treatments along with the statistics (Table 3).Agronomy 2018, 8, x FOR PEER REVIEW  8 of 17 
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Table 3. Statistical evaluation of the simulation of leaf area index and grain yield of the original CCW
model and the developed CCW model extension for diseases using root mean square error (RMSE),
Willmott’s d statistic (d-Index) and modelling efficiency (EF).

Original CCW Modified CCW

Variable Experiment RMSE d-Index EF RMSE d-Index EF

Leaf area
index

La Plata 2010 1.19 0.33 −2.69 0.69 0.51 −1.07
La Plata 2011 2.88 0.24 −0.98 1.11 0.70 0.68

Yield
La Plata 2010 1144 0.47 −1.19 499 0.81 0.58
La Plata 2011 1755 0.50 −1.19 1285 0.66 −0.18

For demonstration of the overall model behaviour in regard to LAI changes induced by three
different STB inoculation treatments over time, the wheat cultivar K. Chaja was selected. This cultivar
was considered to be highly susceptible to STB infection [39]. Figure 4a shows the impact of disease
infestation on LAI according to different inoculation treatments 90 days after sowing. All three
simulation runs reached the maximum LAI at day 100. For the control treatment a maximum LAI of
3.5 was simulated. A difference of 0.5 LAI was found between the control and the high-inoculation
treatment. Comparing simulated and observed LAI values, the model predicted the LAI over the
vegetation period in an accurate manner (RMSE 0.47, d-Index 0.9).

Similar results are displayed in Figure 2a–c, which illustrates the simulated versus observed LAI
across three different inoculation treatments for different cultivars. Regardless of susceptibility, in GS
39 all ten cultivars showed a homogenous distribution of all data points around the 1:1 line with no
strong outliers. A slight tendency for an overestimation of LAI was given at GS 39 in the low and high
inoculation treatments, whereas for the control treatment a slight underestimation was shown over all
cultivars. In GS 60 and GS 82, a slight overestimation of LAI was found for all inoculation treatments.
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Finally, the modified CCW model (RSME 0.69; d-Index 0.51) performed better compared to the
original CCW model (RSME 1.19; d-Index 0.33), as indicated by the corresponding statistics. Outliers in
Figure 2a–c can be explained by the LSD ranging from 0.4 to 1.0 depending on the sampling date,
reported from Castro and Simón [39].

Nevertheless, the model was able to account for all ten cultivars representing different tolerance
levels to STB at different growth stages and disease severities accurately.

3.1.2. Yield

A reduction in LAI after infection with STB also leads to a reduction in yield (Figure 5a).
Yield formation started for the cultivar K. Chaja (Figure 5a) on day 122 and was negatively
correlated with the inoculation treatment. Yield of the control treatment (3800 kg ha−1) was slightly
underestimated and the high inoculation treatment (3400 kg ha−1) showed a slight overestimation.
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Figure 3a represents the observed versus the simulated yield for all ten cultivars and showed
a dense clustering of the different inoculation treatments around the 1:1 line. Overall, it indicated
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the highest simulated yield for the control and the lowest yield for the high inoculation treatment.
The results illustrated the capability of the modified CCW model to account for disease damage.
This is expressed in the statistical evaluation (Table 3), where a reduction of the RMSE from 1144
(original version) to 499 (modified version) was observed. The d-Index also underlined these findings,
which increased from 0.47 (original version) to 0.81 (modified version).

The modification of the existing CCW showed very good results in LAI and yield simulation
(Table 3). It indicated a clear improvement for all statistical parameters compared with the existing
CCW included in the current DSSAT version. The calibration successfully minimized the error between
measured and simulated data for both, LAI and yield.

3.2. Model Validation for La Plata

3.2.1. LAI

Illustrating LAI (Figure 2d–f) and yield (Figure 3b) for the cultivar K. Chaja and all cultivars in
the validation year 2011.

In 2011, a maximum LAI of 6.3 was observed in the control treatment for K. Chaja (Figure 4b)
at day 120. The model simulated a maximum LAI of 6.2 for the control treatment on the same day.
For the low-inoculation treatment, a maximum LAI of 4.7 was observed, whereas the model simulated
a maximum LAI of 5.8. Regarding the highest inoculation treatment, a LAI of 4.6 was observed in the
field experiment. The model simulated for the same treatment a maximum LAI of 5.7. The model was
capable to simulate the maximum LAI for the control treatment exactly but it slightly overestimated
the maximum LAI both for the lowest and highest inoculation treatment.

In general LAI was higher in 2011 than in 2010 independent of cultivars, growth stages and
inoculation treatments (Figure 2). For 2011 and GS 39, the 1:1 plot showed no strong outliers and a
slight overestimation for the control treatment and a slight underestimation for the highest inoculation
treatment. This can be caused by an earlier onset of disease in the inoculated treatments which was not
reported and cause a slightly underestimation in the model. For GS 60 and GS 82 the model predicted
the observed LAI values accurately.

3.2.2. Yield

Yield formation started 140 days after sowing for K. Chaja (Figure 5b), while full maturity was
reached on day 165. A maximum yield of 6000 kg ha−1 was reached in the control treatment compared
with the lowest yield of 5400 kg ha−1 in the high inoculation treatment. The corresponding error bars
of the measured values were met by the simulated curves, which indicated a high accuracy of the
simulation. Under consideration of all cultivars and inoculation treatments (Figure 3b) data points
scattered around the 1:1 line on a broader range compared to the calibration (Figure 3a). An inverse
relationship between inoculation level and yield was shown (Figure 5).

Overall, the developed model extension was able to account for STB disease damage. This is
also shown by the statistics (Table 3), where a 30% improvement of the RMSE in the modified CCW
version was achieved compared with the original model. This improvement was also shown by the
d-Index and EF values. Further, the calibration showed a higher model accuracy when compared with
the validation. Jing et al. [44] and Attia et al. [45] also reported a slightly weaker simulation accuracy
regarding the validation dataset.

For 2010, a 20 days shorter growing period due to a 30 days later sowing date and a 130 mm lower
precipitation compared to 2011 [39] was reported. Both factors resulted in a reduction of LAI and
yield in 2010. Despite these differences the model performed very well for each inoculation treatment
and showed its robustness when growing conditions differ between years. Measured yields in the
inoculation treatments were simulated quite accurately, while the measured mean value of the control
showed a 5% off-set. An explanation for this offset might be given in the way the disease ratings
were performed and represented in the model. The model used the mean values from the disease
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ratings of all repetitions and did not represent each individual plot. It is also possible that the trials
had a slight infection of other diseases, which were not measured and caused a slight model offset.
Another conceivable reason is the defined onset of disease ten days before disease rating was reported.
This assumption was made because of the reported latent period for STB between day 8 and 14 after
infection from Sánchez-Vallet et al. [38].

For 2010 and 2011, the d-Index values of the original CCW version are in a similar range for
both LAI and yield. In the developed model extension, the d-Index, which represents the model
accuracy, increased strongly even though in different intensities for each year. This may point to one
possible shortcoming of the current model extension, as it does not account for spore disposal [46].
Spore disposal model use different leaf layers, rain intensity thresholds, droplets, sporulation and
concentrations of starting spore pools and can therefore extend the simulation accuracy further.

Nevertheless, other STB models show a strong performance, if a minimum dataset is provided,
in which more inputs like leaf wetness are included [47] or in which the initial state of infection of
the first leaves is known [46]. Magarey et al. [47] also reported the necessity of hourly weather data
for many disease models. In previous datasets this information is not given [48] and they cannot be
used for disease modelling, which is literally a loss of information for agricultural decision making.
This clearly shows the advantage of the developed CCW extension, in which only the percentage of
disease rating, weather- and soil data is needed as a minimum dataset. This leads to a more accurate
simulation as shown in Table 3 and makes the CCW applicable for a broader use.

3.3. Sensitivity Analysis

In order to test the general responsiveness of the developed model extension, a sensitivity
analysis was carried out by comparing different inoculation treatments with the corresponding disease
infections [41]. The model was calibrated by using an independent dataset with disease infections from
Germany [41]. The disease infections varied between 4%, 13% and 15%. Disease infection started in
GS 31 (DAS 200). Figure 6a depicts the simulated curves for the three different inoculation treatments.
A maximum LAI of 7.3 was reached 40 days after GS 31. Simulated curves illustrate a clear separation
between the 4%, 13% and the 15% disease infection. A maximum LAI of 7.2, 6.3, 6.1 was reached at day
240 at 4%, 13% and the 15% disease infection rating. Comparing simulated infection scenarios with
measured values, the model simulated the LAIs of the three different disease infection levels accurately.

Agronomy 2018, 8, x FOR PEER REVIEW  12 of 17 

 

increased strongly even though in different intensities for each year. This may point to one possible 
shortcoming of the current model extension, as it does not account for spore disposal [46]. Spore 
disposal model use different leaf layers, rain intensity thresholds, droplets, sporulation and 
concentrations of starting spore pools and can therefore extend the simulation accuracy further. 

Nevertheless, other STB models show a strong performance, if a minimum dataset is provided, 
in which more inputs like leaf wetness are included [47] or in which the initial state of infection of the 
first leaves is known [46]. Magarey et al. [47] also reported the necessity of hourly weather data for 
many disease models. In previous datasets this information is not given [48] and they cannot be used 
for disease modelling, which is literally a loss of information for agricultural decision making. This 
clearly shows the advantage of the developed CCW extension, in which only the percentage of 
disease rating, weather- and soil data is needed as a minimum dataset. This leads to a more accurate 
simulation as shown in Table 3 and makes the CCW applicable for a broader use. 

3.3 Sensitivity Analysis 

In order to test the general responsiveness of the developed model extension, a sensitivity 
analysis was carried out by comparing different inoculation treatments with the corresponding 
disease infections [41]. The model was calibrated by using an independent dataset with disease 
infections from Germany [41]. The disease infections varied between 4%, 13% and 15%. Disease 
infection started in GS 31 (DAS 200). Figure 6a depicts the simulated curves for the three different 
inoculation treatments. A maximum LAI of 7.3 was reached 40 days after GS 31. Simulated curves 
illustrate a clear separation between the 4%, 13% and the 15% disease infection. A maximum LAI of 
7.2, 6.3, 6.1 was reached at day 240 at 4%, 13% and the 15% disease infection rating. Comparing 
simulated infection scenarios with measured values, the model simulated the LAIs of the three 
different disease infection levels accurately. 

 
Figure 6. Sensitivity analysis of the CCW disease extension for measured disease infections (4%; 13%; 
15%) (a) and for five infection scenarios (0%; 10%; 20%; 30%; 50%; 70% disease infection) (b) with STB 
at the location Ihinger Hof. 

In the next step an artificial disease infection level of up to 70% was applied (Figure 6b) to test 
the general responsiveness and the boundaries of the developed model and to test the leaf damage 
theory on the leaf area coupling point (PCLA). 

In Figure 6a a maximum LAI of 7.3 was reached 40 days after GS 31 in the control treatment. 
LAI increased almost linearly from day 200 to day 240 before the onset of senescence led to a constant 
decrease in LAI up to final harvest date. For the depicted disease infection scenarios of 10%, 20%, 
30% and 50 % a maximum LAI of 7.3, 6.2, 5.4, 4.6, 2.9 and 1.3 was reached at day 240 (Figure 6b). The 
70% disease infection scenario showed that a maximum LAI of 2.0 was reached earlier at 220 DAS 

Figure 6. Sensitivity analysis of the CCW disease extension for measured disease infections (4%; 13%;
15%) (a) and for five infection scenarios (0%; 10%; 20%; 30%; 50%; 70% disease infection) (b) with STB
at the location Ihinger Hof.



Agronomy 2019, 9, 120 13 of 17

In the next step an artificial disease infection level of up to 70% was applied (Figure 6b) to test the
general responsiveness and the boundaries of the developed model and to test the leaf damage theory
on the leaf area coupling point (PCLA).

In Figure 6a a maximum LAI of 7.3 was reached 40 days after GS 31 in the control treatment.
LAI increased almost linearly from day 200 to day 240 before the onset of senescence led to a constant
decrease in LAI up to final harvest date. For the depicted disease infection scenarios of 10%, 20%,
30% and 50 % a maximum LAI of 7.3, 6.2, 5.4, 4.6, 2.9 and 1.3 was reached at day 240 (Figure 6b).
The 70% disease infection scenario showed that a maximum LAI of 2.0 was reached earlier at 220 DAS
(Figure 6b). Due to the massive destruction of leaf area, a shortage of assimilate production occurred,
which affected in a next step the growth of new leaves. Simulated LAI reduction for maximum LAI in
the different disease levels followed the magnitude of 12.5 % (10% diseased LAI), 24.8% (20% diseased
LAI), 37.1% (30% diseased LAI), 60.3% (50% diseased LAI) and 82.4% (70% diseased LAI) (Table 4).

Table 4. Yield evaluation of the sensitivity analysis from the Ihinger Hof dataset, by comparing the
percentage disease infection with STB and the corresponding simulated percentage yield reduction in
kg DM ha−1 for the cultivar Monopol.

% Disease
Infection

Simulated
Yield kg ha−1

Measured Yield
kg ha−1

% Yield
Reduction

% LAI Reduction
at Maximum LAI

0 4384 0 0
4 * 4332 4409 1.2 0.8
10 4190 4.4 12.5

13 * 4159 3934 5.1 14.5
15 * 4124 3965 5.9 12.0
20 3990 9.0 24.8
30 3737 14.8 37.1
50 3242 26.0 60.3
70 2380 45.7 82.4

* measured disease infection.

Table 4 shows the corresponding yields of the applied and measured disease infection levels.
The maximum observed yield obtained with the disease infection level of 4% was 4409 kg ha−1.
Higher disease infection levels (13%; 15%) resulted in lower yield (3934 kg ha−1; 3965 kg ha−1).
Simulated yield decreased gradually with higher infection levels. The control treatment resulted in a
maximum yield of 4384 kg ha−1, while the 70% disease infection level resulted in a total grain yield of
2380 kg ha−1 which corresponded to a 45.7% yield reduction. Over all tested disease infection levels,
the simulated yield reduction followed an exponential shape, indicating that yield reductions became
more severe and are more than doubled at higher disease infection levels. An exponential relationship
between yield loss and disease infection was also shown by King et al. [49].

Comparing simulated and measured yield, the model showed a slightly underestimation for the
4% level and a slight overestimation for the 13% and 15% disease infection level. These variations are
in an acceptable range.

Regarding the accuracy of the current simulation, similar results for yield reduction based on
the occurrence of leaf diseases are reported by Ziv and Eyal [50]. Ziv and Eyal [50] tested different
inoculation treatments in different spring wheat cultivars and reported yield losses of up to 53% at a
disease infection of 73%. The developed CCW model extension gave comparable results to a previous
study of Bhathal et al. [51] also at lower infection level scenarios. Bhathal et al. [51] tested different
inoculation treatments in wheat to evaluate the relationship between disease infection and yield.
Notably, they showed an onset of the disease as it was used in the sensitivity analysis of this study,
at GS 31 and demonstrated a 10% yield loss due to a natural disease infection of 26%. King et al. [49],
also confirmed this model theory on an independent dataset from the United Kingdom carried out at
four different locations. Similar observations and an exponential yield loss curve due to STB disease
were obtained. In addition, a yield loss of 30% by a disease infection of 55.1% as well as a yield
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reduction of 8% by a disease infection of 14.5% occurred. This confirmed the model theory and clearly
showed the capability to simulate leaf disease infection with STB by using the coupling point leaf area
(PCLA).

3.4. Future Model Applications

Despite the good simulation results, the developed model concept can currently only be
used for STB. The concept was not tested on other wheat diseases like stripe rust caused by
“Puccinia striiformis W.,” stem or black rust caused by “Puccinia graminis E.” or powdery mildew
caused by “Blumeria graminis P.” It can be assumed that this concept will also work for other diseases,
by changing the pest coefficient in the pest file to account for different damage types. Bastiaans [52]
showed a ß–value for STB, which represents the correlation between visible affected leaf area and
the affected photosynthetic rate. A ß–value > 1 indicates a stronger effect on photosynthetic rate as
it visually appears. For STB this value is close to 1 wherefore the pest coefficient in the CCW model
extension was set to 1. Bastiaans [52] reported a ß–value of 8.7 for “Erisyhe graminis” or 1.3 for “Puccinia
recondita” in winter wheat. It is assumed, that the pest coefficient has to be increased in a similar
manner but it has to be proven by real data. However, the structure of the model extension is set up in
a flexible way and has the possibility to be transferred to other leaf diseases.

Further, the disease extension routine can suite as a gateway between crop models and remote
sensing data, like it was published by Thorp et al. [53]. Thorp et al. [53] showed an improvement of
simulation results by updating the plant leaf area state variable with green LAI generated by remote
sensing. This offers the opportunity to simulate a given field on a site-specific scale, which means the
CCW model extension can be updated by the percentage diseased leaf area detected by for example,
remote sensing. In this way, the model could serve as decision support tool to give farmers an economic
advise on a field level as Ficke et al. [54] proposed.

4. Conclusions

In this study a disease extension for the CCW model was developed to simulate the damage effect
of STB disease on LAI and yield in wheat. The model was tested successfully in a sensitivity analysis
on a German dataset and on a dataset obtained from La Plata, Argentina. Results of the study clearly
showed the effect of the implementation of the coupling point “PCLA” and on the corresponding
LAI and yield for different locations. For the location La Plata, the obtained simulation results of the
modified CCW model indicated a higher model accuracy which almost doubled and clearly showed an
improved model behaviour. Especially for the cultivar K. Chaja, the CCW model extension showed a
high modelling accuracy. The LAI and yield were simulated very accurate in both years. Furthermore
the sensitivity analysis also displayed the flexibility of the CCW model extension to account for disease
damage over a broad range between 0 and 70% of STB disease infection.

Nevertheless, further research is needed to test the developed model on other leaf diseases like
leaf rust, powdery mildew or stripe rust in wheat. The model extension could be used in future
studies as decision support system for example, coupled with remote sensing technologies to obtain
the necessary disease ratings for the model input files.
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