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Abstract: Odd-even statistical staggering in a Lipkin-like few fermions model has been recently
encountered. Of course, staggering in nuclear binding energies is a well established fact. Similar
effects are detected in other finite fermion systems as well, as for example, ultra small metallic
grains and metal clusters. We work in this effort with the above-mentioned Lipkin-like, two-level
fermion model and show that statistical staggering effects can be detailedly explained by recourse to
a straightforward analysis of the associated energy-spectra.
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1. Introduction

A well known fermion phenomenon is odd-even statistical staggering. It is found
in few (not necessarily nuclear) fermion systems. The effect is empirically well known in
nuclear physics and metal clusters ([1–3], and references therein). The associated odd-even
differences in nuclear masses are also influenced by mean-field and odd-nucleon blocking
effects [4,5].

We will deal below with an exactly solvable (interacting) fermions-model of the Lipkin
kind that does not appeal to pairing interactions. This is relevant as paring forces are
believed to be responsible for the effect in nuclei [3]. It was shown in [6] that odd-even dif-
ferences are an intrinsic consequence of the dynamics of interacting fermions. The ensuing
odd-even differences were incorporated [6] into an order–disorder environment that has as
a protagonist the so-called statistical complexity concept [7], where “order” is produced by
the fermion–fermion interaction while disorder is generated by the temperature T.

The above-mentioned order–disorder interplay was described in [6] via Gibbs’ canonical
ensemble considerations. In them, the concomitant probability distribution is proportional to
exp (−βĤ), with Ĥ standing for the Hamiltonian and β for the inverse temperature.

We will see below that the staggering effect is translated from the energy (in the nuclear
instance) to thermal quantifiers like the statistical complexity or the entropy. Interestingly
enough, it manifests itself also in the variation of the mean energy with the temperatures,
i.e., the specific heat.

More importantly, we will explicitly demonstrate that odd-even differences are entirely
attributable to the characteristics of the associated energy-spectra of either odd or even
systems.

2. The Model

The Lipkin Model (LM) [8] was very useful in research that revolved around the
validity and/or usefulness of several theoretical techniques devised for investigating the
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multiple facets of the fermion many-body problem. The LM is based on an SU(2) algebra
and produces easily accessible exact solutions.

We will occupy ourselves here with a simplified LM-version proposed in Reference [9].
The models of [8,9] deal with of N fermions distributed between (2N)-fold degenerate

single-particle (sp) levels separated by an sp energy gap ε. Two quantum numbers (µ and
p) are assigned to a general single sp. The first takes the values µ = −1 (lower level) and
µ = +1 (upper level). The p−, often denominated quasi-spin or pseudo spin, picks out
a specific belonging to the N-fold degeneracy. The couple p, µ may be viewed as a “site”
that is occupied or empty. Double site-occupancy is forbidden. We have

N = 2J, (1)

where J stands for an “angular momentum”. In the wake of Lipkin et al. [8] we define the
quasi-spin operators

Ĵ+ = ∑
p

C†
p,+Cp,−, (2)

Ĵ− = ∑
p

C†
p,−Cp,+, (3)

Ĵz = ∑
p,µ

µ C†
p,µCp,µ, (4)

Ĵ2 = Ĵ2
z +

1
2
( Ĵ+ Ĵ− + Ĵ− Ĵ+), (5)

where the eigenvalues of Ĵ2 are of the form J(J + 1).

The model’s Hamiltonian of Reference [9] is

Ĥ = ε Ĵz −Vs

(
1
2
( Ĵ+ Ĵ− + Ĵ− Ĵ+)− Ĵ

)
. (6)

Simplifyng with either V = Vs/ε or ε = 1, we write

Ĥ = Ĵz −V
(

1
2
( Ĵ+ Ĵ− + Ĵ− Ĵ+)− Ĵ

)
, (7)

and the unperturbed ground state (gs) for V = 0 is, on account of Equation (1),

|J, Jz〉 = |J,−N/2〉, (8)

endowed with energy

Eo = −N/2. (9)

The interaction between two fermions here is of a very simple nature. We have just
forward scattering [9]. In interacting, the states of the two incoming fermions are identical
to those of the two outgoing ones [9].

An important fact, we reiterate, is that doubly occupied p−sites are not allowed for.
The Hamiltonian commutes with the pair of operators Ĵ2 and Ĵz.

Accordingly, the exact solution must be encountered within the J-multiplet of the
unperturbed ground state. The states of such multiplet will be denoted as |J, M〉. One of
them has then to minimize the energy. The ensuing M value should depend on the strength
V of the interaction.

A remarkable trait of our model [9] is that, as V increases from zero, Eo is not at once
modified. It maintains its value till a critical V−specific figure is reached, of 1/(N − 1). At
this juncture, the interacting ground state abruptly becomes |J,−N/2 + 1〉. If V continues
augmenting, additional “crossing” transitions (ct) take place (the Jz-value characterizing the
ground state changes). The ct between Jz = −k and Jz = −k+ 1 happens at V = 1/(2k− 1).
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This ct-series ends as the interacting ground state becomes either Jz = 0 (Vcrit = 1 for
integer J), or Jz = −1/2 (Vcrit = 1/2 for odd J). In such circumstances one has, regardless
of the value J [9]

Vcrit = 1/2, (10)

for half-integer J and
Vcrit = 1, (11)

for integer J.

Our Model at Finite Temperatures

One needs to compare model-results for distinct J values, which is facilitated because
double occupancy of a p-site is strictly forbidden. Accordingly, the Hamiltonian matrix
should be the (2J + 1)× (2J + 1) one of the Jz = −N/2 multiplet, with N = 2J [8].

One has for the free energy F(J), in terms of the partition function Z(J),

F = −T ln Z = −T ln Tr(exp (−βĤ)), (12)

where, hereafter, we set the Boltzmann constant equal to unity. For each different J the
trace operation is a sum over the Jz quantum number m and

Z(J) =
m=J

∑
m=−J

exp (−βEJ
m), (13)

with an energy EJ
m [9]

EJ
m = m−V[J(J + 1)−m2 − J]. (14)

The pertinent Gibbs’ probabilities PJ
m then become [9]

PJ
m =

exp (−βEJ
m)

Z(J)
, (15)

for all m = −J,−J + 1, . . . , J − 1, J. Thus, the Boltzmann–Gibbs S entropy is ([10] pp. 202–
211)

S(J) = −
m=J

∑
m=−J

PJ
m ln PJ

m, (16)

As for the number of micro-states m one has, of course,

O(J) = 2J + 1, (17)

so that the pertinent uniform probabilities (the same for any m) should read

P(uJ) = 1/O(J). (18)

3. LMC Statistical Complexity

This notion is of the essence here [7,11–24]. That of complexity is a pervasive notion
in modern science. Any complex system is customarily linked with a mixture of order and
disorder as well as to emergent phenomena. However, a universal and precise definition
of complexity is still missing. There are different ways to calculate it, like the so-called
algorithmic complexity, introduced by Kolmogorov so as to avoid the probabilistic inter-
pretation of Shannon. Nevertheless, a successful and much utilized expression for it is
that advanced by L. Ruiz, Mancini, and Calbet (LMC) [7] that we will employ in this work.
Mathematically, it is the product of the ordinary entropy S times a distance in probability
space between the current probability distribution and the uniform one. This distance is
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called the disequilibrium D. D is a measure of “order” as the larger it becomes, the larger
the quantity of “privileged” states in our sample state’s space (our J multiplet here). It is
defined as [7]

D(J) =
m=J

∑
m=−J

[PJ
m − P(uJ)]

2. (19)

D tells us about the degree of “order” in our system. This order grows with D. To
learn about more details, features, and applications of the disequilibrium the reader is
directed to References [23,24]. We reiterate that LMC defines the statistical complexity C as
[7],

C = S D. (20)

In Reference [6], it was discovered that the three quantifiers (S, D, and C) display the
odd-even effect. An example is displayed below in Figure 1, where it is clearly appreciated.

N
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T0=1;  V=10
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C

Figure 1. Statistical quantifiers (entropy S, disequilibrium D, and complexity C versus fermion-
number N) at temperature = 1 Kelvin and coupling constant V = 10. The even-odd staggering effect
is plainly visible.

4. Results
4.1. A Staggering Example

As just promised, Figure 1 exhibits our odd-even effect. Statistical quantifiers (entropy
S, disequilibrium D, and complexity C) are plotted versus the fermion-number N at a
temperature = 1 Kelvin, with the coupling constant V = 10. The even-odd staggering
effect is plainly visible.

4.2. Model’s Level-Spectra

We pass now to illustrate the behavior of our model’s low-lying energy levels. For
didactic purposes, we shift the energy scale so that the ground-state (GS) energy always
equals zero. The temperature will always equal 1 Kelvin in our graphs.

Consider now a case in which the number N of fermions is even, for example N = 6
in Figure 2. We plainly see that the energy of the GS and that of the first excited state (1es)
always lie close together as the coupling constant (cc) V augments.
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Contrary wise, look at a case with an odd fermion number N = 7 in Figure 3. Things
look quite different now, since only the GS separates itself from the remaining low ly-
ing states.

The same even-odd GS-1es pattern reported above is repeated for the pairs N = k, k+ 1
in the next four graphs, for k = 10, 16.
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Figure 2. Level energies for the ground state (GS) and the first five excited states versus the coupling
constant V of our fermion model. The number of fermions is N = 6. Energies are re-normalized
so that the one for the ground state always equals zero. We note that the energy of the first excited
(1ex) state (red line) is, for almost every V−value, very close to that of the GS. This fact results in two
Boltzmann exponential factors of quite similar nature, i.e., similar probabilities. The remaining four
excites states’ energies (second to fifth) grow very rapidly with V and this distances them more and
more from the almost constant energy pair [GS, 1ex]. This makes the respective probabilities of these
four excited states grow progressively smaller. Probabilistically then, our scenario is dominated by
the pair [GS, 1ex].
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Figure 3. Model-energy levels versus coupling constant V for N = 7 fermions. Energies are re-
normalized so that the one for the ground state equals zero always. Characterization of levels is like
in Figure 2. It is clearly seen that, as V grows, the energetic distance between the ground state and all
the excited states steadily augments.
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4.3. Explanation

It is clear that the level-probabilities behave in the following manner

• For odd N, the largest probability in the partition function is by far that associated
to the GS, E0. Let us call it P0, the energy of which is much lower than that of all the
remaining states of energy Ei >> E0. Thus, for all excited i, Pi << P0.

• For even N, two different probabilities (those for the GS and for the 1st excited state)
become appreciably larger than the ones for the rest of the energy levels. Thus, the
entropy augments, as compared to that of the N-odd instance, and D consequently
diminishes in the same fashion.

• Statistical odd-even staggering arises then because the entropy, for a given even N, is
larger than that for its two neighbors N − 1 and N + 1.

• Odd-even staggering emerges thus as a spectral feature. In other words, it is a
consequence of the Hamiltonian’s nature. This nature is that of forward-scattering
between the model’s fermions [9]. Kramer’s degeneracy is probably at play [25]. This
is our main result.

5. Conclusions

We have shown that statistical odd-even staggering can be understood on the basis of
the behavior of the low lying energy levels of our finite fermions model.

In other words, we showed that odd-even staggering (in our fermion model) is just
the necessary consequence of spectral differences between odd or even systems.

These differences are then attributable to the pertinent Hamiltonian that describes
forward scattering. Given the simplicity of the fermion–fermion interaction, our findings
suggest that the observed odd-even differences are intrinsic, essential features of the
fermionic nature.
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