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Abstract: We employ two different Lipkin-like, exactly solvable models so as to display features of
the competition between different fermion–fermion quantum interactions (at finite temperatures).
One of our two interactions mimics the pairing interaction responsible for superconductivity. The
other interaction is a monopole one that resembles the so-called quadrupole one, much used in
nuclear physics as a residual interaction. The pairing versus monopole effects here observed afford
for some interesting insights into the intricacies of the quantum many body problem, in particular
with regards to so-called quantum phase transitions (strictly, level crossings).
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1. Introduction

The Lipkin Model (LM) is a celebrated exactly solvable model for nuclear physics [1,2].
Given that it provides one with accessible exact solutions, it has proved to be of great utility
in nuclear theoretical research for the purpose of assessing the validity and/or usefulness
of variegated techniques that have been devised in order to study the multiple facets of the
quantum many fermions problem [3].

Lipkin’s model is based on an SU2 algebra that is generated by special operators
denominated quasi-spin operators (QSPO). The model possesses tractable exact solutions,
which are to be compared with results encountered via diverse kinds of approximate
theoretical techniques. A relevant Casimir operator emerges in the model that commutes
with all the QSPO [1,2]. This Casimir operator has attached to it different multiplets. Only
the multiplet associated with the unperturbed ground state deserves scrutiny.

In addition to serving as a test ground for assessing many body methodologies, the
Lipkin model also has considerable value as a conceptual tool for the exploration of ques-
tions of principle related to the many-body problem. This is the sense in which our present
discussion proceeds, because our treatment of competing quantum phase transitions below
could be viewed as the addressing of a possibly new quantum phenomenon.

Cambiaggio and Plastino (CP) [4,5] proposed a simple Lipkin augmentation, from
SU2 to SU2 × SU2, to treat the excited Lipkin-multiplets (or bands) and the pairing
interaction responsible for superconductivity. The extension permitted the enactment,
in quasi-spin language, of a BCS-like formulation [2] which is able, as stated above, to
exactly mimic superconductivity, giving exact solutions. We have then an extension of
the Lipkin model to a scenario endowed with a variable particle number. Note that in
nuclear physics superconductivity often arises as well [2]. There, the pairing interaction
is an important component of the residual nuclear interaction left after the Hartree–Fock
mean field has been established [2,6,7]. In particular, a second important component of the
nucleon–nucleon interaction is a quadrupole force [2].
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In this effort, we wish to exactly examine the competition between the pairing interac-
tion and a monopole force. This is doable if we combine the solvable Cambiaggio–Plastino
(CP) model of the pairing interaction with the also solvable Plastino–Moskowski (PM)
model of a monopole interaction [8,9]. In particular, the two models display phase transi-
tions (PT) and we show how the two PTs mutually interfere one with the other. The exactly
solvable juxtaposition of the CP and PM models that we advance in this paper offers rich
structural quantum details that deserve our attention.

2. Our Present CP-PM Juxtaposition
2.1. Preliminaries

We appeal to two different exactly solvable Hamiltonians of the Lipkin type ([10]
and references therein), which we here juxtapose for the first time. The first is the Hamil-
tonian HPM of [9] (see (11) below), which represents forward scattering, spin-flips, or
monopole interactions [9]. The second is the pairing Hamiltonian (15) below. The total
H = HPM + HCP, representing monopole plus pairing interactions, here operates on an
augmented SU2 × SU2 mathematical scenario.

One considers here N fermions distributed in two (2 Ω)-fold degenerate single-particle
levels (N = 2 Ω) separated by an energy gap ε. All energies here are expressed in ε-units.
The 4 Ω single particle states are characterized by two quantum numbers: (1) p, µ with
p = 1, . . ., 2 Ω; and (2) µ = ±1. p is named a quasi-spin quantum number. We appeal
now to the customary fermionic creation (C†

p,µ) and destruction (Cp,µ) operators. Creation
(destruction) operators anti-commute among themselves. Additionally,

{Cp,µ, C†
p′ ,µ′} = δp,p′δµ, µ′. (1)

One has then to deal with the usual SU2 quasi-spin operators [1,2], with which one
constructs the pertinent Hamiltonians:

Jz = (1/2)∑
p,µ

C†
p,µCp,µ, (2)

J+ = ∑
p

C†
p,+Cp,−, (3)

J− = ∑
p

C†
p,−Cp,+. (4)

Jz counts the difference between the number of particles in the upper level and that of
the lower one. J+ creates a particle upstairs while destroying one below, and vice versa
for J−. These two operators move fermions up and down. Its authors introduced the (also
SU2) angular momentum-like “pairing” entities [4]

Q0 =
1
2 ∑

p,µ
C†

p,µCp,µ −Ω, (5)

Q+ = ∑
p

C†
p,+Cp,−, (6)

Q− = ∑
p

C†
p,−Cp,+. (7)

It is evident that Q+ creates and Q− destroys two particles, yielding null bequest
to the Jz-value, and one then shows that the two particles couple to Jz = 0. Any Q-
operator does commute with all J-operators, and the other way around, which entails an
SU2 × SU2 structure. We can construct then a complete orthonormal basis characterized
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by the eigenvalues of the operators J2, Jz, Q2, Q0, i.e., |J, Q, Jz, Q0〉. CP [4] also introduces
the quasi-spin seniority number ν

ν = 2(Ω−Q), (8)

which reveals the number of particles not “paired” to Jz = 0. Thus, ν is the quantity of
“unpaired” particles in a Q-multiplet. Note that one has [4]

J = ν/2, (9)

J + Q = Ω. (10)

In the Lipkin model, N = 2 Ω, Q0 = 0 [1,4], and this equality is strictly obeyed in all
what follows below.

The unperturbed ground state is the eigenvalue of an unperturbed Hamiltonian H0
(no fermion–fermion interaction) and is characterized by J = Ω, Jz = −Ω, Q = Q0 = 0 [4]
belonging to the multiplet J = Ω, Q = Q0 = 0.

We consider now that the monopole Hamiltonian HM in our scenario. We have, as
defined in [9], in terms of the operators J and Jz and a coupling constant V,

HPM = H0 + HM = H0 −V
[

J2 − J2
z − J

]
, (11)

H0 = Jz. (12)

The exact eigenvalues of HPM are immediately seen to be [9]

E(J, Q, Jz, Q0) = Jz −V
[

J2 − J2
z − J

]
. (13)

The energy of the unperturbed (V = 0) ground state (ν = N, Q = Q0) is

E0 = −Ω. (14)

As V grows, this Hamiltonian displays Ω phase-transitions (level crossings) in which
the ground state ceases to be characterized by Jz = −J and passes to be characterized
by successively larger Jz values until we reach Jz = 0 at V = 1 [9]. This assertion is
immediately verified by inspection.

A second, pairing interaction, is now added to our PM–CP picture [4] as

HCP = H0 −
G
2

Q̂+(b)Q̂−(b), (15)

which adds to the energy a pairing amount Ep

EP = −(G/2)Q(Q + 1). (16)

A superconducting phase transition takes place at G = Gcrit [4] (this fact can be easily
verified by analytically computing ground state energies)

Gcrit =
2

ω + 1
. (17)

Our pairing contribution to the total Hamiltonian is thus

HCP = −G
2

Q̂+(b)Q̂−(b). (18)

The Hamiltonian H0 + HCP exhibits a phase transition (level crossing) at G = 1 from
non-conducting to superconducting. At such value, the system becomes a superconductor,
as can be immediately verified [4].
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In this paper, we wish to ascertain what happens to our two kinds of phase transitions
(pt) in the case of the juxtaposition total Hamiltonian

H = H0 + HM + HCP. (19)

In other words, we want to see

• how the monopole pt depends on the pairing coupling constant G; and
• how the superconducting pt depends on the monopole coupling constant V.

2.2. Statistical Mechanics of the Combined Hamiltonian H

How to statistically handle H is described in [11]. For investigating ground states,
only the J + Q = Ω “band” requires attention at temperature T = 0. If T > 0, the picture
changes. For non-zero temperatures, plenty of states belonging to other bands become
accessible (double p occupancy is now allowed for), as we construct the pertinent statistical
ensemble. Define then the degeneracy Y(J, Q) of a given multiplet defined for specific
values of the quantum numbers Q and J. This is a rather involved task. One has [11] (β is
the inverse temperature 1/T)

Y(J, Q) =
(2Ω + 2)!(2Ω)!(2J + 1)(2Ω + 1)

(Ω + J + Q + 2)!(Ω + J −Q + 1)!(Ω− J + Q + 1)!(Ω− J −Q)!
. (20)

A partial partition function ZM can be written as ZM [11]

ZM(β) =
M=J

∑
M=−J

exp [−β[(M−V[J2 −M2 − J])− (G/2)Q(Q + 1)]. (21)

The system’s total partition function Z is now

Z(β) = ∑
J,Q

Y(J, Q)ZM(β), (22)

where J and Q run over all the quantum numbers allowed for by the structural SU2 × SU2
restrictions [11]:

0 ≤ J ≤ Ω, (23)

0 ≤ Q ≤ Ω, (24)

0 ≤ J + Q ≤ Ω. (25)

Naturally, once in possession of Z, all relevant statistical quantifiers become easily obtainable.
Two very important quantities are

• The effective superconductivity index X,

X = ∑
J,Q

M=J

∑
M=−J

P(M, Q)[(N − ν)/N], (26)

is unity for a perfect superconductor and vanishes for the unperturbed system (no
pairing interaction).

• Its equivalent quantity for the monopole force (the monopolarity indicator W) is

W =
M=J

∑
M=0

P(M, Q = 0, J = Ω). (27)

3. Results

We deal in this work with two competing interactions, a monopole one, which mimics
a long range interaction [9], and a pairing one, which mimics short range ones [4].
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We illustrate the rather surprising influence that the monopole interaction has on
pairing in Figure 1. Since T 6= 0, there is some superconductivity even at G < Gcrit [5]. The
notable result is that growing V either helps or impedes superconductivity, according to
the surrounding circumstances, an original discovery of ours here. Recall that, at T = 0,
the monopole interaction generates, at V = Vcrit = 1, a monopole phase transition [9]. The
helping “V” effect takes place if V < Vcrit. Contrariwise, the “impeding” effect prevails.

Figure 1 refers to the special case N = 2. Here, the influence of the monopole
interaction always favors pairing. This changes for larger N values, as shown below.

V
0 0.5 1 1.5 2

X

0

0.2

0.4

0.6

0.8

1

N=2; +=1; T=0.2

G=0.5

G=1

G=1.5

Figure 1. Superconductivity indicator X versus monopole coupling constant (cc) V for various values
of the paring cc G. We have N = 2 and T = 0.2 Remember that the pairing’s cc at T = 0 is Gcrit = 1.

A new facet of the interplay between the monopole and pairing interactions is shown
in Figure 2 for N = 8. One appreciates the following fact. Little V-values, i.e., smaller than
Vcrit, help pairing, but great ones, i.e. larger than Vcrit, tend to destroy it. In this example,
pairing dies for V > 1.35. We see a sort of interaction between the two different phase
transitions at play here.

V
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N=8; +=4; T=0.2

Figure 2. Superconductivity indicator X versus monopole coupling constant (cc) V for various values
of the paring cc G. We have N = 8 and T = 0.2. Intense monopole forces destroy pairing.

Figure 3 is a three dimensional picture in which X is called H. It is plotted versus
V and G for N = 8. At G = 2, pairing vanishes for Vterminal = 1.8. Vterminal describes
a straight line at the graph’ floor from that value to near V = 0.5. Here downwards, V
reverses its impeding role and begins instead to help pairing. This happens as, diminishing
its value, V crosses Vcrit downwards. Thus, the physics of the monopole phase transition
determines the monopole role in helping or preventing superconductivity. We emphasize
the remarkable feat that the monopole interaction destroys pairing if intense enough. This
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can be easily understood: in actual nuclei, the residual quadrupole force is a long-range
one while pairing is short-range. Thus, it is understandable that the former works against
the latter.

2

N=8; +=4; T=0.2

1.51

V

0.500

1

0

0.5

1

G

2

H

Figure 3. Superconductivity indicator H = X versus monopole coupling constant (cc) V and pairing
force cc G. We have N = 8 and T = 0.2. Intense monopole forces destroy pairing. Weak ones, instead,
favor it.

3.1. The N-Dependence

As shown above, the superconducting state suddenly emerges whenever the coupling
constant G, when growing from zero, reaches a critical value Gcrit. This critical value is
roughly proportional to 1/N. Instead, the critical constant Vcrit is independent of N.

The N dependence is analyzed next in Figure 4. This is of the essence, as the effects of
a long range interaction should obviously gain intensity as N grows. As a consequence, for
V > Vcrit, its pairing impeding role becomes stronger. This is clearly shown in Figure 4.
Pairing effects are attenuated as N augments.

N
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X

0

0.2

0.4

0.6

0.8

1

G=1; V=1.5; T=0.2

Figure 4. The N dependence. Superconductivity indicator X versus N for V = 1.5 (greater than
Vcrit) and pairing force G = 1 (the critical one at T = 0). We have T = 0.2 here. The pairing effects’
intensity abruptly falls as N grows.

As noted above, however, the N dependence, in turn, hinges upon whether the V
value is large or small. This is illustrated in Figure 5. V small helps pairing and V large
impedes it.

As stated above, the N dependence of pairing hinges upon whether the V value is
large or small. This is illustrated in Figure 6 by plotting X versus V for several N values.
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Figure 5. The N dependence. Superconductivity indicator X versus N for several V values. We have
T = 0.2. The pairing effects’ intensity falls or grows as N grows, according to how large V is—more
precisely, according to whether it is greater or smaller than Vcrit.
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Figure 6. The N dependence. Superconductivity indicator X versus V for several N values. The
larger is N, the sooner does V destroy pairing.

3.2. The Monopole-Intensity Quantifier W

We focus attention now on the monopole-intensity quantifier W and study how pairing
impinges on it. Figure 7 shows that pairing tries to impede the monopole force action.
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Figure 7. The N dependence. Monopole activity-indicator W versus V for several G values. N = 8
and T = 0.2. Growing pairing works against W.
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We maintain our focus on the monopole-intensity quantifier W and consider in Figure 8
a 3D plot in which W is depicted against both V and G for N = 8 and T = 0.2. We see that
pairing tries to impede the monopole force action.
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0
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2
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Figure 8. 3D study. The N dependence. Monopole activity-indicator W versus V and versus G.
N = 8 and T = 0.2. Growing pairing works against W, more strongly for V < Vcrit.

4. Conclusions

This paper shows how different fermion–fermion interactions compete against each
other in a novel juxtaposition of two exactly solvable many-fermion systems, those found
in [4,9]. Both are endowed with phase transitions (level crossings) of distinct kinds that
mutually influence each other, either favorably or unfavorably, according to whether the
pertinent coupling constant are smaller or larger than their respective critical values.

All the interesting effects described above in some detail are the result of a simple
fact: as their respective coupling constant grows, the concomitant two fermion–fermion
interactions try to ”drive” the system towards radically different types of states. The
monopole force favors states in which each p-quasi-spin site is of a particle-hole character,
of the total Jz null-value. The pairing force tends to realize states in which each p-quasi-spin
site is either empty or doubly occupied. The different tendencies freely compete here. The
results depend on the values adopted by the two coupling constants V and G. Interesting
results ensue, which we describe above.
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